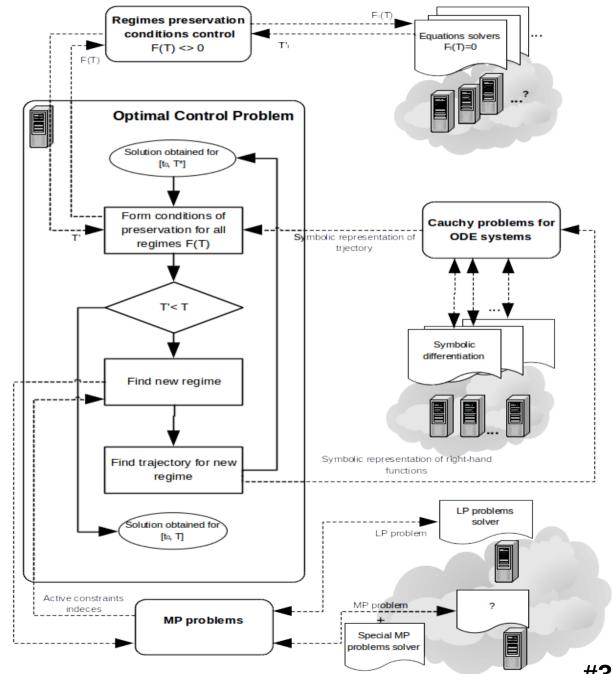
The 7th International Conference "Distributed Computing and Grid-technologies in Science and Education" (GRID'2016)

High-level software for finite-dimensional and dynamic optimization in distributed computing infrastructure

Alexander P. Afanasiev, <u>Vladimir V. Voloshinov</u>

Center of Distributed Computing, Institute for Information Transmission Problems RAS, Moscow


Supported by the Russian Foundation for Basic Research (grant # 16-11-10352)

LIT JINR, Dubna, 2016

- **Optimization modeling (OM) on the base of Dynamical Optimization & Mathematical Programming**
- Software for OM considered: solvers (LP/MILP, NLP/MINLP ...); algebraic modeling languages translators (AMPL, GAMS, Mosel-Xpress ...).
- **Review of existing technologies of OM in distributed computing environment**
- **Principles of our approach (cloud platform Everest & AMPLX)**
- Examples of AMPLX demos & applications, including branch-and-bound algorithm of nanomaterial structure identification with a joint X-Ray and neutron diffraction;
 - **Coarse-grained algorithms for MILP (coarse grained B&B, local elimination algorithms for MILP with quiasi-block constraints structure**

We began with optimal control problem (OCP)

Historically, our research on the subject has been inspired by an optimal trajectories continuation method (Alexandr Afanasiev) which suites for a distributed computing environment

$$\int_{0}^{T} \langle g(x(t)), u(t) \rangle dt \rightarrow \min$$

$$\dot{x}(t) = u(t), \quad x(t_{0}) = x_{0},$$

$$K(x(t)) \cdot u(t) = L(x(t)),$$

$$M(x(t)) \cdot u(t) \ge N(x(t)).$$

$$x(t) = (x_{1}(t), \dots, x_{n}(t)) \qquad u = K(x(t)) - k \times n \text{ matrix}$$

$$L(x(t)) - matrix \quad k \times 1 \qquad I$$

$$u = (u_1(t), \dots, u_n(t))$$
$$M(x(t)) - m \times n \text{ matrix}$$
$$N(x(t)) - matrix m \times 1$$

OCP with linear constraints => Linear Programming

Find locally optimal control, i.e. for the beginning of the trajectory

$$\langle g(x_0), u \rangle \rightarrow \min$$

$$K(x_0) \cdot u = L(x_0),$$

$$M(x_0) \cdot u \ge N(x_0).$$

$$x_0 = (x_{01}, \dots, x_{0n})$$

$$K(x_0) - k \times n \text{ matrix}$$

$$L(x_0) - matrix \ k \times 1$$

$$u = (u_1, \dots, u_n)$$

$$M(x_0) - m \times n \text{ matrix}$$

$$N(x_0) - matrix m \times 1$$

Local OCP with linear constraints (regime)

$$\left\langle g(x_0), u^* \right\rangle = \min$$

$$\begin{aligned} & \int_0^T \left\langle g(x(t)), u(t) \right\rangle dt = \min \\ & \dot{x}(t) = u(t), \quad x(t_0) = x_0, \\ & K(x(t)) \cdot u^* = N_A(x_0), \\ & M_P(x_0) \cdot u^* > N_P(x_0). \end{aligned}$$

$$\begin{aligned} & \int_0^T \left\langle g(x(t)), u(t) \right\rangle dt = \min \\ & \dot{x}(t) = u(t), \quad x(t_0) = x_0, \\ & K(x(t)) \cdot u(t) = L(x(t)), \\ & M_A(x(t)) \cdot u(t) = N_A(x(t)). \end{aligned}$$

$$\begin{aligned} & M_A(x(t)) \cdot u(t) = N_A(x(t)). \\ & M_P(x(t)) \cdot u(t) > N_P(x(t)). \end{aligned}$$

Nonlinear inequalities

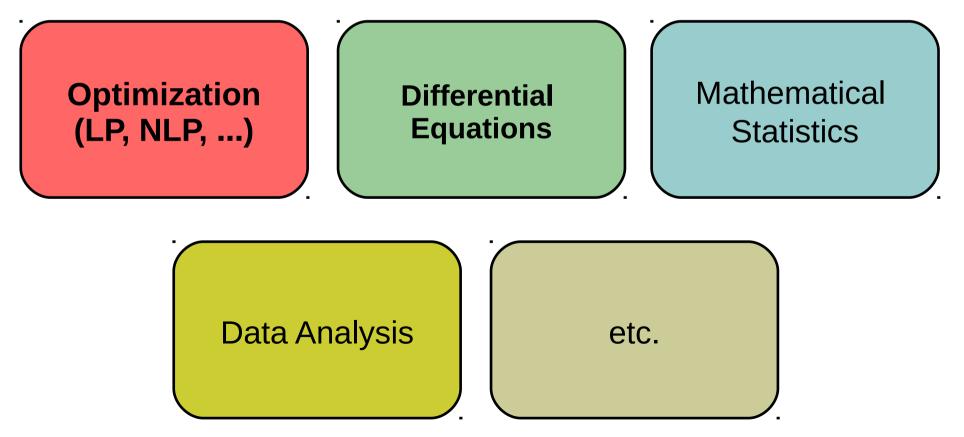
There exist [0,T], that if $t \in [0,T]$

$$u(t) = \dot{x}(t) = \begin{pmatrix} K(x(t)) \\ M_A(x(t)) \end{pmatrix}^{-1} \begin{pmatrix} L(x(t)) \\ N_A x(t) \end{pmatrix}, \ x(0) = x_0, \ Caucshy \ problem$$

