

# Deep Underground Neutrino Experiment: Status and Prospects (for the DUNE Collaboration)

# Zelimir Djurcic Argonne National Laboratory

New Trends in High-Energy Physics, October 2-8, 2016.



# Plan of the Talk

- Neutrino Oscillation Status
- The Goals of DUNE Experiment
- DUNE Experiment Collaboration and Organization
- Status of Neutrino Beam, Near and Far Detectors
- DUNE Physics Measurements
- Liquid Argon TPC Development Path to LBNF/DUNE
- DUNE Timeline
- Summary

# Neutrino Oscillation: Quick Reminder

• The three neutrino mixing:

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} = \begin{pmatrix} Big & Big & Small \\ Big & Big & Big \\ Big & Big & Big \end{pmatrix}$$
$$= \begin{pmatrix} \cos \theta_{12} & \sin \theta_{12} & 0 \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} \cos \theta_{13} & 0 & e^{-i\delta_{CP}} \sin \theta_{13} \\ 0 & 1 & 0 \\ -e^{i\delta_{CP}} \sin \theta_{13} & 0 & \cos \theta_{13} \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix}$$

 $\theta_{12}$  measured from  $P(\bar{v}_{e}^{0} \rightarrow \bar{v}_{x}^{0})$  by reactor  $\bar{v}_{e}$  and solar  $v_{e}$ .  $\theta_{13}$  measured from  $P(\bar{v}_e \rightarrow \bar{v}_e)$  by reactor  $\bar{v}_e$ .  $\theta_{13}$  and  $\delta$  measured from  $P(\bar{v}_{\mu}^{0} \rightarrow \bar{v}_{e}^{0})$  by accelerator  $v_{\mu}$ .

 $\theta_{23}$  measured from  $P(\bar{\nu}_{\mu}) \rightarrow \bar{\nu}_{\mu}$ ) by atmospheric  $\nu_{\mu}$  and accelerator  $\nu_{\mu}$ .

• Neutrino oscillation parameters:

PMNS matrix:3 mixing angles:  $\theta_{12}, \theta_{23}, \theta_{13}$ 1 phase:  $\delta \Rightarrow$  CP-violation in v-sectorMass differences:2 mass difference scales:  $\Delta m_{12}^2, \Delta m_{23}^2$ 

# Neutrino Oscillation Results

- Current understanding
- -Mass squared differences:

 $\begin{array}{l} \Delta m^2{}_{21} \approx 7.5 \ x \ 10^{\text{-5}} eV^2 \\ |\Delta m^2{}_{32}| \approx 2.5 \ x \ 10^{\text{-3}} eV^2 \end{array}$ 

-Mixing angles:

$$\begin{split} & sin^2\theta_{12}\approx 0.31\\ & sin^2\theta_{23}\approx 0.45-0.55\\ & sin^2\theta_{13}\approx 0.02 \end{split}$$

-Absolute mass scale is unknown.

Please see related talks: -V. Pantuev's Tritium β-decay talk -A. Babic's 0v2β-decay talk



# Neutrino Oscillation Questions

Recently measured what is  $v_e$  component in the  $v_3$  mass eigenstate, i.e.  $\theta_{13}$ .

Missing information in 3x3 mixing scheme:

- 1. Is the  $\mu$  -  $\tau$  mixing maximal? -Only know  $\sin^2\theta_{23} \approx 0.45 - 0.55$
- 2. What is the mass hierarchy? -Normal or inverted?
- 3. Do neutrinos exhibit CP violation, i.e. is  $\delta_{CD} \neq 0$ ?

$$P(v_{\mu} \to v_{e}) - P(\bar{v}_{\mu} \to \bar{v}_{e}) = -16s_{12}c_{12}s_{13}c_{13}^{2}s_{23}c_{23}\sin\delta\sin\left(\frac{\Delta m_{12}^{2}}{4E}L\right)\sin\left(\frac{\Delta m_{13}^{2}}{4E}L\right)\sin\left(\frac{\Delta m_{23}^{2}}{4E}L\right)\sin\left(\frac{\Delta m_{23}^{2}}{4E}L\right)\sin\left(\frac{$$

Why are quark and neutrino mixing matrices so different? 4.





