Scheduling in Desktop GRID: a Review

Ilia A. Chernov, Natalia N. Nikitina, Evgeny E. Ivashko

Institute of Applied Mathematical Research, Karelian Research Centre, RAS

The 7th International Conference "Distributed Computing and Grid-technologies in Science and Education" 4 - 9 July 2016 Dubna, Russia

Desktop grids

DG = Computational system built of different computers (PC, servers, cluster nodes, smartphones, laptops, etc) connected by common networks. Resources are usually used only when idle. EDG = DG using computers of one or a few institutions VC = DG using volunteers' resources, Internet links all together BOINC = popular middleware for DG

	Enterprise DG	Volunteer computing
Size	Small	Large
Reliability	High	Low
Availability of nodes	High	Low
Predictability	Higher	Lower
Malicious actions	Unlikely	High risk
Heterogenity	Lower	Higher
Studied	Less	More

Choi SJ et al. A taxonomy of DG systems focusing on scheduling. 2006.

Anti-sabotage

«All Internet users are potentially dangerous except actually dangerous ones» / Larry Wall

Saboteurs are DG users that intentionally send wrong results.

Reasons can be:

- desire for a reward for free;
- stealing a result;
- malicious behaviour.

Saboteurs can be:

- Independent or cooperartive;
- Intelligent or not.

Anti-sabotage: methods

- Replication, quorum: up to n identical results
- Voting: n tries, maximal result believed in
- Sampling: traps for saboteurs
- Spot-checking, backtracking, blacklisting
- Ringers: one-way functions
- Checkpoints
- Reputation-based systems
- Game-theoretic approach

Anti-sabotage: papers

- Domingues P., Sousa B., Silva L.M. Sabotage-tolerance and trust management in desktop grid computing. 2007.
- Sarmenta L.F.G. Sabotage-tolerance mechanisms for volunteer computing systems. 2002.
- Sarmenta L.F.G. Volunteer computing. PhD thesis. 2001.
- Yu J., Luo Y., Wang X. Deceptive detection and security reinforcement in grid computing. 2013.
- Du W. et al. Uncheatable grid computing. Electrical Eng. Comp. Sys. Paper 26. 2004.
- Wang Y. et al. Toward integrity assurance of outsourced computing a game theoretic perspective. 2016.
- Szajda D., Lawson B., Owen J. Toward an Optimal Redundancy Strategy for Distributed Computations. 2005.
- Christoforou E. et al. Reputation-based mechanisms for evolutionary master-worker computing. 2013.
- Christoforou E. et al. Internet computing: using reputation to select workers from a pool. ArXiv 2016.
- Goodrich M.T. Pipelined algorithms to detect cheating in long-term grid computations. 2008.
- Canon L.C., Jeannot E., Weissman J. A scheduling and certification algorithm for defeating collusion in DG. 2011.
- Wander M. et al. Detecting opportunistic cheaters in VC. 2011.
- Kuhn M. Distributed asymmetric verification in computational grids. 2008.

Reliability

- Reliability is tolerance to faults, errors, etc.
- No-error OR have result.
- Not necessary sabotage!
- If sabotage, then non-cooperative and unintelligent.
- Hardware, software faults; algorithmic malfunction; bad initial guess; divergence, more.

Reliability: methods

- Job replication = copying tasks
- Component replication = lib, software, etc.
- Data replication = same chunks of data
- Checkpointing = save not to loose
- Scheduling = time quanta OR space distribution
- Heartbeat = «Are you alive?»
- *Sathya S.S. Babu K.S.* Survey of fault tolerance techniques for grid. 2010.

Availability: is a node there?

- Pattern revealing
- Forecasting availability in general
- Reputation wrt availability
- Grouping and clustering
- *Durrani M.N., Jawwad A.S.* VC: requirements, challenges, and solutions. 2014.
- Rubab S. et al. A review on resource availability prediction... 2014.

Dependent tasks

- Dependencies described by an acyclic graph
- More problems with reliability, availability
- Lee Y.C. et al. Robust task scheduling for VC systems. 2010.
- *Cordasco G. et al.* On scheduling DAGs for volatile computing platforms... 2012.
- *Gao L., Malewicz G.* Internet computing of tasks with dependencies... 2004.

Heuristics for scheduling

- Makespan: t(completion)-t(submission)
- Throughput: N(jobs completed)
- Total time
- Max load
- Reliability: low risk of wrong result
- Low risk of not getting the result
- Deadlines

Estrada T., Taufer M. Challenges in designing scheduling policies in VC. 2012.

Genetic scheduling

- Estrada T. et al. A distributed evolutionary method to design scheduling policies for VC. 2008 — grammar, evolution on sets of rules (!)
- *Qu B. et al.* A new genetic algorithm based scheduling for VC. 2010. <u>makespan+reliability</u>
- Wang et al. Optimizing the makespan and reliability for workflow applications... 2011. <u>the same)</u>
- *Alieksieiev M. et al.* Repeating tasks scheduling in DG systems. 2014. (rus). <u>balancing load</u>.

Multiple projects

- *Atlas J. et al.* Balancing scientist needs and volunteer preferences... 2009.
- *Donassolo B. et al.* Non-cooperative scheduling considered harmful... 2011. <u>game</u>.
- *Kondo D. et al.* Performance evaluation of scheduling policies for VC. 2007.
- Anglano C. Canonico M. Scheduling algorithms for multiple bag-of-tasks applications on DG: a knowledge-free approach
- *Bochenina K. et al.* Static scheduling of multiple workflows with soft deadlines... 2016.

Batches of tasks

- *Maheswaran M. et al.* Dynamic mapping of a class of independent tasks ... 1999 <u>compares</u> <u>5 immediate and 3 batch scheduling policies.</u>
- *Szajda D. et al.* Hardening functions for large-scale distributed computations. 2003. <u>antisabotage by inserting checks to a batch</u>
- Yu J., Luo Y., Wang X. Deceptive detection and security reinforcement in grid computing. 2013. <u>antisabotage, checks in batches.</u>
- *Du W. et al.* Uncheatable grid computing. 2004. <u>antisabotage, checks in batches, hash.</u>
- *Heien E.M. et al.* Computing low latency batches with unreliable workers in VC environments. 2009. <u>scheduling batches.</u>
- *Toth D., Finkel D.* Improving the productivity of VC by using the most effective task retrieval policies. 2009. <u>buffering tasks.</u>
- *Mazalov V., Nikitina N., Ivashko E.* Hierarchical two-level game model for task scheduling in a desktop grid. 2014. <u>Batches to reduce the server load.</u>

Our approach

- Minimizing the total cost of calculation
- TC = work + penalty if wrong
- Replication with quorum reduces the risk
- But increases the work amount
- Quorums, penalties, etc can differ for answers

Our approach: critical penalties

- Penalties usually are not known precisely
- Though, critical penalties exist
- A critical penalty changes an optimal quorum
- They are reciprocal to powers of risk level
- and thus differ much.
- So it suffices to know penalties approximately

Our approach: papers

- *Chernov I., Nikitina N.* Virtual Screening in a Desktop Grid: Replication and the Optimal Quorum, 2015.
- *Chernov I., Nikitina N.* Optimal quorum for a reliable desktop grid, 2015.
- *Chernov I.* Optimal quorum for the model of computational grid with redundancy, 2014.
- *Chernov I.* Optimal duplication of tasks in a computing system (Russian), 2014.
- *Chernov I.* Replication in desktop grid computing for minimizing the mean cost, 201[67] to be submitted.

That's it

Thank you for your attention!