Continuation of the optimal trajectories in linear OCP

Let $x^*(t)$ is the optimal trajectory of the problem

$$\int_{0}^{T} \langle g(x(t)), u(t) \rangle dt \to \min$$
$$\dot{x}(t) = u(t), \ x(t_{0}) = x_{0},$$
$$K(x(t)) \cdot u(t) = L(x(t)),$$
$$M(x(t)) \cdot u(t) \ge N(x(t)).$$


Continuation of the optimal trajectories to $[0, T + \Delta]$ is connected with the problem

$$\int_{t}^{t+\Delta} \langle g(x(\tau)) + \mu(\tau), u(\tau) \rangle d\tau \to \min, \quad t \in [0,T],$$

$$\dot{x}(\tau) = u(\tau), \quad x(t) = x^*(t),$$

$$K(x(\tau)) \cdot u(\tau) = L(x(\tau)),$$

$$M(x(\tau)) \cdot u(\tau) \ge N(x(\tau)).$$

Decomposition is invertible

Decomposition of Computational Problems into subproblems which may be solved by EXISTENT s/w tool

Typical for Mathematics, Physics, Chemistry, Biology...

Mathematical Programming Problems (MP)

$$egin{aligned} &f_o\left(oldsymbol{p},x
ight)
ightarrow \min_x, \ &f_i\left(oldsymbol{p},x
ight)\leqslant 0 \ (i\in I) \ &g_j\left(oldsymbol{p},x
ight)=0 \ (j\in J) \ &x\in M(p), \ &x=\left(x^C,x^Z
ight) \ &x^C\in R^{N_C}, \ &x^Z\in Z^{N_Z} \ &p\in P \end{aligned}$$

object (goal) function

inequalities constraints

equalities constr., (<mark>I, J</mark>) - indices sets (multi-index-, symbolic ...)

M – additional "simple constraints" (≤0≥, interval, integer/boolean)

- parameters' setting & «consistence checking»

State-of-the-art s/w support MP of various types (constraint functions' types; presence of binary/integer variables):

- LP/MILP linear programming (mixed-integer LP);
- QP/MIQP quadratic goal, linear constraints (MI*);
- QCQP/MI* QP + quadratic constraints;
- NLP/MINLP general non-linear (differentiable) functions;
- convex NLP/MILP convex on all variables (including integer ones);

MP solvers must support ...

$$egin{aligned} &f_o\left(p,x
ight)
ightarrow \min_x, & obj \ &lpha_i | f_i\left(p,x
ight) \leqslant 0 \ (i \in I) & ind \ η_j | g_j\left(p,x
ight) = 0 \ (j \in J) & se \ &x \in M(p), \ &x = \left(x^C,x^Z
ight) & M \ &x^C \in R^{N_C}, \ &x^Z \in Z^{N_Z} & co \ &ind \ &p \in P & -parameters' setting \& \end{aligned}$$

object (goal) function

inequalities constraints

equalities constr., (<mark>I, J</mark>) - indices sets (multi-index-, symbolic ...)

M – additional "simple constraints" (≤0≥, interval, integer/boolean)

parameters' setting & «consistence checking»

In theory & numerical methods often use:

- Lagrange approach (functions & multipliers/dual variables) $L(lpha,eta,x)=f_o(x)+\sum_{i\in I}lpha_i{\cdot}f_i(x)+\sum_{j\in J}eta_j{\cdot}g_j(x)$

- 1st, 2nd derivatives for NLP:

$$abla_x f_o(p,x),
abla_x f_i(p,x) \ (i \in I),
abla_x g_j(p,x) \ (j \in J),
abla_{xx} f_o(p,x),
abla_{xx} f_i(p,x) \ (i \in I),
abla_{xx} g_j(p,x) \ (j \in J),
abla_{xx} g_j(p,x) \ (j \in$$

- Non-exhaustive list of solvers we tried/use in our researches <u>COmputational INfrastructure for Operations Research,</u> www.coin-or.org ("IBM's aegis"), more than 40 solvers&libs: since ~2005
- <u>CBC/CLP</u> (LP, MILP),
- Ipopt (NLP),
- **Bonmin(CBC/Ipopt)** (MINLP, convex on cont. & int. vars) **Zuse Institute Berlin, Germany,**
- **<u>SCIP</u>** (LP, MILP, MIQP,), ver. 1.0 2007, ver. 3.2.1 the last
- GLPK (LP, MILP), A. Makhorin, Mosc. Avia. Institute, ~2002
- LP_SOLVE, (LP, MILP) Eindhoven University of Technology, Netherlands, since ~2000
- **Commercial:** <u>KNITRO</u>, <u>SNOPT</u>, <u>Gurobi</u>, <u>CPLEX</u>
- **Commersial** <u>XPRESS</u>* Fico Optimization (deserves special attention)

- AML Algebraic Model Languages (AMPL, GAMS, Zimpl, etc).
- **Common features:**
- Convenient (symbolic "TeX-like") description of object & constraints functions
- Separation of "symbolic/abstract" models and numerical data for multivariate computation (parameter sweeping)
- Automatic differentiation (Jacobian & Hessian)
- Support of "Lagrange formalism" access to optimal variables and duals found by solver
- Unified open-source (even for "commercial" AMLs) API for solvers' and applications' developers