# The Goals of DUNE Experiment

- Primary focus of the DUNE science program is on fundamental open questions in particle physics and astro-particle physics:
  - Neutrino Oscillation Physics

     -CPV in the leptonic sector
     "Our best bet for explaining why there is matter in the universe"
     -Mass Hierarchy
     -Precision Oscillation Physics & testing the 3-flavor paradigm

     Nucleon Decay

     -Predicted in beyond the Standard Model theories [but not yet seen]
     e.g. the SUSY-favored mode, p → K<sup>+</sup> v

     Supernova burst physics & astrophysics

-Galactic core collapse supernova, sensitivity to  $\nu_{e}$ 

Time information on neutron star or even black-hole formation

- DUNE Ancillary Science Program
  - -Other LBL oscillation physics with BSM sensitivity
  - -Oscillation physics with atmospheric neutrinos
  - -Neutrino Physics in the near detector
  - -Search for signatures of Dark Matter

Any would be a major discovery

# The DUNE Collaboration

From Sep/04/2016 909 Collaborators 154 Institutions 29 Nations



# Deep Underground Neutrino Experiment (DUNE)



#### Major features of the DUNE experiment are:

- A high-intensity wide-band neutrino beam originating at FNAL
  - -1.2 MW proton beam upgradable to 2.4 MW
- A highly capable near detector to measure the neutrino flux
- A ~40 kt fiducial mass liquid argon far detector
  - -Located 1300 km baseline at SURF's 1.5 km underground level (2300 mwe)
    -Staged construction of four ~10 kt detector modules. First module to be installed starting in 2021.

India

# Deep Underground Neutrino Experiment (DUNE)



- -Located 1300 km baseline at SURF's 1.5 km underground lever -Staged construction of four ~10 kt detector modules. First module to be installed starting in 2021.

India

# Project Organization: DUNE – LBNF Relationship

- Detectors and Science Collaboration will be managed separately from the neutrino facility and infrastructure
- LBNF (Long Baseline Neutrino Facility): DOE/Fermilab hosted project with international participation
  - -LBNF houses, and delivers beam (i.e. beamline) to detectors built by the DUNE collaboration
  - -LBNF responsibilities are:
    - ✓ Neutrino beamline
    - $\checkmark$  Near detector conventional facilities
    - $\checkmark\,$  Far detector cavern and conventional facilities
- DUNE (Deep Underground Neutrino Experiment) is responsible for
  - -Far and Near Detectors
  - -Scientific Research Program



## LBNF/DUNE Neutrino Beam



- 60 120 GeV Proton beam energy
- Initial power 1.2 MW upgradable to 2.4 MW
   -PIP II complete before start of data taking
- Up to 10<sup>21</sup> protons on target per year
- Good coverage 1 to 5 GeV



# DUNE Near Detector current reference design

Goal is to precisely measure the neutrino fluxes ν<sub>e</sub>, ν<sub>e</sub>, ν<sub>μ</sub>, and ν<sub>μ</sub>
 -Percent level neutrino flux determination

-Precision neutrino cross section measurements

- NOMAD-inspired Fine-Grained Tracker (FGT), consisting of:
   -Central straw-tube tracking system (215,040 channels)
   -Lead-scintillator sampling ECAL
   -RPC-based muon tracking systems
   -Magnetic Spectrometer (0.4 T)
- Integrated nuclear targets: Ar, (C<sub>3</sub>H<sub>6</sub>)<sub>n</sub>, Ca, C, Fe, etc.
   Sufficient for 10 times the un-oscillated far detector neutrino rate from the high pressure argon targets



• Design still being optimized -Quantifying the benefits of augmenting the ref. design with a LArTPC or high-pressure gaseous argon TPC.

