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H. H. Boronio6oB. CobpaHMe Hay4HbIX TpyaoB, Tom X

[ononHeHue 1. PeHopm-rpynna
Borontobosa 50 net cnycTs

5. Pexopm-rpynna Boronwo6osa 50 ser crniyers 691

5.2. AnpasmTHueckas teopus Bosmymenuit B KXJI. Monudukanua psna
TeOPHH BO3MYILEHWH, BBINOJHEHHAA METOJIOM PEeHOPM-TPYIkI, MNO3BONSET Yiy4-
W Th CBOHCTBA pas/oXeHWs B yJbTpadHoneToBoH 06JACTH, OOHAKO MPHBOLHT
% HeH3HYeCKHM 0COOEHHOCTAM.

Tak, B KXJI cymmy ofiHonetsieBuX yabTpatuonerosuix (YP) norapupmor
2as «HHBAPHAHTHOTO 3apsjaas (5H7) 0OLIYHO 3aNHCHIBAKT B TEPMHHAX

F=0(Q?) = Ay _ L
1 +a,bn(Q%/u?)  Goln(Q2/A2)’ (70)
Il —2ng/3
i = —
To(ny) =
macwitabnoro napametrpa KXJ, onpepenenxoro ussectHoiM ofpasom: A =
E o 1/(2aub)
= i€ i
Dyukuua (70) UMeeT MapasHTHYIO CHHIYJAApHOCTL B HHdpaxpacHoh (MK)
B6aacTi npH Q° = A2, TlpoGaema ocoGeHHOCTEH TAKOrO COpTa He MOMeT ObiTh

Sewena (M. §50.2 ocHOBHOrO TekcTa) 3a cueT ydera J000ro KOHEYHO20 YUcaa
WHOTONETeBBIX BKAAAOB. JIOXKHBIE CHHTYJSAPHOCTH NPH 9TOM He HCYe3aloT, a
muib MeHaloT xapakTep. Tak, o6bluHoe neprypBaTHBHOE [ABYXNeT/eBoe Bbipa-
BmeHHe 07 O,

| G Inl In?1 Q?
a2(0? O ettt WY 1=1
o (Q°) = _;0 [ ;"]3 7 :| b o O( B ) % n-— ek

SpeicTaBasiollee cofoil pasnoxenune dopmyan (60), noMHMo nontoca obnanaert
SedH3HUeCKHM paspe3om, o6yCA0OB/IEHHBIM ABOHHOH norapHdMHYecKol 3aBUCH-
mocTbio oT Q2.
Mono6Has TpynHocTh Bnepsee Boskukaa B K3 B 1950-x rr.' Bckope

% paGote Borono6osa ¢ coaBropamu [31] Geuio mpegsoxeno siBHOE MOJEJbHOE
pemieHue mpobseMbl HA NyTH cuHTe3a metoga Pl W ¢uaudeckoro ycnosus
SpHYMHHOCTH B BHAE CHNEKTpaabHOro npeacrapieHus Yennena-Jlemana pns
SOTOHHOTO NMponaratopa.
3ta upes noay4yuna passutie [32, 33] B cepennne 1990-x rr. npuMeHH-
weasio K KX/, rae B cuy ¢BOHCTBA acCHMOTOTHYeCKOH cBOGOAL He(hH3HUeCKHe
cO0EHHOCTH HAaxXOAATCHA B (PH3HYECKH [OCTHXXHMOH WH(QpakpacHoH o0JacTH
SeeqHYHHA napameTpa A cocTaBaseT HecKodbko coteH MsB) W cywecTBeHHO
SaTpyaHAoT 00paboTKY JaHHBIX ONbITA.

INpusnexas obuiee TpefoBaHHe NPHYHHHOCTH B (hOPME YCJIOBHH aHAIHTHYHO-
W nponaratopos (npencrasnende Yensena- J]eh(dHﬂ) H AMIVIHTYL paccesiHus
\enexTpanbHoe npeactasnente Mocra-Jlemana®), ynanock noctpouTh peryasp-

The renormalization-group method allows one to
modify a perturbative expansions in accordance
with the general principle of renormalization
invariance.