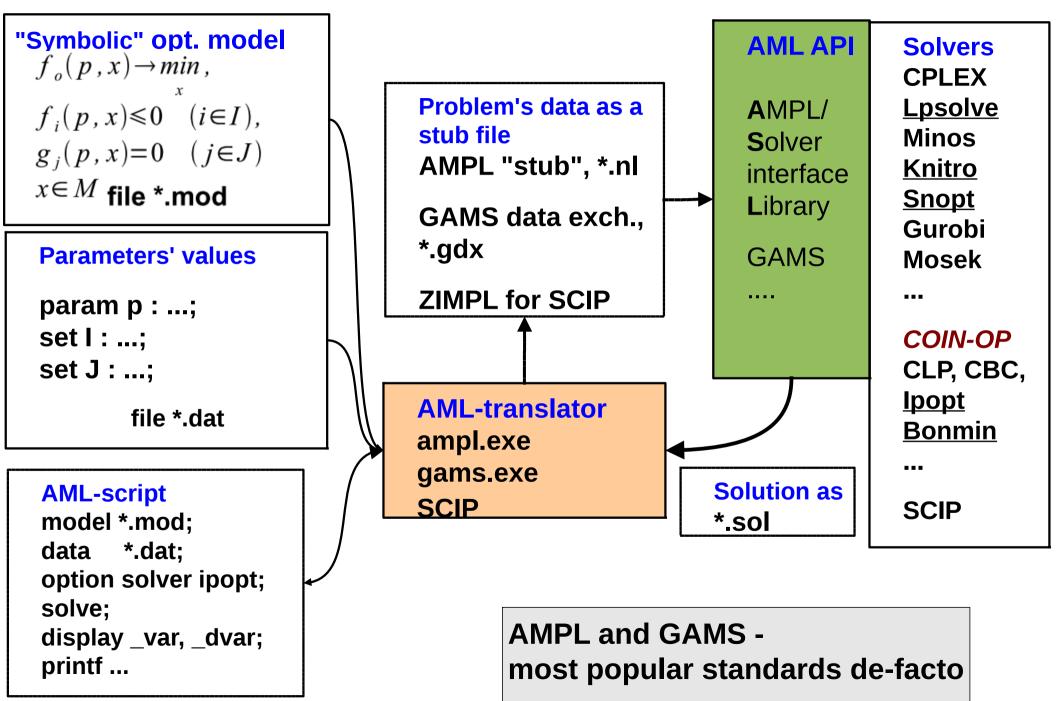
Usage of AMLs is crucial at preliminary phases of R&D

There are a number of AMLs

Non-exhaustive list:

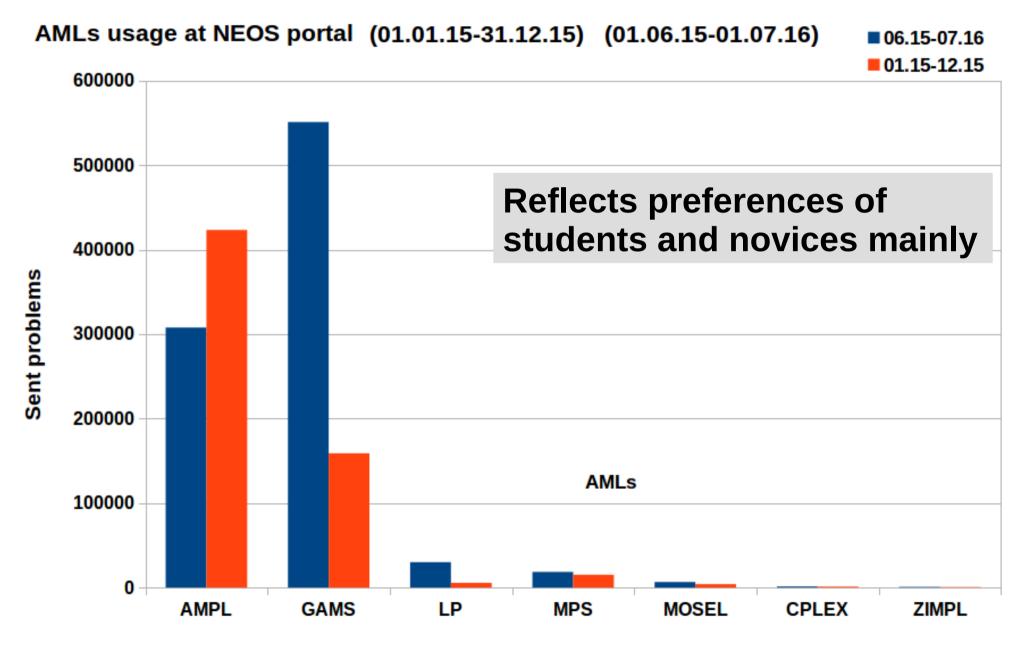
AMPL - A Modeling Language for Mathematical Programming, AT&T Bell Laboratories, D.M. Gay, Brian W. Kernighan, since 1980-x (1985), http://www.ampl.com

GAMS - General Algebraic Modeling System, International Bank for Reconstruction and Development, since 1976, http://www.gams.com


XPRESS-MOSEL – c 2001, c 2010 FICO Xpress Optimization Suite, http://fico.com

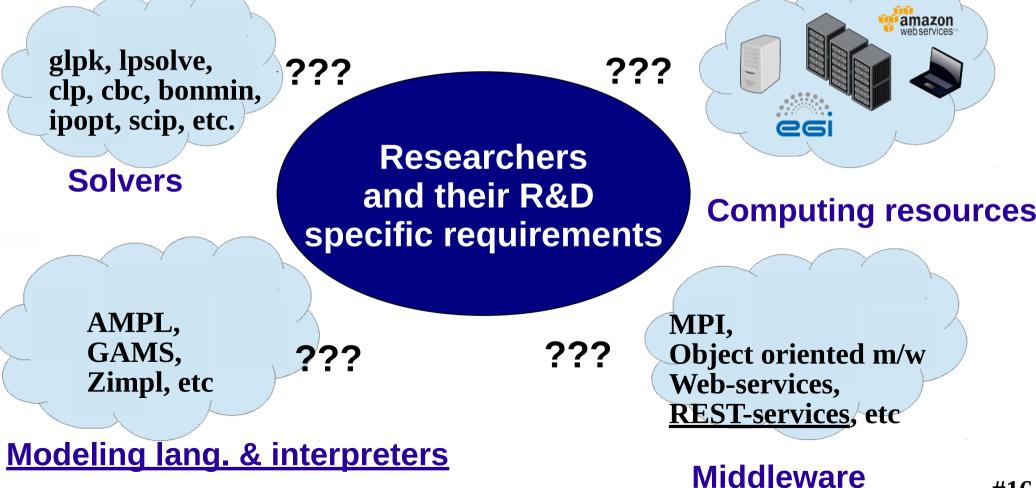
Zimpl - since 2004, http://zimpl.zib.de/ (LP, MILP, NLP ?) Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)