# DUNE Far Detector Staged Approach

Four-Cavern Layout at the Sanford Underground Research Facility (SURF) at the • 4850 foot Level (4300 m.w.e.) -Four independent 10-kt (fiducial mass) Far Detector liquid argon TPC modules -Allows for staged construction of the Far Detector -Gives flexibility for evolution of liquid argon (LAr) TPC technology design Far Detector – Cryostat / Cryogenic Systems Layout Cryostat 2 -Free standing steel supported membrane cryostat design Cryostat 1 1117175 Central utility cavern Cryostat 4 Cryostat 3

# Sanford Underground Research Facility, Lead, S. Dakota

- Site has long & storied history as home to neutrino experiments
- LBNF scope: 4 detector chambers, utility cavern, connecting drifts
- Extensive preparatory work for LBNF/DUNE already done
- DOE approval pending to begin excavation & surface building construction



# Liquid Argon Time Projection Chamber (TPC) Operation



- Ionization charge drifts to finely segmented collection planes.
  - -high resolution data
  - high event selection efficiency and efficient background rejection
- Scintillator light detected to determine interaction time.



# Far Detector Reference Design: Single-phase LAr TPC

- Liquid Argon Time projection chamber with both charge and optical readout.
- First 10kt detector will be single phase

![](_page_15_Figure_3.jpeg)

![](_page_15_Figure_4.jpeg)

- 17.1/13.8/11.6 Total/Active/Fiducial mass
- 3 Anode Plane Assemblies (APA) wide (wire planes)

-Cold electronics 384,000 channels

- Cathode planes (CPA) at 180kV -3.6 m drift length
- Photon detection for event interaction time determination for underground physics

# Far Detector Reference Design: Single-phase LAr TPC

- Liquid Argon Time projection chamber with both charge and optical readout.
- First 10kt detector will be single phase

![](_page_16_Picture_3.jpeg)

![](_page_16_Figure_4.jpeg)

• MicroBooNE example: mm spatial resolution

![](_page_16_Figure_6.jpeg)

# Alternative Far Detector Design: Dual-phase LAr TPC

- DUNE collaboration recognizes the potential of the dual-phase technology
   -A dual-phase implementation of the DUNE far detector is presented as an alternative design in the CDR (Conceptual Design Report).
  - -DUNE strongly supports the WA105 development program at the CERN neutrino platform
  - -If demonstrated, could form basis of second or subsequent 10-kt far detector modules

![](_page_17_Figure_4.jpeg)

# Neutrino Oscillation Strategy

- Measure neutrino spectra at 1300 km in a wide-band beam -Determine MH and  $\theta_{23}$  octant, probe CPV, test 3-flavor paradigm and search for neutrino NSI in a <u>single experiment</u>
- Long baseline:
  - Matter effects are large  $\sim 40\%$
- Wide-band beam:

Measure  $\nu_e$  appearance and  $\nu_\mu$  disappearance over range of energies MH & CPV effects are separable

![](_page_18_Figure_6.jpeg)

# Neutrino Oscillation Strategy (cont.)

Physics (MH, θ<sub>23</sub>, θ<sub>13</sub>, δ) extracted from combined analysis of 4 samples:
 -CDR estimates, assuming: CDR optimized beam, 56% LBNF uptime, FastMC detector response

-Physics inputs:  $\delta = 0, \theta_{23} = 45^{\circ}$ , others from NuFIT: Gonzalez-Garcia, Maltoni, Schwetz, JHEP 1411 (2014)

| m v mode / 150 kt-MW-yr    | Ve appearance | ${oldsymbol  u}_{\mu}$ disappearance |
|----------------------------|---------------|--------------------------------------|
| Signal events (NH / IH)    | 945 (521)     | 7929                                 |
| Wrong-sign signal (NH /IH) | 13 (26)       | 511                                  |
| Beam ve background         | 204           | _                                    |
| NC background              | 17            | 76                                   |
| Other background           | 22            | 29                                   |

| Anti-v mode / 150 kt-MW-yr | $\overline{\nu}_{e}$ appearance | $\overline{\mathbf{\nu}_{\mu}}$ disappearance |
|----------------------------|---------------------------------|-----------------------------------------------|
| Signal events (NH / IH)    | 168 (438)                       | 2639                                          |
| Wrong-sign signal (NH /IH) | 47 (28)                         | 1525                                          |
| Beam ve background         | 105                             | _                                             |
| NC background              | 9                               | 41                                            |
| Other background           | 13                              | 18                                            |