The analytic approach is the next step in the RG
method:

This approach modifies the perturbative expansions
so that the new approximations combine the
renormalization invariance and the correct
analytical properties of the series in the complex

3neck NpH3pauHble CHHIYJASPHOCTH OTBEYAIOT OFPOMHBIM MaciiTabaM, AHUIEHHHM (Hanye-
MO0 CMbiCAA.
“ Cwm. §55.1 ocHoBHOrO TeKeTa,

Q’-plane.



Motto of APT activity

Take care of Principles and
the Principles will take care of you.

D.V. Shirkov, I.L. Solovtsov

Method Type of approximation Properties
Uv IR Anal
PT Double set in powers of
ay, and In Q2 /p? — — +
PT + RG Power series in

invariant charge &S(Qz) + — —
APT = PT + RG Nonpower expansions

+ analyticity in Ax(Q?) and Ax(s) é’ é’ é’

Shirkov, Solovtsov 2007

I'dea:
Imation breaks general properties,
using a representation, which accumulates general properties,

restoration of these properties => improved approximation.
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History of the APT creation

The Perturbation theory (PT) is a basic tool of calculation in quantum field theory.

1st step of improving PT is provided by RG Method
(Bogoliubov—Shirkov [1955-56]).
In the infrared region the RG-modified PT series remains unstable.

2nd step in improving of PT solution is provided by the analyticity
imperative, based on the causality condition.

The idea to combine the renormalization invariance and the Q2 analyticity was
generalized to the case of QCD twenty years ago by Shirkov and Solovtsov.

[D.V. Shirkov and I.L. Solovtsov, «Analytic QCD running coupling with finite IR
behaviour and universal as(0) value», JINR Rapid Comm. No.2[76], 1996, p. 5;
Phys. Rev. Lett. 79 (1997) 1209]

A further development of the analytic approach in QCD led to the formulation
of the APT method and to its numerous applications to hadronic physics.

3rd step generalizes APT by including fractional powers of og(Q?)

This generalization has expanded the application of Bakulev-Mikhailov-Stefanis
the APT to QCD analysis of the processes. [2005-2010]

) C . )



Uvervulew o! !Heor'eﬁcal framework: Analytic approach

APT = PT + RG + Q?-analyticity

D.V. Shirkov, I.L.Solovtsov,
Theor. Math. Phys. 150(1) (2007) 132-152

- . “Ten years of the Analytic Perturbation Theory in QCD”
Well-known features of APT:

In the framework of APT the QCD running coupling (invariant charge)

can be reconstructed via the Kallen-Lehmann (Qz) o (0)= 1% p(o)do
representation in which the relevant spectral oo R 0"
density is defined as the imaginary part of the '
perturbative invariant charge constructed by —Im B

the RG method in the Euclidean domain. r(o) ([a”( 0)])

free from unphysical singularities and without additional parameters

infrared stable point which is independent of the scale parameter A, and
higher-loop corrections

Q the Euclidean and Minkowskian invariant charges are defined in a self-
consistent way and o (0)=ca'7 (0)=1/p5, Bo=11—2n;/3

Q the better convergence properties of the APT nonpower expansions and
stability with respect to higher-loop corrections, the theoretical ambiguity
associated with the choice of renormalization scheme is diminished.

O leads to an essential change in the IR behavior, but APT -> PT at large Q?

m 7



QCD running coupling: PT and APT

u

va,

[ ATB (LO)

0,0 —
0,0

0,5

=
Q* (GeV?)

2,0

The higher-loop behavior of PT and APT couplings



Overview of theoretical framework

Leading order

Euclidean region

y 1 [ plo) 4w 1 A?
TS Efu T @ [In(@?/m o 02]

Minkowskian region

1 [ do 47 L
ani(s) = - —p(o) = —— arccos
5

o ~ Bor VI0I?2 + 72

4r T S
= m arctan T L =In 22 p(o) = p1(o)

L=>0

IR stable points

4

E}f-J—U' = ap(0 = -
£(0) = anm(0) 5

are independent of the loop level and A




Overview of theoretical framework

The main object in description of hadronic part of many physical processes is a IT (¢?)
1,,(q%) = ijd“x '™ <0|TV,(x)V, (0)"|0>