OPL - Optimization Programing Lang., IBM, ILOG CPLEX (LP, QP, ...), CP Optimizer, http://www-01.ibm.com/


GNU MathProg - "subset" of AMPL for GLPK, GNU LP Kit, Andrey Makhorin, MAI, since 2000, http://www.gnu.org/software/glpk/

General scheme of AMLs usage

Rating of AMLs at NEOS portal (GAMS vs AMPL)


https://neos-server.org/neos/report.html

Optimization & distributed computing

Typical problems:

- efficient usage of state-of-the-art and/or emerging solvers on available, heterogeneous, computing infrastructure
- keep "traditional" R&D practice, especially, at the beginning phases of researches

Technologies & practice (NEOS & Kestrel client)

NEOS-Server: «acquaintance» portal with state-of-the-art solvers & AMLs, http://www.neos-server.org/neos/ Dozens of solvers (~40), compatible with AMPL, GAMS, ZIMPL, XPRESS-Mosel ...

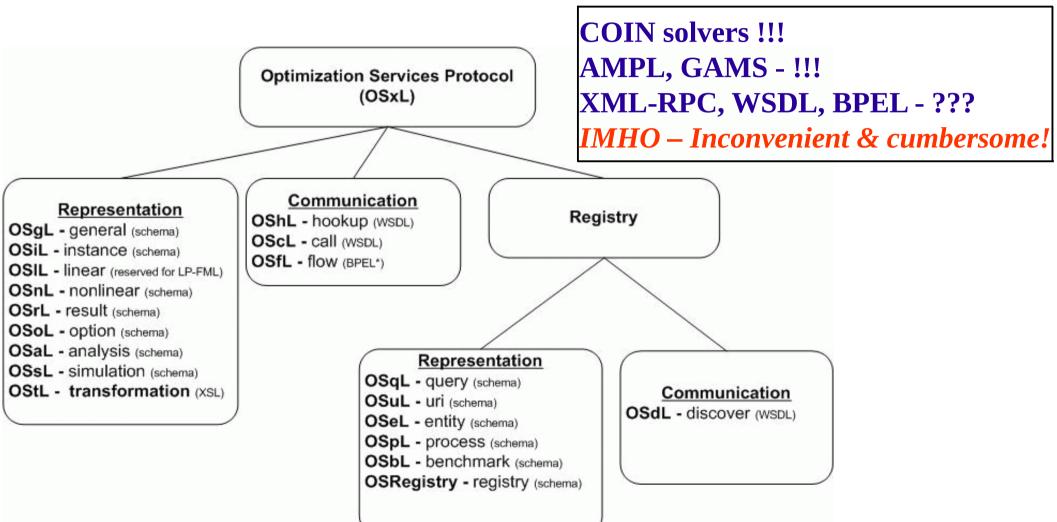
Simple Web-forms to submit computing jobs Client aplications for remote access to NEOS:

- Submission Tool (Python + Java GUI): instead of Web-forms
- Kestrel NEOS-client for AMPL- & GAMS-translators (XML-RPC):

option solver kestrel;

option kestrel_options 'solver=<solverName>';

```
option neos_server 'www.neos-server.org:3332';
```


. . .

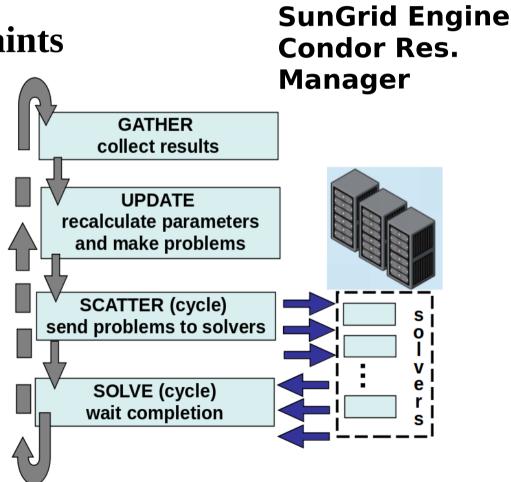
solve # Synchronous/<u>blocking</u> remote call of NEOS-solvers

Suites for demonstrations, but problematic for reserch & «industry»

Technologies & practice (COIN-OS, Web-services)

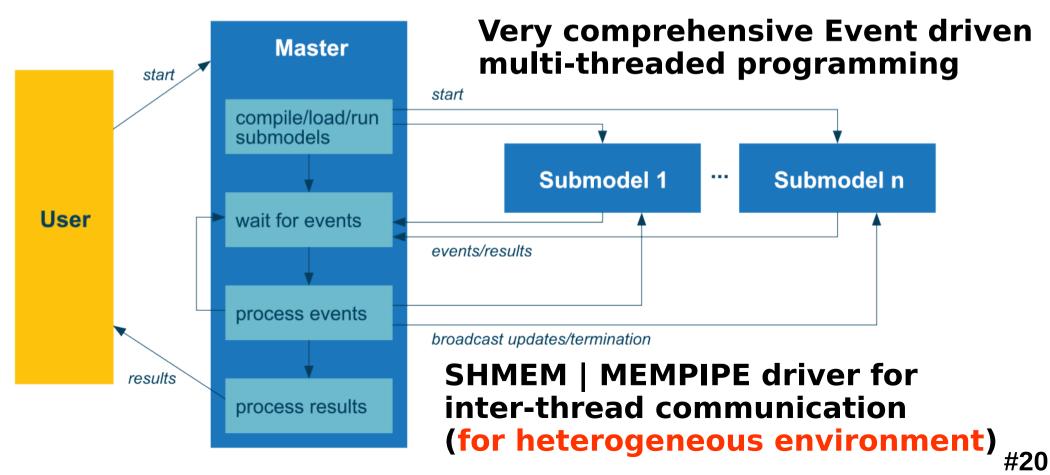
Since 2004, project Optimization Services, www.optimizationservices.org, under the aegis of COIN-OR (IBM) www.COIN-OR.org/projects/OS.xml

***OSmL:** a modeling language and NOT an Optimization Services Protocol ***BPEL:** Business Process Execution Language for flow orchestration.