# **DUNE Sensitivity to CP Violation**

• Sensitivity to CP Violation, after 300 kt-MW-yrs (3.5 + 3.5 yrs x 40kt @ 1.07 MW)

![](_page_20_Figure_2.jpeg)

• Experimental configuration (geometry, flux, detector response) used for sensitivity calculations shown here is published in **arXiV:1606.09550** 

# DUNE Sensitivity to CP Violation (vs Exposure)

![](_page_21_Figure_1.jpeg)

Significance with which the CP violation can be determined for 25%, 50%, 75% of  $\delta_{CP}$ 

• DUNE Strengths: LArTPC technology, flexible wide-band beam, Near Detector, direction resolution for atmospheric neutrinos

# **DUNE Mass Hierarchy Sensitivity**

• Significance with which the mass hierarchy can be determined as a function of the value of  $\delta_{CP}$  for an exposure of 300 kt  $\cdot$  MW (3.5 + 3.5 yrs x 40kt @ 1.07 MW)

![](_page_22_Figure_2.jpeg)

# DUNE Mass Hierarchy Sensitivity (vs Exposure)

![](_page_23_Figure_1.jpeg)

- DUNE can definitively determine the neutrino mass hierarchy
- For a favorable CP phase this could be achieved in a few years!
- Improvements in beam design can greatly improve the sensitivity thus reducing the time needed for a definitive measurement

# Neutrinos from Supernovae

• About 99% of the gravitational binding energy of the proto-neutron star goes into neutrinos.

![](_page_24_Figure_2.jpeg)

-A large theory effort is underway to understand neutrino related dynamics of the supernova. Both oscillations, mass, and self-interactions have large effects on observables e.g. mass hierarchy could have very distinct effects on the spectrum.

# Nucleon Decay

- Imaging, dE/dx, calorimetric capabilities of LArTPC enable sensitive, background-free searches
- Many modes accessible, superior detection efficiency for K production modes:

| SUSI-iavoicup / K v | SUSY-favored | $p \rightarrow$ | $K^+ \bar{v}$ | , |
|---------------------|--------------|-----------------|---------------|---|
|---------------------|--------------|-----------------|---------------|---|

![](_page_25_Figure_4.jpeg)

#### Kaon observed entering ICARUS TPC in CNGS run

![](_page_25_Figure_6.jpeg)

![](_page_25_Figure_7.jpeg)

# Technical Design & Large-scale Prototypes

Please see J. Kisiel's talk on ICARUS

- DUNE 10-kt LArTPC Modules represent O(50x) scale-up w.r.t. largest LArTPC modules to date (ICARUS), 100x scale-up w.r.t. MicroBooNE
- Operation of large-scale prototypes an important ingredient of DUNE program

   Need understand production as well as operational issues
   Provides opportunities for Test Beam data
  - ✓ Direct Link to DUNE Science Program
- Key Steps/Milestones include operation of large-scale prototypes
   -Two ProtoDUNE Detectors (Single-Phase & Dual-Phase) operational at CERN in 2018

✓ Provides key risk mitigation opportunity for Far Detector modules
 -DUNE Technical Design Report to be reviewed in 2019

✓ Done in context of both US DOE process and international organizations

![](_page_26_Picture_8.jpeg)

# LArTPC Development Path to LBNF/DUNE

![](_page_27_Figure_1.jpeg)

# **ProtoDUNE Detector Status**

- EHN1 Extension now in construction
- Beneficial Occupancy, Sept. '16
- Cryostats complete, April '17
- Test-Beam Operations in 2018
- H2/H4 tertiary beam lines:
   0.5-5 GeV/c e, μ, π, K, p +/- beams

han ent

# ProtoDUNE-SP

- Single-phase TPC prototype
  - Will sit in H4 beam line @ CERN
  - Will consist of 4 full-size APA's plus CPA's → 2 x 3.6m drift regions
  - Will install photon detectors of different fabrication methods
  - Plan for operation in 2018
- Will be a key test of:
  - DUNE Detector components
  - Construction methods
  - Installation procedures
  - Commissioning
  - Detector response to particles

![](_page_29_Figure_12.jpeg)

30

# **Dual phase protoDUNE - WA105 6x6x6m<sup>3</sup>**

![](_page_30_Figure_1.jpeg)

