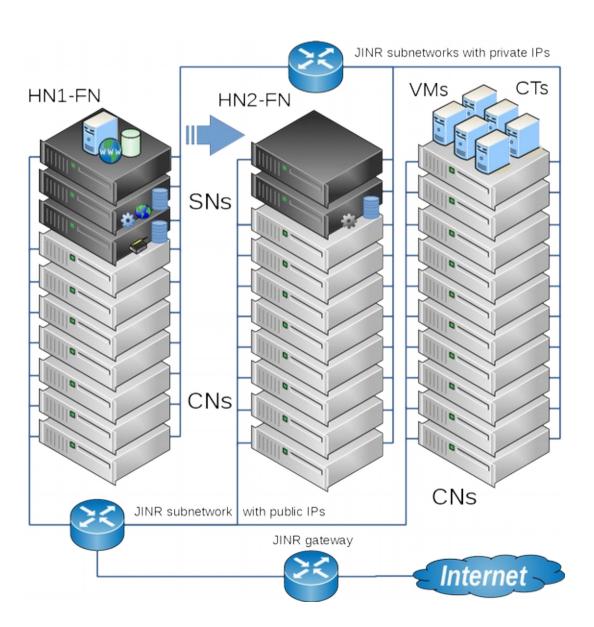
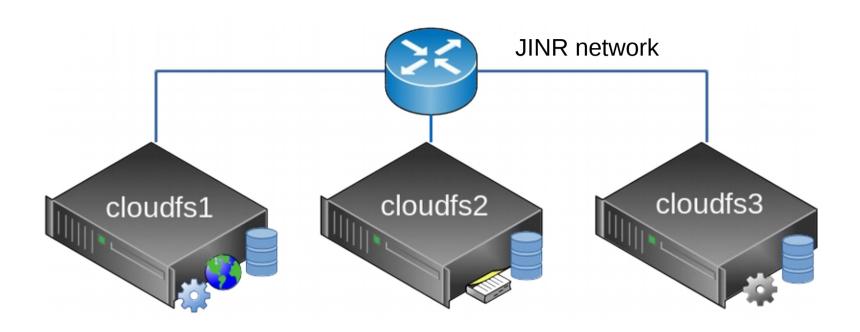


JINR cloud: status report

A. V. Baranov¹, N. A. Balashov¹, N. A. Kutovskiy^{1,2}, R. N. Semenov^{1,2},


K. V. Fedorov¹, A. Kondratyev¹

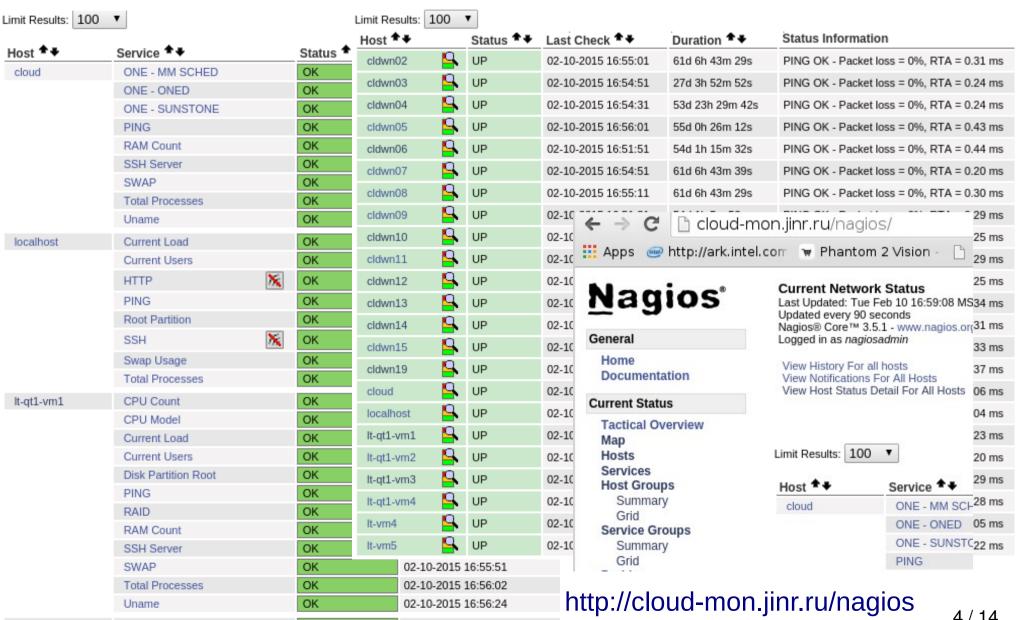
¹ Laboratory of Information Technologies, Joint Institute for Nuclear Research


² Plekhanov Russian University of Economics

JINR cloud architecture

- OpenNebula (v4.12)
 - Core
 - Scheduler
 - MySQL Database
 - Interfaces (web-GUI, CLI, API)
 - OneGate
 - OneFlow
- High availibility&reliability
 - DRDB
 - Heartbeat
 - HN1-FN and HN2-FN are connected to two different UPS
 - DNFS based on LirazdFS

Distributed network file system



DNFS is based on LizardFS:

- SN1: DNFS head node (master), a data server (chunk server) and a graphical web-admin interface (web-based admin GUI);
- SN2: a duplicate service for logs (metalogger) and a chunk server;
- SN3: a backup head node DNFS (shadow) and a chunk server.