Technologies & practice (GAMS Grid extension & GUSS)

In 2006 GAMS team proposes GAMS Grid Extension for. In 2012 they introduces notion of GUSS: Gather-Update-Solve/Scatter for <u>typical template of computing scenarios with</u> <u>optimization models suiting for parallelization</u>

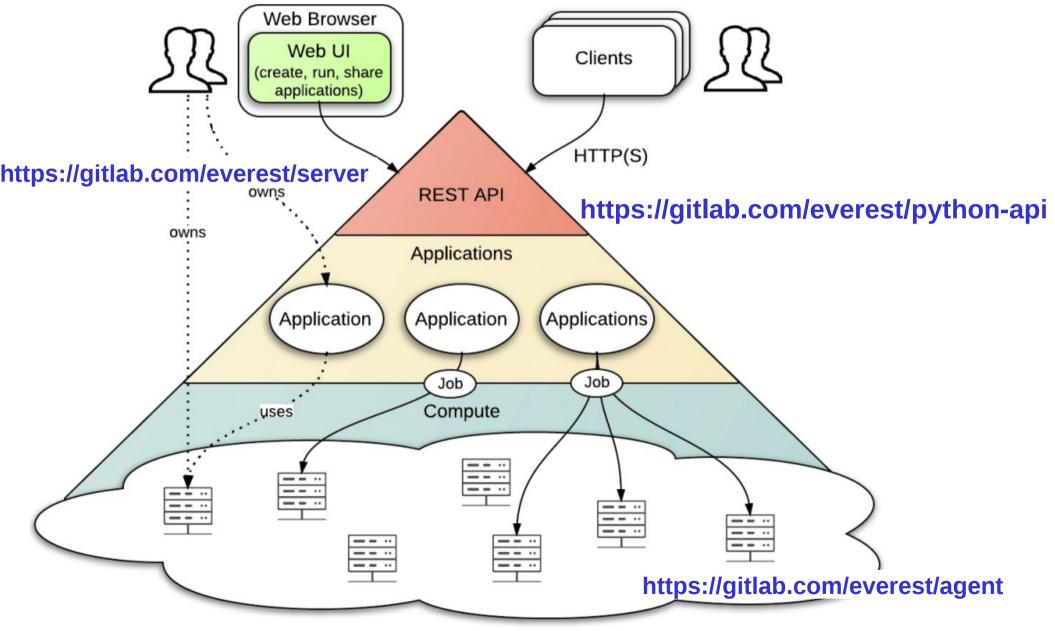
- Dantzig-Wolfe, Benders ... decomposition for block-constraints
- Parameter Sweeping
- low-dimension (1-3d) global optimization
- MILP with quasi-block constraints


•••

Data exchange «units» : =>problems as stub-files; <=solutions in files

Technologies & practice (XPRESS-MOSEL)

Mosel AML & programming language (commercial since 2001). Supported by Fico, http://fico.org Mosel programs are compiled into binary code for Mosel Virtual Machine including very fast XPRESS solver! Since 2010 г. – Fico Optimization Modeler Suite supports distributed computing in Fico Cloud



Our approach. Requirements

- **Everest: Cloud Platform to deploy/develop REST-services,** http://everest.distcom.org, REST - as an architectural style HTTP, JSON (JavaScript Object Notation): transport protocol & message format (plain text), Web-User-Interface (WUI) by HTML+JavaScript
- AMPL description of optimization modeling & computing scenarios including "coarse-grained" decomposition algorithms (high-level)
- AMPL-compatible solvers CLP, CBC, Ipopt, Bonmin, SCIP (LP/MILP, NLP, MINLP), BnB (MILP, global opt)
- Everest Python API & Everest Task Protocol for low-level data exchange (solver⇔solver, ampl⇔solver)

Everest platform architecture outlines

Describe/Develop/Deploy REST-services representing existing applications

External Computing Resources (attached by users)

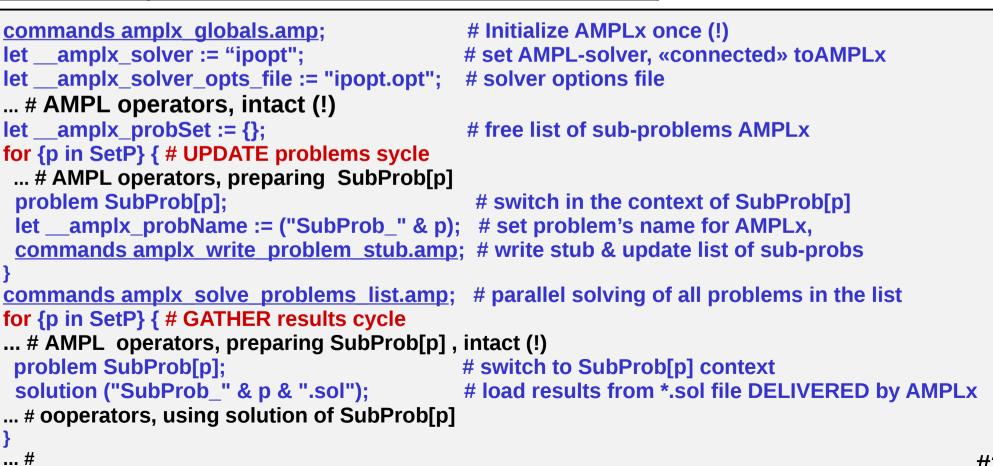
AMPLX = AMPL + REST-services of optimization

We propose technology to run any AMPL-script by standard AMPL-translator in such a way that:

- <u>all MP problems</u> (as well as dynamically composed during running of the script) will be <u>solved by remote</u> <u>solvers</u>;
- sets of <u>independent sub-problems</u> will be solved <u>in parallel by a pool</u> of the computing resources, whose <u>computing power might be changed transparently</u> for users.