=(0,0, —9,,9)1(0*) , Vi =wy"y
It is useful to introduce an Eucledean characteristic, the so-called the Adler function

2
? dH(_? ) , Q?’=-qg°>0 [inEuclidean
dQ (spacelike) region]

D(Q") = -Q

The integral representation for the D-function is given in terms of the discontinuity
of the correlator across the cut

T ds 1 o )
D(Q?%) = Q? R(s _ = [in Minkowskian
=5 '([(S"‘QZ)Z &) = R(S) T ImI1(s) (timelike) region]

This representation defines the Adler function is an analytic function in the complex Q?
plane with a cut along the negative real axis.

To parameterize R(s) in ferms of QCD parameters a procedure of analytic continuation
from Euclidean (s-channel) to Minkowskian (t-channel) region is required.

T
Budva, Oct. 6, 2016 10



T Minkowskian < Euclidean

°‘3ds

D(Q*)=Q" R(s)

2 (s+Q?%)? =t
1 (s+iedz t-channel <s—channel
R(S) =——— —D(-z
(%) 27l 7se 7 -2) % .

Dx1l+d, Rxl+4+r

s 1 stee g
=@ | = . =g [T e
d(Q?, RS) = a(Q?, RS) [1 + di1(RS) a(Q?, RS) a=as/m

+ do (RS)a?(Q?, RS) + ds (RS)a*(Q2, RS)]
dMS = 1.9857 — 0.1153n;, dMS =1.6398  (n; = 3)
A5 = 6.3710, S = 49.08
Baikov, Chetyrkin, Kuhn, RPL (2008)

The D-function defined in the spacelike region is a smooth function without traces of the
resonance structure and one can expect that reflects more precisely the quark-hadron duality
and will be a convenient object for comparing theoretical predictions with experimental data.

Budva, Oct. 6, 2016
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K.Milton, O.S. Phys.

Running E'Dl.lplil'lg in the timelike region [a |gw.energy scahgs]
Rev. D 57 (1998)

ds 1 [tedz
ST Q) am(s), am(s)= o ) ?QE(_Z)'

op(@?) = @ fﬂx(

A. Radyshkin, Preprint JINR E2-82-159 (1982)

t ) The perturbative approximation, in which the

N running coupling with unphysical singularities
is used, breaks this connection between
space and timelike quantities.

_— =
s—ie t-channel <s-channel
(o) (o)

S+ie

Contour of integration

The leading order PT coupling (generates singularity) The APT leads to
_ 1 1 - 1 e dz a self-consistent
as (z) = . at(s)=—— —al (-2) definition of analytic
o B In(—z) T i dsie 7 T continuation.
© g v Higher-loop PT orders RGAAnalyticity
O:PET(E) == Qz-[ ' - gﬁi (s) not resolve this ghost-free g (Q?)
o (s—2) problem. Shirkov & Solovtsov 1996
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The APT: R-quantities

All these quantities include an infrared region as a part of the interval of integration

We analyzed various physical quantities and functions generated by R(s) based on
the APT. A common feature of all these quantities and functions is that they are
defined through the function R(s) integrated with some other function.

M2 d
S
R, =2 g M—TZP(S)R(S)

K(s) - known QED kernel

The ratio of hadronic to leptonic tau-decay
widths in the vector channel

The hadronic contribution to the anomalous
magnetic moment of the leptons

(in the leading order in the electromagnetic
coupling constant)

and, therefore, they cannot be directly calculated within perturbative QCD.

u

va,
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Numerical results

u

va,

The hadronic contribution
to the anomalous magnetic moment:

v muon a," =(694.9+3.7)x10™ [one of set expt. result 2012]
(702 £16)x10™° [APT]

v electron )™ = (1.678+0.014)x10 ™ [Nomura, Teubner 2013]
(1.64+0.07)x10™ [APT]

v tau lepton 2™ =(3.38+0.04)x10"° [Passera07, Nomura2012]

(3.2840.05)x10° [APT]

v fine A (M?) = (276.26 £1.38)x 10 [Hagivara et al. 2011]
structure ,
(279.9 +4.0)x10”° [APT]

Good agreement for all considered quantities has been obtained.