#### **DUNE/LBNF** Timeline

- July 2015 "CD-1 Refresh" review. Conceptual design review.
- Dec. 2015 CD-3a CF Far Site. Needed to authorize far site conventional facilities work including underground excavation and outfitting.
- 2017 Ongoing shaft renovation at SURF complete.
- 2017 Start of far site conventional facilities.
- 2018 Testing of "full-scale" far detector elements at CERN.
- 2019 Technical Design review.
- 2021 Ready for start of installation of the first far detector module.
- 2024 start of physics with one detector module. Additional far detector modules every ~2 years.
- 2026 Beam available.
- 2026 Near detector available.
- 2028 DUNE construction finished.
- Reach an exposure of 120 kt-MW-yr by 2035.

# Summary DUNE Status and Prospects

• The DUNE collaboration has formed and is managed as other international HEP collaborations (LHC model).

-The scope of DUNE is a high power beam, high precision near detector, and four far liquid argon detectors each with over 10 kt fiducial mass.

-The baseline will be 1,300 km and the detector will be at SURF 4850 ft.

- Capability of making major discoveries in
  - -Long-baseline oscillation physics
  - -Nucleon decay
  - -Neutrino astrophysics
  - -Other areas
- Expect to start far site construction in 2017.
- Will be testing "full-scale" detector elements at CERN in 2018.
- Start of physics in 2024 with first 10 kton detector (beam available in 2026).
- Many opportunities for early discoveries

# Backup Slides

![](_page_33_Picture_1.jpeg)

#### Neutrino Oscillation

• Neutrinos produced in weak decays are linear combinations of mass eigenstates

![](_page_34_Figure_2.jpeg)

• Neutrino flavor content evolves in time with L/E i.e. "oscillates"

Neutrino oscillation described by

 -amplitude, determined by mixing matrix U<sub>ij</sub>
 -wavelength, determined by (mass)<sub>ij</sub><sup>2</sup> differences
 -matter effects

# Neutrino Mixing

• Three neutrino mixing  $\begin{pmatrix} \nu_e \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{bmatrix} U_{e1}^* & U_{e2}^* & U_{e3}^* \\ U_{\mu1}^* & U_{\mu2}^* & U_{\mu3}^* \\ U_{\tau1}^* & U_{\tau2}^* & U_{\tau3}^* \end{bmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$  $U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\alpha_1/2} & 0 \\ 0 & 0 & e^{i\alpha_2/2} \end{pmatrix}$  $s_{ij} = \sin \theta_{ij}$   $c_{ij} = \cos \theta_{ij}$ Electron neutrino appearance example: ۲  $\boldsymbol{\delta}$  = CP-violating phase

$$\begin{split} P(\nu_{\mu} \to \nu_{e}) &\simeq \overline{\sin^{2} \theta_{23}} \sin^{2} 2\theta_{13} \frac{\sin^{2}(\Delta_{31} - aL)}{(\Delta_{31} - aL)^{2}} \Delta_{31}^{2} &\Delta_{ij} = \Delta m_{ij}^{2} L / 4E_{v} \\ &+ \sin 2\theta_{23} \sin 2\theta_{13} \sin 2\theta_{12} \frac{\sin(\Delta_{31} - aL)}{(\Delta_{31} - aL)} \Delta_{31} \frac{\sin(aL)}{(aL)} \Delta_{21} \cos(\Delta_{31} + \delta_{CP}) \\ &+ \cos^{2} \theta_{23} \sin^{2} 2\theta_{12} \frac{\sin^{2}(aL)}{(aL)^{2}} \Delta_{21}^{2}, \end{split}$$

- $v_e$  appearance amplitude depends on  $\theta_{13}$ ,  $\theta_{23}$ ,  $\delta_{CP}$ , and mass hierarchy (sign  $\Delta m_{31}^2$ ). -Large value of  $\sin^2 2\theta_{13}$  allows significant  $v_e$  appearance sample.  $-\delta_{CP}$  and the term *a* switch signs in going from the  $v_{\mu} \rightarrow v_{e}$  to the  $\overline{v}_{\mu} \rightarrow \overline{v}_{e}$ 

# **Bi-Probability Plots**

• These are older unofficial bi-probability plots -show interplay of  $P(v_{\mu} \rightarrow v_{e})$  and  $P(\overline{v}_{\mu} \rightarrow \overline{v}_{e})$  vs mass-hierarchy option and  $\delta_{CP}$ -values.