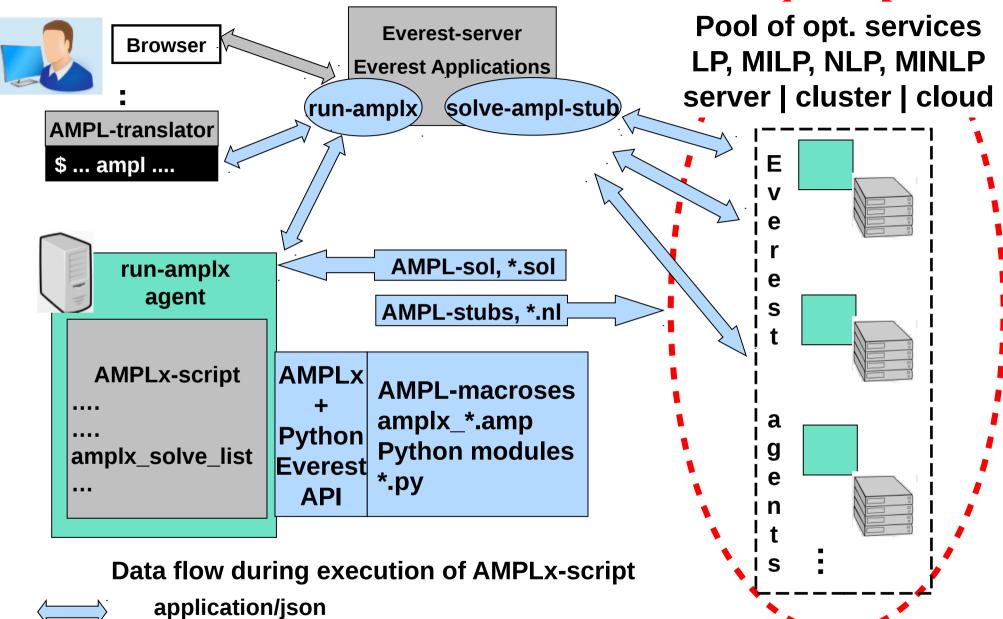
Simple methodology/recommendation (verbal) to modify <u>any AMPL-program</u> for AMPLX: replace AMPL-operators *solve, repeat {...}, for {...}* with AMPLX "templates".

Implementation: Python + Everest Python API + AMPL-«macroses» <u>https://gitlab.com/ssmir/amplx</u>


AMPLX templates for modification of an AMPL-script

option solver ipopt # select AMPL-solver
option ipopt_options "acceptable_tol=10e-8 ..." # solver
options
... # AMPL operators
for {p in SetP} {

- ... # AMPL operators, preparing SubProb[p] solve SubProb[p];
- ... # operators, using solution of SubProb[p]


... # more scripts

Replace AMPL for {...} or loop {...} with AMPLx "template"


```
#24
```

AMPLX architecture

multipart/form-data, text/html, application/json

Transport problems (classical block structure)

Set of commodities should be supplied from a number of storages to to the consumers over transport network with limited bandwidth.

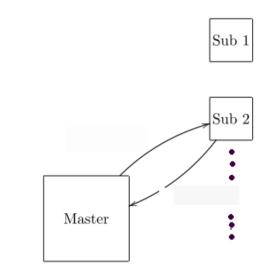
Sets: O – warehouses, *D* — deliver point, *P* — commodities

Supply_{*o*,*p*} - **volume of** *p* **in storage o, D***emand*_{*d*,*p*} - **consumption of** *p* **in** *d*

- bandwidth of arc (o->d)

C_{o,d,p}

I_{o.d}


$$\sum_{\substack{o \in O, d \in D, \in P \\ \sum_{d \in D} x_{o,d,p} \leq \mathsf{S}_{o,p} (o \in O, p \in P), \\ \sum_{d \in D} x_{o,d,p} \leq \mathsf{S}_{o,p} (o \in O, p \in P), \quad \sum_{o \in O} x_{o,d,p} \geq \mathsf{D}_{d,p} (d \in D, p \in P), \\ \sum_{p \in P} x_{o,d,p} \leq l_{o,d} (o \in O, d \in D), \quad x_{o,d,p} \geq 0 \quad (o \in O, d \in D, \in P) \end{cases}}$$

Wellknown class LP with block structure for decompose algorithms (Dantzig-Wolfe, Benders) and their demo-implementations in GAMS, MOSEL, ... AMPL

www.ampl.com/NEW/LOOP2/multi2.mod, multi2.run, multi.dat

Demo AMPL Dantzig-Wolfe (multi2.run) is not parallel

$$\min c^{T} x \\ Ax = b \\ x \ge 0$$

$$Ax = \begin{pmatrix} B_{0} & B_{1} & B_{2} & \dots & B_{K} \\ & A_{1} & & & \\ & & A_{2} & & \\ & & & \ddots & \\ & & & & A_{K} \end{pmatrix} \begin{pmatrix} x_{0} \\ x_{1} \\ x_{2} \\ \vdots \\ x_{K} \end{pmatrix} = \begin{pmatrix} b_{0} \\ b_{1} \\ b_{2} \\ \vdots \\ b_{K} \end{pmatrix}$$

«Original» AMPL demo script http://www.ampl.com/NEW/LOOP2/ multi2.run uses cycle [*for*] to solve sub-problems in turn

```
...
for {p in PROD} { printf "\nPRODUCT %s\n\n", p;
    solve Subll[p];
...
if Reduced_Cost[p] < - 0.00001 then {
    /* change subproblems parameters */;
...
};</pre>
```

