DDS
Dynamic Deployment System

Andrey Lebedev

Anar Manafov

GSI, Darmstadt, Germany
2016-07-07

Motivation
Create a system, which is able to spawn and control
hundreds of thousands of different user tasks
which are tied together by a topology,
can be run on different resource management systems

and can be controlled by external tools.

The Dynamic Deployment System

s a tool-set that automates and significantly simplifies a
deployment of user defined processes and their dependencies on
any resource management system using a given topology

Basic concepts
DBk

« Implements a single-responsibility-principle command line tool-set and APls,
- treats users’ tasks as black boxes,
» doesn't depend on RMS (provides deployment via SSH, when no RMS is present),

» supports workers behind FireWalls (outgoing connection from VWNs
required),

« doesn’t require pre-installation on WNs,
- deploys private facilities on demand with isolated sandboxes,
 provides a key-value properties propagation service for tasks,

+ provides a rules based execution of tasks.

The contract

The system takes so called “topology file™ as the input.
Users describe desired tasks and their dependencies using this file.
Users are also provided with a Web GUI to create topologies.

<topology 1id="myTopology'>

<decltask id="taskl"'">
<exe reachable="false"'">/Users/andrey/Testl.sh —l</exe>
</decltask>

<decltask id="task2"'">
<exe>/Users/andrey/DDS/Test2.sh</exe>

</decltask> [Decbmﬂkqufusertmk&
Commands with command
<main id="main"> ine argument are supported.
<task>taskl</task>
<task>task2</task>
</main> | .
Main block defines which
</topology> tasks has to be deployed to
RIS

More info: http://dds.gsi.de/doc/nightly/topology.html

DDS Workflow

000
L[]

: N

dds-server start DDS SSH plugin cfg file

dds-submit -r ssh -c ssh_hosts.cfg

ssh_hosts.cfg

dds-topology --set topology_test.xml @bash_begin@

' bash_end
dds-topology --activate @bash_end@

flp, xi0234.gsi.de, , /tmp/dds_wrk, 8
epn, Ixi235.gsi.de, , /tmp/dds_wrk, ¢ 0O

Highlights of the DDS features

|, key-value propagation,

2. custom commands for user tasks and ext. utils,
3. RMS plug-ins,

4. Watchdogging

. many more other features

more details here: https://github.com/FairRootGroup/DDS/blob/master/ReleaseNotes.md

key-value propagation

2 tasks = static configuration with shell script
| OOk tasks = dynamic configuration with DDS

Allows user tasks to exchange and synchronize the
information dynamically at runtime.

Use case:
n order to fire up the FairMQ devices they have to
exchange their connection strings.

* DDS protocol is highly optimized for massive key-value transport. Internally
small key-value messages are accumulated and transported as a single
message.

* DDS agents use shared memory for local caching of key-value properties.

key-value In the topology file

<topology id="myTopology'">
<property id="property_1" />
<property id="property_2" />

......
............
e o o
.......

....................................

. .
ol r43
. .

° o o ®
. .
""""
......
.........

<decltask id="taskl">
<exe reachable="false">/Users/andrey/Testl.sh —l</exe>

<properties> &
<ld acce55="read">pr0perty_1</id> EeEEIRE e
<id access="write">property_2</id> ' Ta§<deﬂnesa|§tof.
e e e RS SR dependent properties with
</decltask> “"YM access modifier: “read’,
, T winte” of readivnic e
R e i =r tac k2t 0 e e R
<exe>/Users/andrey/DDS/Test2.sh</exe>
<properties>

<id access="write">property_1l</1d>
<id access=’ readwr1te">property 2</1d>
Sproperties> = T e
</decltask> g

® e
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Qo
.
......
..................
........
""""""

® e
.