![](_page_36_Figure_2.jpeg)

#### Why is CP-violation (i.e. $\delta_{CP} \neq 0$ ) with neutrinos so important?

neutrino

-Striking feature of the Universe: only matter, virtually no anti-matter!

-Observation of CP-violation would make it more likely that the baryon-antibaryon asymmetry of the universe arose through leptogenesis.

-The theory of leptogenesis is linked to the see-saw theory and as a consequence the light neutrinos are Majorana and have GUT-scale partners.  $v \leftarrow \begin{cases} Familiar \\ light \end{cases}$ 

Very heavy neutrino }

-The matter-antimatter asymmetry of the universe may be explained through CP-violating decays of the heavy partners, producing a state with unequal numbers of Standard Model leptons and antileptons.

 $N \rightarrow L^- + \phi^+$  and  $N \rightarrow L^+ + \phi^- (\phi^+, \phi^- - Standard-Model Higgs)$ 

-The Standard Model processes convert such a state into the world around us with an unequal number of baryons and antibaryons.

-It is thought that CP-violation would be very unlikely to appear in the heavy sector without happening in light neutrinos.

![](_page_37_Picture_9.jpeg)

#### Timeline

![](_page_38_Figure_1.jpeg)

## DUNE Oscillation Physics Milestones

Rapidly reach scientifically interesting sensitivities:
 e.g. in best-case scenario for CPV (δ<sub>CP</sub> = +π/2) : with 60 – 70 kt.MW.year reach 3σ CPV sensitivity
 e.g. in best-case scenario for MH :

with 20 - 30 kt.MW.year reach  $5\sigma$  MH sensitivity

| Physics milestone                                                 | Exposure kt · MW · year<br>(reference beam) | Exposure kt · MW · year<br>(optimized beam) |
|-------------------------------------------------------------------|---------------------------------------------|---------------------------------------------|
| $1^{\circ} \theta_{23}$ resolution ( $\theta_{23} = 42^{\circ}$ ) | 70                                          | 45                                          |
| CPV at $3\sigma$ ( $\delta_{\rm CP} = +\pi/2$ )                   | 70                                          | 60 🗲 🗕                                      |
| CPV at $3\sigma$ ( $\delta_{\rm CP} = -\pi/2$ )                   | 160                                         | 100                                         |
| CPV at $5\sigma$ ( $\delta_{\rm CP} = +\pi/2$ )                   | 280                                         | 210                                         |
| MH at $5\sigma$ (worst point)                                     | 400                                         | 230                                         |
| $10^{\circ}$ resolution ( $\delta_{\rm CP} = 0$ )                 | 450                                         | 290                                         |
| CPV at $5\sigma$ ( $\delta_{ m CP}=-\pi/2$ )                      | 525                                         | 320                                         |
| CPV at $5\sigma$ 50% of $\delta_{ m CP}$                          | 810                                         | 550                                         |
| Reactor $\theta_{13}$ resolution                                  | 1200                                        | 850                                         |
| $(\sin^2 2\theta_{13} = 0.084 \pm 0.003)$                         |                                             |                                             |
| CPV at $3\sigma$ 75% of $\delta_{ m CP}$                          | 1320                                        | 850                                         |

• There is genuine potential for early physics results

# DUNE 35-ton Single-Phase Prototype

- Phase-II of program w/ membrane cryostat
  - ✓ First phase established Ar purity capability
  - ✓  $2^{nd}$  phase install, operate LBNE style TPC

5000

4000

3000

2000

1000

1000

- ✓ operations Feb-Mar 2016
- $\checkmark$  Purity  $\rightarrow$  Success!
- ✓ TPC / Scint Det. Ops → Success!
   -Incl. operation @ 250 V/cm
- Not everything worked well:
   Noise environment not good
   Early end due to mechanical failure leading to LAr contamination

![](_page_40_Picture_8.jpeg)