The question : Wy?

14



Criterion of equivalence

Qu = [EMOR() @1 | (@
| #

T+ dt
QE — IT E(t)D(t) Minkowskian <—— Euclidean
0
T dt
Qu = _[T E({)D(t) =Q: (R-D self-duality)
0

When expressions for quantity Q in terms of R(s) and D(Q?) are equivalent?
If one uses a method that does not maintain the required analytic properties of
functions then these expressions are not equivalent.

The answer on the question about a simultaneous good agreement of various QCD
observables is:

the APT approach used is support required analytic properties and gives good
description of the D-function down to low energy scale

and a manifestation of quark-hadron duality (which establishes a bridge between
quarks and gluons, and real measurements with hadrons) via the Adler D-function.

udva, Oct. 6, 15
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Example

2
1( o) Fds
ayt == =| [=M(s)R(s)
3\z7/) % s
t+ie
1 d
BEt)=-—— [ ZEMm(—2).
27l z
t—ie
1 2
X
M (s) == Idx 5 >
2 X“+@—x)s/m
AR aay
E T !
g I | p(2s) , ;& .
f
=L ]
L | J
g \M" ;JW.L@ — 1
LA o "
1 10 102
Vs [GeV]

R-D self-duality presentations
2 »
_ l(ﬁj j% E(t)D(t)

4 0

2

1 1+ 4m?/t — 1
B(t) = + [‘/ Sk
2 |1+ 4m2/t + 1
1—w ’1 Am?

n = 1 = e

" 14+’ \ S

41 Dcr

o@

Q (GeV)

0.5 1.0 1.5 2.0 2,5 3.0 3.5 4.0

From F. Jegerlehner (2008) data
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D-function

The " light' Adler function constructed from ALEPH tau-decay data

1,5 T T T T T T r r r v , 6_ ! ' i T ¥ T T T T T T T

: D'II Lo '\-‘.".«_._ 5 ' RV i

1.0 [

i _ PT+1/Q*
0,5

. PT+1/Q* +1/Q® i
Q (GeV)
0,0 £ | ! | Lot o .
0,0 0,5 1,0 1,5 2,0 0.0 0.5 1.0 1.5
s (GeV)
ALETH data

The experimental D-function (dashed curve) turned out to be a smooth and monotone function
without traces of the resonance structure.

The theoretical approach (APT) which we used to describe the experimental curve works well
(solid line) for the whole interval, including the infrared region.

Note that any finite order of the operator product expansion (OPE) fails to describe
the infrared tail of the D-function (dotted curve).

udva, Oct. 6, 17



T The polarized Bjorken Sum Rule

. 1 i |g | 0 llei—n
(@)= o e) (o - e @)+ 285
|ga| = 1.2701 + 0.0025
The pQCD correction Ag; defined by the coefficient function Ci(Q%) = 1-Ag;i(Q%)

has a form of the power series in as and at the N3LO (in the massless case) reads as

Agj (Q%) = 0.318a(Q%) +0.363a2(Q%) + 0.652a2(Q%) + 1.804 a2 (Q?)
[Baikov, Chetyrkin, Kithn (2010)]

[Ag}‘ =Y a(@(Q%) = A Q) =) ch(QZ)}

k<4 k<4

18




T The ‘polarized Bjorken Sum Rule

R.S. Pasechnik, D.V. Shirkov, O.V.Teryaev, O.P.Solovtsova, V.L.Khandramai,
Phys. Lett. B 706 (2012) 340

N(Q")

0.8
0.6
0.4
0.2

0.0

Ni(Qz)'l""|""|""|""|""|""|""
0.6
04/
02
OO Pl NPT BN EE BN EPEPES EPEPEETE BN AT BT R
05 1.0 15 20 25 3.0 35 4.0
Q" (GeV")
Order Q2%in Wy, GeV?2 X
2in PT 0.5 -0.025%x0.004 0.80
3in PT 0.66 -0.012%0.006 0.59
4in PT 0.71 0.005x0.008 0.51
in APT 0.47 -0.043%x0.002 0.82

In the APT case:

one-loop ~ 70 %,
two-loop ~ 20 %,
three-loop ~ 5 %,
four-loop ~ 1 %.