< | B
</topology> When property is received

: user task will be notified
... about key-value update.

key-value AP

dds-intercom-lib and header file “‘dds intercom.h’ with user AP

[EEnieRecle g ds intercom. h”
CKeyValue ddsKeyValue;

// Subscribe key-value updates
BN e EaRtE s Tbe el be ([(Const 'string& key, const string& - value)

IWlEcr code
I

// Subscribe on error messages from DDS commander server
il es aelitie v slibseri bekrror ([] (const string& - msg) {
// Handle error message here

1)
e N i= 0f properties
S Buct tvaluesMap € values;

s alaluctigetVa lues ("property 17, &values);

// Write property
BN e ncRput (“property 17, “property- -1 value”);

For more information refer to Tutorall of DDS.

key-value performance stats
Tested on kronos @ GS|

- 10081 devices (5040 FLP + 5040 EPN + |

Sampler);

» Startup time 207 sec (3:27);

1)

DS propagated ~/7 Millions key-value

properties.

Device — in this context is a user executable. FLP, EPN and Sampler are concrete device
types for the Alice O2 framework.

Custom commands ()

A possible use case: Control System for Experiment which is able to com
municate with user tasks

...............
. .
. O
o' .

~“Custom command
requesting
information from

%o
=
.
° e
..........

DDSCusfmemd

1
< :

~ External process | dds-agent
which communicates G
o 9 DDSCustomCmd
...... W rth usertaS|<S..-". .°00000000......0.0.0.0.". .'o.....oooooooooooooooooooooo.."
// Subscribe on custom commands st AR
ddsCustomCmd. subscribeCmd(...); Rep|y W|th

requested

// Send custom command i ;
& 12

ddsCustomCmd.sendCmd (...) ; .”-H HTﬂ)rnﬁatk)ﬂ

Custom commands (2)

Sending of custom commands from user tasks and ext. utilities.

WO USe cases:

i

User task which connects to DDS agent
-xt. utility which connects to DDS commander

A custom command is a standard part of the DDS protocol.
From the user perspective a command can be any text, for example, JSON or XML
A custom command recipient is defined by a condition.

Condition types:

E
i

Ef

Broadcast custom command
to all tasks with this path.

nternal channel |ID which Is the same as sender

Path in the topology: main/RecoGroup/

racking

£

Task index.

ask.

—ash path In the topology: main/RecoGroup/TrackingTask_23.

Custom commands (3)

dds-intercom-lib and header file “‘dds intercom.h’ with user AP

#include “dds intercom.h”
CCustomCmd ddsCustomCmd;

// Subscribe on custom commands

ddsCustomCmd. subscribeCmd (
BRleenSE s EFrrngs command, const stringé& condition, ulnt64d:t Ssenderiel)

e s Mt Command: ! << command << " condition: " << conditlomn
ER R adlemiidetE << sender id << endl';

// Send message back to sender
R E o nisindE=—"""pl ease-reply”)
sisEenisiEenCnicisendCme (Prepl v, tolistring (senderlid)i;

[

// Subscribe on reply from DDS commander server
s wns=enCudisubscribeReply ([] (const string& msg)

{
Eeliais sl llesisagen . << - msg << endl;

[

For more information refer to Tutorial2 of DDS.

RMS plug-in architecture
Motivation

Give external devs. a possibility to create DDS plug-ins - to
@eVERdliferent RMS.

Isolated and safe execution. A plug-in must be a standalone
processes - If segfaults, won't effect DDS.

Use DDS protocol for communication between plug-in and
commander server - speak the same language as DDS.

RMS plug-In arch|tecture

T slurm : e T R e R »

-S> : ; SSH plugin ;

g e P . dds-submit-ssh e
DDS pr‘otoco| R, o0 T e Wt L PR R et -

Slurm plugin

dds-submit-slurm /

M lugi 3
esos plugin 5

gl oosoomimesos B

|
1
o B PR T S
1

dds-commander starts a plug-in based on the dds-submit parameter,
blug-in contact DDS commander server asking for submissions detaills,

blug-in deploy DDSScout fat script on target machines,
blug-In execute DDSScout on target machines.

