
Application of TRIE data structure and
corresponding associative algorithms for

process optimization in GRID environment

Kaftannikov I.L., Kashansky V.V.,

Dubna, JINR LIT
GRID’16

Kaftannikov I.L., Kashansky V.V.,
SUSU, Electronics Department

Introduction

 The main goal is to show how TRIE
mechanisms can influence operation of
GRID environment, delivery process of theGRID environment, delivery process of the
resources and corresponding services,
reducing the level of latency in various GRID
environment sub-systems at different levels
of abstraction.

What is TRIE
 In computer science a TRIE, or

a prefix tree is an ordered
multi-way tree type data
structure that is used to store
byte arrays (strings, structures,byte arrays (strings, structures,
dwords, qwords), and
especially dictionaries, in
extremely effective way.

 By Applying the Big O notation for lookup, insertion and deletion it
becomes O(k) which can be written as O(1). Thus these
operations are performed in constant time irrespective of the n
items, stored in TRIE.

Straight solution. OSI L3
 The simplest way to search

best suitable route for a given
IP address is to view (search)
records in a table stored in the
memory as a linear datamemory as a linear data
structure, for example, a linked
list or array.

 The complexity of the algorithm in this approach will be O(n),
where n - number of entries in the routing table. A similar
approach has been implemented in all hardware and
“software” routers by default. Of course, this approach is not
optimized for search time, but it does have its own advantages.

Bitwise TRIE solution. CFS
technology

Diagrams above show a Bitwise TRIE. This tree is considered to
store a sequence of N bits as a key. There is no key stored in the
intermediate nodes, but an array of pointers is defined. Access to
the subsequent elements of specific node is possible to get by
index in this array respectively. 0 or 1. The access time is O (n),
where n - the key length (in the worst case of 32 bits for IPv4).

CFS technology key features
 This structure allows very fast retrieval of information from the

cache. That in turn leads to lower latency;

But...

 The organization of storage requires additional CPU and RAM
resources of router;

 When you change the information in the ARP tables, corresponding
cache entries should be invalidated and removed;

Cisco Express Forwarding
technology (CEF)

 Cisco Express Forwarding
technology involves using of
the 256 way TRIE data
structure known as well as the
FIB (Forwarding InformationFIB (Forwarding Information
Base), storing route (L3)
information and a pointer to
Adjacency Table. 256 way
TRIE includes 4 levels of
nesting, 256 (2^8, size of one
IPv4 octet) options at each
level. Endpoints (4 level)
contain only pointers and the
data stored in a separate
structure.

BOINC and it’s architecture

TRIE as OSI L7 BOINC booster
 Avoid expensive

SQL queries to a
relational database
with several joins
and conditions;and conditions;

 Performance boost
is provided by a
simplified software
design without the
architectural
overhead of layers.

Experimental data output
N 2822 8512 13223 19357

T*10-3 с 1014 2449 3742 6208
N – Items count, T milliseconds spent to accessN – Items count, T milliseconds spent to access

N (key) 8 16 24 32
n*(1/f) 46 86 119 147

N – Key’s bits count, n – CPU clock spent, f –CPU clock frequency

Using “brute force” over linear storage gives:

 Less RAM resource consumption (data size considered to be the
same);

Linear storage summary

same);

 Search time is proportional to the size of the table;

 Significant consumption of CPU resources, which is proportional to
entry count.

Using “extraction by key” over TRIE storage gives:

 Reduction of the access time;

 Avoid cross-node comparisons of keys and storing them in nodes;

TRIE storage summary

 Avoid tree balancing problem;

 Avoid hash table collisions;

 More efficient spending RAM and CPU resources (compared to
other ADT). The CEF technology compared with CFS reduces the
load on the CPU and RAM because of a more optimal allocation of
nodes and keys modified structure.

Thank you!Thank you!