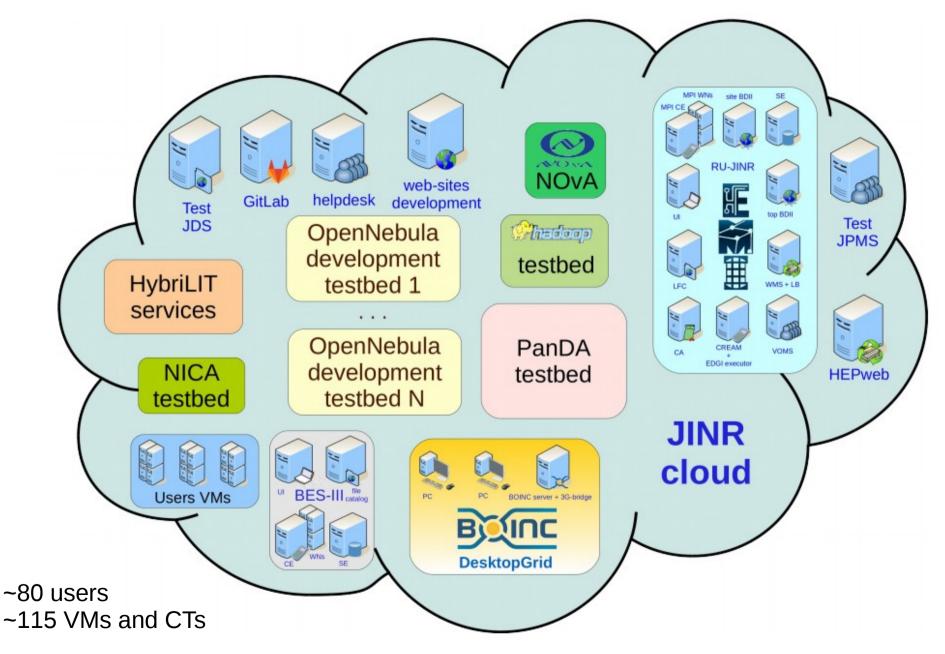
JINR cloud service monitoring

Host Status Details For All Host Groups

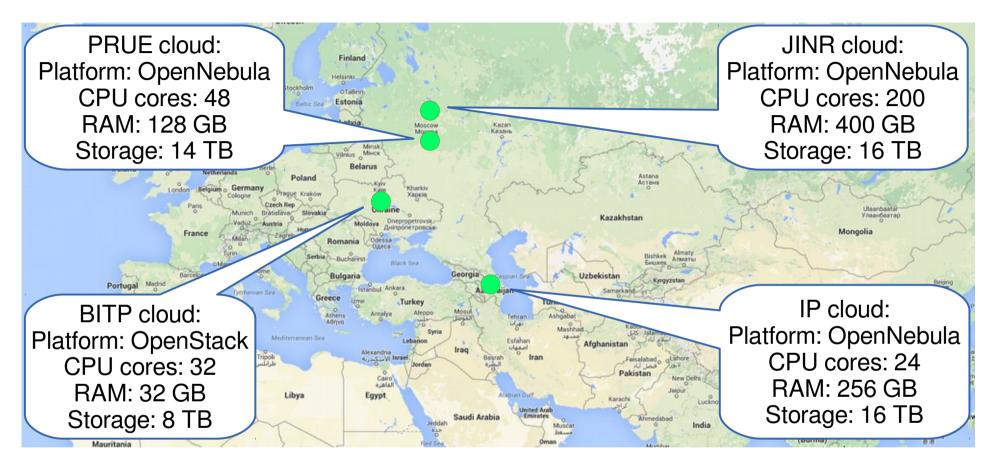
Hardware resources

Current hardware resources

- ~40 servers (+27 to be connected)
- ~200 cores (+236),
- ~400 GB of RAM (+656 GB),
- ~20 TB of total local disk spaces for VM/CT deployment (+17 TB)
- ~16 TB of DNFS disk space


• Planned:

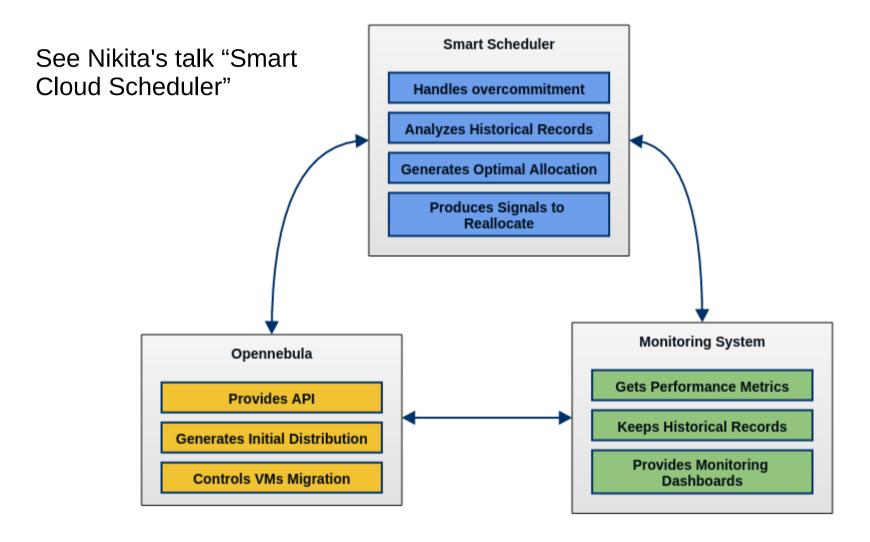
	2016	2017	2018	2019
CPU cores	1000	1400	1800	2200
Total RAM, GB	4240	6160	8080	10000
TB of disk space, TB	384	576	768	960


Clusters

- Production cluster
 - Highly reliable services
- Dev cluster
 - Education
 - Development
 - Testing
- Computing cluster
 - Computational resources for users and experiments
 - rOCCI for connecting to experiments' computing infrastructures
 - BESIII
 - NOvA

Usage

Clouds integration



- To join resources for solving common tasks as well as to distribute a peak load across resources of partner organizations
- JINR cloud integration with clouds of partner organizations:
 - Institute of Physics of Azerbaijan National Academy of Sciences IP (Baku, Azerbaijan)
 - Bogolyubov Institute for Theoretical Physics of the National Academy of Sciences of Ukraine BITP (Kiev, Ukraine)
 - Plekhanov Russian University of Economics PRUE (Moscow, Russia)
 - EGI Federated cloud 8 / 14

User and admin trainings

Organization	Organization location	Training dates	Number of trainees	Training type
GRID'2016 school		05.07.16	5	cloud use
Institute of Experimental and Applied Physics, Czech Technical University	Prague, CZ	07-10.07.15	2	cloud use
Egyptian scientific organizations	EG	05-09.06.15	3	cloud use
JINR	Dubna, RU	26-27.01.15	11	cloud use
Gdansk university of technologies	Gdansk, PL	06.10-12.12.14	1	cloud use/admin
NC PHEP BSU	Minsk, BY	22-29.09.14	3	cloud use/admin

Smart cloud scheduler

The work on the smart cloud scheduler is supported by RFBR grant #15-29-07027

MPI + CUDA in OpenVZ containers

- One of the modern trends in clouds is to run HPC cluster with GPGPU
 - Access to two Sugon servers were provided:
 - One is in China and the second one is in Moscow testbed of Jet Infosystems company:
 - 1st server config:

- 2 x Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz chips (40 cores in total),
- 128 GB of RAM,
- 4 x GK110BGL [Tesla K40m]
- 2nd server config:

- 2 x Intel(R) Xeon(R) CPU E5-2667 v3 @ 3.20GHz chips (16 cores in total)
- 500 GB of RAM,
- 2 x GK110BGL [Tesla K40m]
- OpenVZ + CUDA (+ MPI): success
- KVM + CUDA: failure

Plans

- Migrate to OpenNebula 5.0
- Evaluate Virtuozzo 7 and switch to it
- As soon as Smart Cloud Scheduler is ready integrate it into JINR cloud
- As soon as 10Gbps switches arrive and be mounted deploy CEPH storage and migrate to it
- Build HPC segment in the JINR cloud
- JINR cloud as computing backend for HTCondor

JINR cloud team

- Nikita Balashov
 - Custom components for OpenNebula development and support
 - User support and trainings
- Aleksandr Baranov
 - Cloud administration, new components evaluation and testing
 - Cloud users and admins support and trainings
- Nikolay Kutovskiy
 - coordinator
 - User support and trainings
- Roman Semenov
 - Admin, R&D in cloud storages
 - Users support

- Konstantsin Fedorov
 - sysadmin
- Andrey Kondratyev
 - Developer
- Two summer students:
 - Ruslan Gainanov
 - Evgeniy Kotsarev

References

- Web-GUI: http://cloud.jinr.ru (authentication is required, accessible from JINR, CERN and Dubna local ISP only)
- Cloud servers, services, VMs and CTs are monitored with help of Nagios:
 - http://cloud-mon.jinr.ru/nagios (authentication is required)
- Web-portal about JINR cloud infrastructure
 - http://miccom.jinr.ru → Cloud service
 - JINR cloud description, quick user and admin guides, contacts, publications, etc
- OpenNebula: http://opennebula.org
- Virtualization systems:
 - OpenVZ: http://openvz.org
 - KVM: http://linux-kvm.org
- LizardFS: http://lizardfs.com