B W N —

List of avallable RMS plug-ins

#|: SSH
#/: localhost
#3: Slurm

#4: MESOS (work of Giulio Eulisse and
Kevin Napoli from CERN)

Pleociimentation and tULOrZIE

e User manual

e AP| documentation

* [utonall: key-value propagation

e [utorial2: custom commands

For more information refer to DDS documentation:
http://dds.gsi.de/documentation.html

[l opology editor

DDS Topology Editor new topology

F2 LOAD E SAVE main

TASKS IN MAIN () COLLECTIONS INMAIN @& GROUPS

= task2 task2 collection fcollection f collection
= task3 collection f collection1 § collection

= prop
= prop2

= prop3

= collection

collection1

@ @)) =
3 o 8 5
c — o) ~
T Py m %)
3 g =

o m

=z (9]

»

L 4 < <1< < €1<]<

+ + + +

= group]

® RESET

=
c
)
8
0
o
)
0

http://rbx.github.io/DDS-topology-editor/

By Alexey Rybalchenko (GSI, Darmstadt)

e Releases - DDS vl.2

(http://dds.gsl.de/download.html),

» DDS Home site: http://dds.gsi.de

» User's Manual: http://dds.gsl.de/documentation.html

 Continues integration:

http://demac0| 2.gs1.de:2200 | /waterfall

S alirce Coc

e
nttps://github.com/FairRootGroup/DDS
nttps://github.com/FairRootGroup/DDS-user-manual
nttps://github.com/FairRootGroup/DDS-web-site
nttps://github.com/FairRootGroup/DDS-topology-editor

BACKUP

“lements of the topology

HHH# Task

o Atask s a single entity of the system.

o A task can be an executable or a script.

o A task s defined by a user with a set of props and rules.
o Each task will have a dedicated DDS watchdog process.

#HH#H#H#Collection

o A set of tasks that have to be executed on the same physical computing node.

#H###Group

o A container for tasks and collections.
o Only main group can contain other groups.
o Only group define multiplication factor for all its daughter elements.

/2

CRMSPluginProtocol prot("plugin-id"); (il)

prot.onSubmit([](const SSubmit& submit) {
// Implement submit related functionality here.
// After submit has completed call stop() function. (2)
prot.stop();
})i
// Let DDS commander know that we are online and start listen for messages. :3
prot.start(bool block = true); ()

// Report error to DDS commander
proto.sendMessage(dds: :EMsgSeverity: :error, “error message here”);

// or send an info message
proto.sendMessage(dds: :EMsgSeverity::info, “info message here”);

RMS plug-In architecture

$ dds-submit -r localhost -n 10

dds-submit: Contacting DDS commander on pb-d-128-141-130-162.cern.ch:20001 ...

dds-submit: Connection established.

dds-submit: Requesting server to process job submission...

dds-submit: Server reports: Creating new worker package...

dds-submit: Server reports: RMS plug-in: /Users/anar/DDS/1.1.52.gfb2d346/plugins/dds-submit-
localhost/dds-submit-localhost

dds-submit: Server reports: Initializing RMS plug-in...

dds-submit: Server reports: RMS plug-in is online. Startup time: 17ms.

dds-submit: Server reports: Plug-in: Will use the local host to deploy 10 agents
dds-submit: Server reports: Plug-in: Using '/var/folders/ng/v14ktgmx3y93fq9kmtwktpb40000gn/
T/dds_2016-03-31-15-33-32-090" to spawn agents

dds-submit: Server reports: Plug-in: Starting DDSScout in '/var/folders/ng/
v914ktgmx3y93fq9kmtwktpb40000gn/T/dds_2016-03-31-15-33-32-090/wn'

dds-submit: Server reports: Plug-in: DDS agents have been submitted

dds-submit: Server reports: Plug-in: Checking status of agents...

dds-submit: Server reports: Plug-in: All agents have been started successfully

Iwo ways to activate a topology

dds-submit -r RMS -n 00

dds-topology --set <topology_file # | >
dds-topology --activate

dds-topology --stop (1)

dds-topology --set <topology_file #2>

dds-topology --activate
Reserve resources first, then deploy different topologies on it.

dds-submit -r RMS --topo <topology_file> (2)

Reserve resources according to requirements of a given topology.

We aim to delegate the complex work of requirements analysis and
corresponding resource allocation to RMS.

25

Lobby based deployment

. DDS Commander will have one connection per host (lobby),

2. lobby host agents (master agents) will act as dummy proxy services,
no special logic will be put on them except key-value propagation
inside collections,

3. key-value will be erther global or local for a collection

26