0.5

0.08

0.04

1.0 1.5 20 25 30 35 40

Q’ (GeV?)
g,/6
[ - PT NLO ]
---- PTN’LO
——PT N°LO
L APT
* JLab Hall B (CLAS EG1b)
L e JLab Hall B (CLAS EG1a) J
L I.L v JLab Halls AB E94010/EG1a -
[ T = SLACE143 1
ELT P A M P N A R T
0o / 05 1.0 15 20
~0.25 GeV* Qz (GeVz}
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From APT to FAPT: of Q2 evolution

> Jrd step generalizes APT

by including fractional powers of coupling
Global Fractional APT (FAPT)

Analytization of o”: A, (Q?) < A, (s)
A.Bakulev & Mikhailov & Stefanis

Reference

o1Q PRD 72 (2005) 074014; PRD 75 (2007) 056005
y » A.B.— Phys. Part. Nucl. 40 (2009) 715
p.(0)= 'm([“w (‘0)] ) # A.B., Mikhailov, Stefanis — JHEP 1006 (2010) 085

_1%p(0)do e A B, Mikhailov, Stefanis — PRD 72 (2005) 074014;

20
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In the description of Q? -evolution of the structure function (SF) moments the
generalized powers (anomalous dimensions) for the running coupling appear.
In the leading order (LO) the nonsinglet moments evolve as

MN(Q2)={ZS£2;}V M (Q2), v(N)=7O(N)/ 25,
S 0 *

S ’ nonsinglet one-loop
M n(Q) = L x° F(xQ )dx anomalous dimensions

In the framework of the FAPT this expression transforms as follows:

APT (2 B Q° APT
M\ (Q ):AVEQS;M N (Qg)

ng(t):Zﬁj t:@:, o=1—v

Lis is the polylogarithm function

Ar A2
(@) = @) + T

2
(v=1 additional term _dz A

& hQ



e ————————————————
DIS: xF

" How the APT approach works in comparison with the
lepton ordinary PT?
Ewv) - Considering a combined set of the F;-data:
k the kinematic region of combined set of data is 289
29 0.015< x<0.8 and 0.5GeV’<Q?<196 GeV?
: we extracted values of the scale parameter Aycp , the
p X parameters of the form of the xF;, and compared the
nucleon difference of the results of the PT and APT analysis
with the corridor of experimental uncertainties.
Deep inelastic scattering The APT/(Fractional)APT has been applied to DIS ina

set of works:

v' G.Cvetic, AY. Illarionov, B.A. Kniehl, A.V .Kotikov,
Phys. Lett. B 679 (2009) 350
v R.S. Pasechnik, D.V. Shirkov, O.V.Teryaev, O.P.Solovtsova, V.L.Khandramai,
Phys. Rev. D81 (2010) 016010; Phys. Lett. B 706 (2012) 340
v A.V. Kotikov, V.G. Krivokhizhin, B.G. Shaikhatdenov,
Phys. Atom. Nucl. 75 (2012) 507
v A.\V. Sidorov, OP. Solovtsova,, Mod. Phys Lett. A29 (2014) no.36, 1450194;
v' C. Ayadla, S. Mikhailov, Calculation of Nucleon Structure Function in APT
Phys. Rev. D92 (2015) 014028.

We have found, that in the region Q? > 1 GeV? difference between APT and PT
approaches not so big and is obviously shown only at large x-values.



XF,(%,Q;2) = AX” (L- %)’ (L+ 7%)

A, o, B, v, A -free parameters

The QCD analysis of F3(x,Q?) data is simplified because one does not need to parameterize gluon
and see quark contributions and can parameterize the shape of the F3(x,Q?) structure function
itself at some Q?- value.

h(x) [GeV’]

1.0

0,5

1.0

0,0}

L Q7=3GeV ° Z;T
- @>05GeV* 1
e g,
3
; !

