Three-loop numerical calculation of critical exponents of the directed percolation process

M. Dančo 1,2 , M. Hnatič 1,2,3 , T. Lučivjanský 3,4 , <u>L. Mižišin 2,3 , M. Vaľa 1 </u>

¹Institute of Experimental Physics SAS, Košice, Slovakia

²BLTP, Joint Institute for Nuclear Research, Dubna, Russia

³Pavol Jozef Šafárik University in Košice, Slovakia

⁴Universität Duisburg-Essen, Duisburg, Germany

GRID - 2016

Directed Percolation

Directed bond percolation (DP)

The open bonds can be passed of an agent only from one of the two connecting sites, whence the allowed passage direction globally defines a preferred direction in space.

Chemical reactions:

$$A + A \xrightarrow{\kappa} A$$

$$A + A \xrightarrow{\kappa} A$$
 $A \xrightarrow{\sigma} A + A$ $A \xrightarrow{\mu} \varnothing$

$$A \xrightarrow{\mu} \varnothing$$

Directed Percolation

- Absorbing and active phase
- Non-equlibrium second order phase transition
- Mean field equation

$$\partial_t n(t) = (\sigma - \mu)n(t) - \kappa n(t)^2$$

- Absorbing state: $(\sigma < \mu)$ $n(\infty) = 0$
- Active state: $(\sigma > \mu)$ $n(\infty) = (\sigma \mu)/\kappa$
- Chemical reactions:

$$A + A \xrightarrow{\kappa} A$$
 $A \xrightarrow{\sigma} A + A$ $A \xrightarrow{\mu} \varnothing$

Directed Percolation

Stochastic approach – Langevin equation

$$\partial_t \psi = D_0 \left[(\nabla^2 - \tau_0) \psi + \lambda_0 \psi^2 \right] + \zeta$$
$$\langle \zeta(t, \mathbf{x}) \zeta(t', \mathbf{x}') \rangle = D_0 \lambda_0 \psi(t, \mathbf{x}) \delta(t - t') \delta(\mathbf{x} - \mathbf{x}')$$

 Stochastic problem is equivalent to the field theoretic model of the doubled set of fields with action functional

$$S(\psi^{\dagger}, \psi) = \psi^{\dagger}(-\partial_t + D_0 \nabla^2 - D_0 \tau_0)\psi + \frac{D_0 \lambda_0 \mu^{\epsilon/2}}{2} \left((\psi^{\dagger})^2 \psi - \psi^{\dagger} \psi^2 \right)$$

and the integration over the arguments of the fields is implied, for instance

$$\psi^{\dagger} \partial_t \psi = \int dt \int d\mathbf{x} \psi^{\dagger}(t, \mathbf{x}) \partial_t \psi(t, \mathbf{x})$$

Renormalization group

• The basic RG differential equation for the renormalized Greens function Γ_R

$$\left(\mu\partial_{\mu} + \beta_{\lambda}\partial_{\lambda} - \tau\gamma_{\tau}\partial_{\tau} - D\gamma_{D}\partial_{D} - n_{\psi}\gamma_{\psi} - n_{\psi\dagger}\gamma_{\psi\dagger}\right)\Gamma_{R} = 0$$

ullet β and γ functions

$$\gamma_x = \mu \partial_\mu \ln Z_x, \qquad \beta_x = \mu \partial_\mu x$$

- Analytical calculation using the renormalization group method and ϵ expansion encountered considerable problems.
- Renormalization procedure in terms of the R operation

$$\Gamma_R = R\Gamma = (1 - K)R'\Gamma$$

 \bullet The choice of K is ambiguous - Null-momentum substraction scheme

Renormalization group

Using R-operation let us define the following functions¹

$$f_i = R[-\tilde{\tau}\partial_{\tilde{\tau}}\bar{\Gamma}_i(\tilde{\tau})]|_{\tilde{\tau}=1}, \qquad \tilde{\tau} = \frac{\tau}{\mu^2}$$

- RG functions using diagrams of one ireducible functions reduce to convergent integrals
- Normalized Green function

$$\bar{\Gamma}_{1} = \partial_{i\omega} \Gamma_{\psi^{\dagger}\psi} \big|_{p=0,\omega=0} \qquad \bar{\Gamma}_{3} = -\frac{\Gamma_{\psi^{\dagger}\psi} - \Gamma_{\psi^{\dagger}\psi} \big|_{\tau=0}}{D\tau} \big|_{p=0,\omega=0}$$

$$\bar{\Gamma}_{2} = -\frac{1}{2D} \partial_{p}^{2} \Gamma_{\psi^{\dagger}\psi} \big|_{p=0,\omega=0} \qquad \bar{\Gamma}_{4} = \frac{\Gamma_{\psi^{\dagger}\psi^{\dagger}\psi} - \Gamma_{\psi^{\dagger}\psi\psi}}{D\lambda\mu^{\epsilon}} \big|_{p=0,\omega=0}$$

satisfying the conditions

$$ar{\Gamma}_i|_{ au=\mu^2}=1,\quad i=1,2,3,4$$

¹L. Ts. Adzhemyan and M. V. Kompaniets. In: *Theor. Math. Phys.* 169.1 (2011), L. Ts. Adzhemyan et al. In: *Theor. Math. Phys.* 175.3 (2013).

Numerical Calculation

• Numerical Calculation Γ_i

	1 - loop	2 - loop	3 - loop
$\Gamma_{\psi^{\dagger}\psi}$	1	2	17
$\Gamma_{\psi^{\dagger}\psi\psi}$	1	12	150

- Python 2.7 library Graphine, GraphState
- Cuba² is a library for multidimensional numerical integration. (Vegas, Suave, Divonne and Cuhre)
- Numcal numericla calculation

²R. Kreckel. In: Comput. Phys. Commun 106 (1997), pp. 258–266.

Numcal

- program for numerical calculation
- GiNaC: from Graphine, GraphState to GiNaC archive file (.gar)
- Numcal: is interface between cuba and ginac
- Vegas³ Monte Carlo algorithm that use s importance sampling as a variance-reduction technique and Sobol quasi-random sample are used as basic integration mathod.

³T. Hahn. In: Comput. Phys. Commun 168 (2005).

Calculation

Table 1: Sample of diagrams for three-point Green function, which are calculated numerically (10^9 iterations) using Vegas.

Results

- ullet Deviation from the critical space dimension $\epsilon=4-d$
- Critical exponents

$$z = 2 - \gamma_D^* = 2 - \frac{\varepsilon}{6} - 0.116824\varepsilon^2 + O(\epsilon^3)$$
$$\eta = -\frac{\varepsilon}{3} - 0.27228\varepsilon^2 + O(\epsilon^3)$$

- The calculation accurary for integrals was 10^{-4}
- Critical exponents with data from the analytic calculation⁴

$$\begin{array}{lcl} z & = & 2 - \frac{\epsilon}{6} \Big[1 + \Big(\frac{67}{144} + \frac{59}{72} \ln \frac{4}{3} \Big) \epsilon + O(\epsilon^2) \Big] & = & 2 - \frac{\epsilon}{6} - 0.116836 \epsilon^2 + O(\epsilon^3) \\ \eta & = & - \frac{\epsilon}{3} \Big[1 + \Big(\frac{25}{144} + \frac{161}{72} \ln \frac{4}{3} \Big) \epsilon + O(\epsilon^2) \Big] & = & - \frac{\epsilon}{3} - 0.272316 \epsilon^2 + O(\epsilon^3) \end{array}$$

⁴H. K. Janssen and U. C. Tauber. In: Ann. Phys. 315.147192 (2004).

Thank you for your attention.