A =407 + 75 MeV
A, = 363 + 49 MeV
0'05 (LA EL N B L L L B L B T 7

0.04
0.03 [
0.02 [
001}

0.00

-0.01

002 |

AR = XFPT(Q) — XFAT(QF)

We also obtained that APT Q2-evolution could be
apply for the analysis of data for the polarized NS
combination xAg,, XxAg, and NS fragmentation
functionDI .




the threshold problem

The operator product expansion method is powerful tool to study properties of DIS
structure functions.

The OPE expansion was derived in the massless limit. If a finite mass for the nucleon
target is considered, the new terms arise: leading to additional power terms of
kinematical origin called the target mass corrections (TMC).

The TMC become larger and larger in the range of low Q2 and approaching to the
kinematic limit as the Bjorken variable x tends to unity.

The OPE was first used to study target mass effects by Georgi and Politzer
[H.Georgi and H.D.Politzer Phys. Rev. D 14 (1976)].

Georgi and Politzer (GP) approach (or & -scaling approach because it was formulated
through the Nachtmann &-variable) suffer the so-called threshold problem:

for the structure functions obtained by using this method have a difficulty arising
from the violation of the spectral condition. It hence became a problem to describe
the structure functions as the Bjorken variable x tends to unity.

For the structure functions the general quantum field theory principles, including
covariance, Hermiticity, spectrality, and causality, are expressed by the Jost-
Lehmann-Dyson (JLD) integral representation.

It has been argued by using the JLD representation, it is possible to get an
expressions for the structure functions in terms of the quark distribution
incorporating the target mass effects and having the correct spectral property.

F 24




" On the threshold problem

Reference

1. Georgi, Politzer, Phys. Rev. D 14 (1976) F,|

XXI century

2. Solovtsov, Part. Nucl. Lett. (2000);

g . V1+4e (JLD)
P M+ 4ex?

2X M2

& (X)= 141+ 4ex? Q’

0.2

0.1

Melnitchouk -

our (JLD)

0.0

3. Steffens, Melnitchouk, Phys.Rev.C 73 (2006)
A Review of Target Mass Corrections,

J.Phys.635:053101,2008.

o (X) =X 1++1+4¢
oM 1+/1+4ex?

AP = [Tag e F(&&)

fo=€&(x=1)=2/(1+V1T+4e < 1'

FF

2 -

02F

0.1

L L i 1 L i M 1 i L i
0.0 0.2

our (JLD)
_____ "é“

e parton

PRSP R S T SR S S R e Sy

Q’= 5GeV’

Melnitchouk

1.0

Figs. from Lashkevich, O.S, Theor. Math. Phys., 160 (2009)




!ompar'lson o! IH! !or' unpolarized nucleon structure functions

Q%=1 GeV?
0.4 — T T T T T T T T T T T 0.4
2xF) | FE
03F Tl 1 0.3
02} NG 1 0.2
0.1 \'\.\ . 0.1
DG I P T S S EIT".--‘ o
0.2 04 0.6 0.8 1.0 0.0
X
0.4 0.4
n n L
2xF1 E
03r . 03
0.2 ===~ ]
0.1} eSS /
00 P S T S N ‘..‘ B T
0.2 0.4 0.6 0.8 1.0

TMC calculated by

using the JLD method (s-method) noticeably differ from the

02 04 06
X

standard Georgi-Polizer method result (for x> 0.5) .

26



—umm ary

We performed the analyses some physical quantities bv usina the APT approach,
which does not lead to any unphysical singularities. Ay > App

It was shown how works the idea of APT in DIS, and that at low Q?, target
mass corrections to structure functions have calculated by using JLD method
noticeably differ from the standard Georgi-Polizer method result.

From the theoretical point of view, the remarkable properties of Shirkov-Solovtsov
analytic approach in QCD create the basis for its further development and
successful applications.

APT -> leads to correct analytic
properties

APT -> improves convergence properties

APT -> correct analytic continuation from
Euclidean to Minkowskian region

APT -> gives stable results for the HT
and so on.

Thanks for your attention !

Buava, Oct. 6, 2016 27



~ Postscript

Thanks for your attention again !
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