Sub K

AMPLX-script (multi2_amplx_[cbc|scip|ipopt].amp)

Replace for {...} for three groups (GUSS in terms of AMPLx)

for {p in PROD} { printf "\nPRODUCT %s\n\n", p; solve Subll[p];

Note that dual vars at optimal solution are required

```
if Reduced_Cost[p] < - 0.00001 then {
/* change subproblems parameters */;</pre>
```

```
for {p in PROD} { printf "\nPRODUCT %s ==> stub \n\n", p;
problem SubII[p];
let __amplx_probName := ("SubII_" & p);
commands amplx_write_problem_stub.amp; # Generates sub-problems AMPL-stubs
}
```

commands amplx_solve_problems_list.amp; # Parallel solving of SubII_*

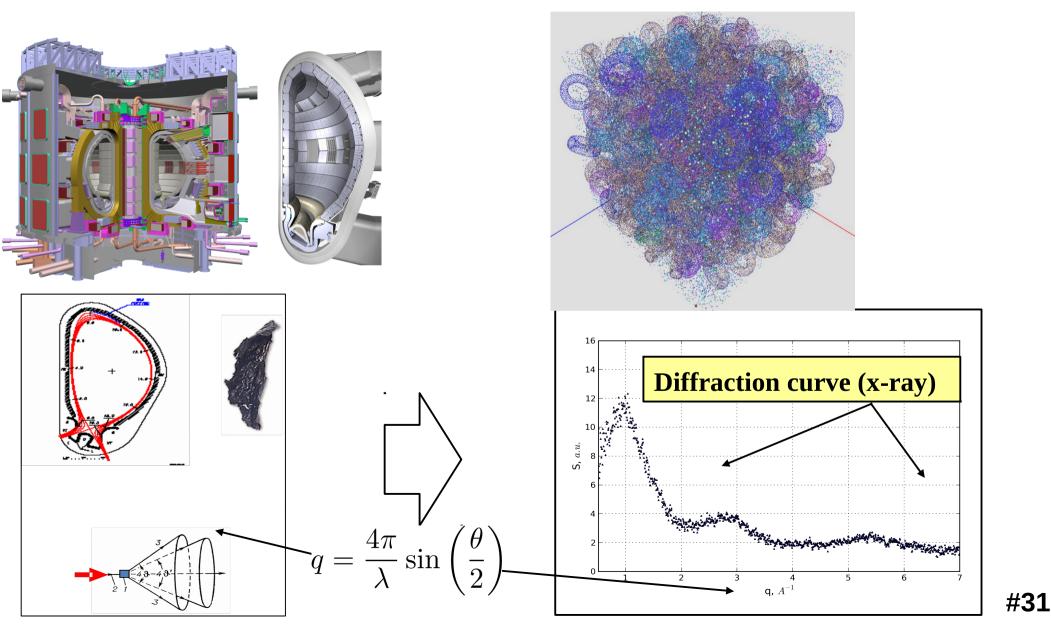
```
for {p in PROD} { printf "\nPRODUCT %s <== solution\n\n", p;
    # solve Subll[p]
    problem Subll[p];
    solution ("Subll_" & p & ".sol");
if Reduced_Cost[p] < - 0.00001 then {
    /* change subproblems parameters */;
...
  };
```

... }:

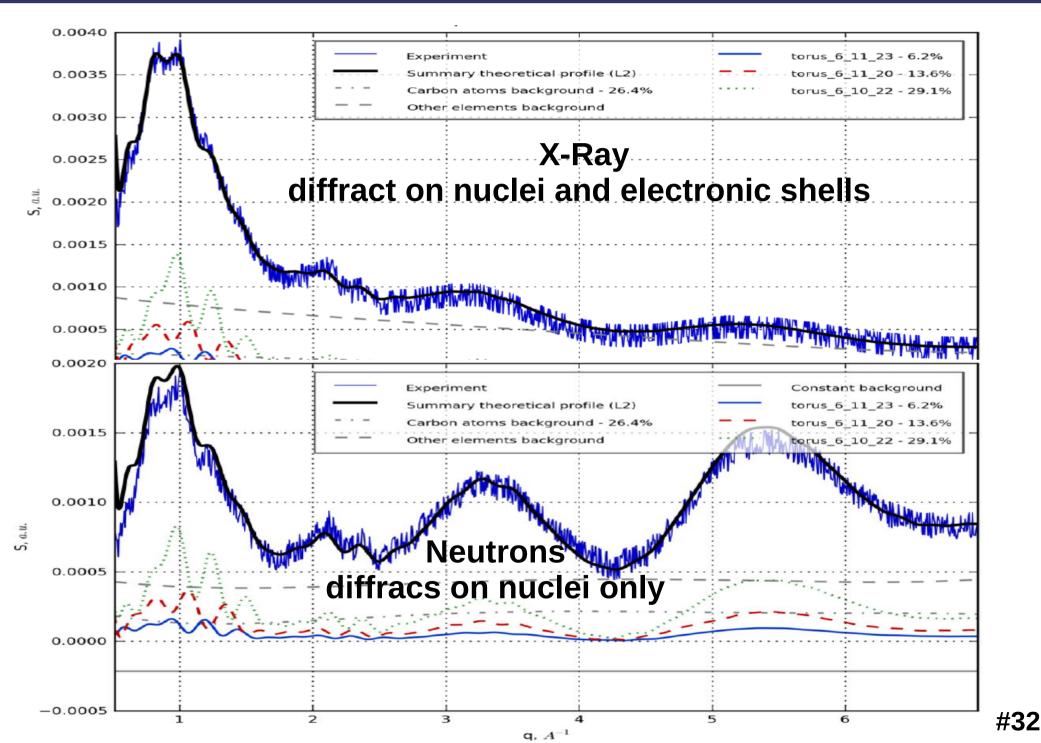

multi2_amplx_[cbc|scip|ipopt].amp start Web-form

Everest		
± • (€ 🛈 🗞 http	ps://everest.distcomp.org/apps/5460af4735000068307362a1?jobId=576d82c32d000(C 🛛 🖈 🕫 🗩 🖉	
Everest ^β 🌣	Applications 🚍 Jobs 🌰 Resources 😁 Groups 🚯 About 🛛 🔒 optdemo+	
run-am	plx ☆ Star	
About Paran	meters Submit Job Discussion	
Job Name	amplx-multi2-cbc	
AMPL-script as a file	http://distcomp.ru/~vladimirv/restopt/amplx/dw/multi2_amplx_cbc.amp Any correct AMPL-script with call to remote solvers ^.*\.amp	AMPLx script
Additional files	http://distcomp.ru/~vladimirv/restopt/amplx/dw/multi2.mod + Add file http://distcomp.ru/~vladimirv/restopt/amplx/dw/multi2.dat + Add file	Kept intact
	http://distcomp.ru/~vladimirv/restopt/amplx/cbcTest.opt + Add file ×	Nept maet
	+ Add item All files required for amplx-script models, data, etc. For example: http://distcomp.ru/~vladimirv /restopt/amplx/dw/multi2.mod http://distcomp.ru/~vladimirv/restopt/amplx/dw/multi2.dat http://distcomp.ru/~vladimirv/restopt/amplx/cbcTest.opt	
Email Notification	□ Send me email when the job completes	
Request JSON	N	
► Submit		

multi2_amplx_*.amp execution timespan/solvers log

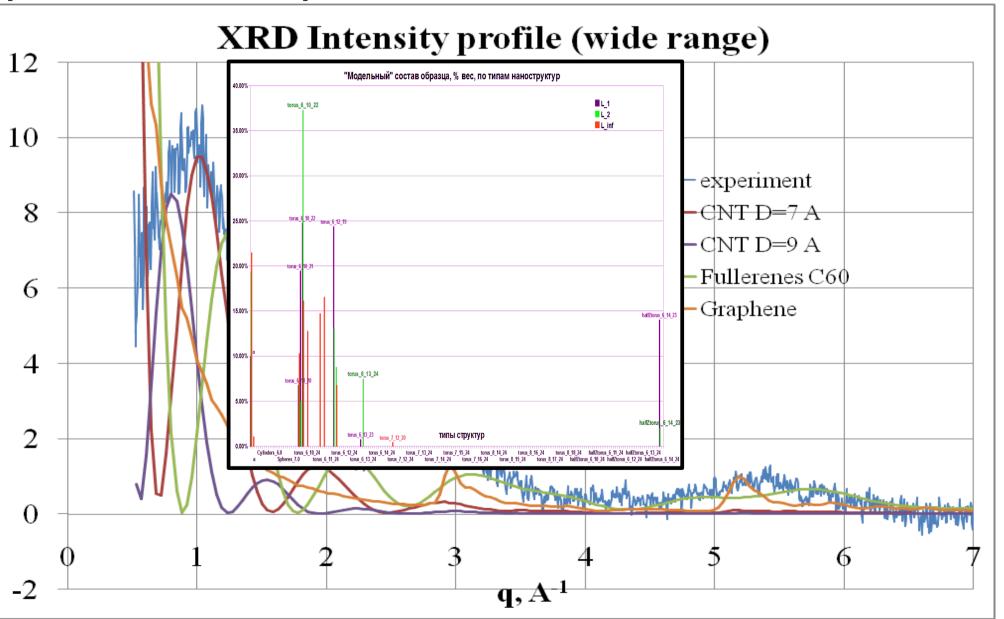

We developed some profiling tools to analyze logs of distributed execution of AMPLX algorithms in solvers pool presented in our Everest infrastructure

56 subproblems (both Master* and Sub-problems) ~ 300 sec



Carbon nano-structure by X-Ray & neutron diffraction

Structure identification of amorphous carbonaceous nanomaterials deposited in vacuum chamber of thermonuc. reactor Tokamak T-10 with a joint x-ray and neutron diffraction data analysis



Diffraction curves for X-Ray & neutron diffraction

Main approach – sampling curves & opt. fitting

Modeling diffraction on homogeneous amorphous fractions of nanoparticles, then optimization identification of these fractions' portions in the sample

Formalization as Nonlinear Math. Programming Problems

We use three independent criteria of model-experiment error to get an additional estimate of the accuracy of the final results

$$K \sum_{j=1}^{m} |z_{j}^{\mathsf{Xr}}| + (1-K) \sum_{k=1}^{n} |z_{k}^{\mathsf{Ne}}| \xrightarrow{(\mathbf{z}^{\mathsf{Xr}}, \mathbf{z}^{\mathsf{Ne}}, \mathbf{x}, \mathbf{y}, a, A, c, B)} \min \quad \text{err. criterion } \mathbf{L}_{1}$$

$$K \sum_{j=1}^{m} (z_{j}^{\mathsf{Xr}})^{2} + (1-K) \sum_{k=1}^{n} (z_{k}^{\mathsf{Ne}})^{2} \xrightarrow{(\mathbf{z}^{\mathsf{Xr}}, \mathbf{z}^{\mathsf{Ne}}, \mathbf{x}, \mathbf{y}, a, A, c, B)} \min \quad \text{err. criterion } \mathbf{L}_{2}$$

$$K \max_{j=1:m} |z_{j}^{\mathsf{Xr}}| + (1-K) \max_{k=1:n} |z_{k}^{\mathsf{Ne}}| \xrightarrow{(\mathbf{z}^{\mathsf{Xr}}, \mathbf{z}^{\mathsf{Ne}}, \mathbf{x}, \mathbf{y}, a, A, c, B)} \min \quad \text{err. criterion } \mathbf{L}_{inf}$$

$$K \max_{j=1:m} |z_{j}^{\mathsf{Xr}}| + (1-K) \max_{k=1:n} |z_{k}^{\mathsf{Ne}}| \xrightarrow{(\mathbf{z}^{\mathsf{Xr}}, \mathbf{z}^{\mathsf{Ne}}, \mathbf{x}, \mathbf{y}, a, A, c, B)} \min \quad \text{err. criterion } \mathbf{L}_{inf}$$

$$\sum_{j=1}^{\mathsf{Xr}} |z_{j}^{\mathsf{Xr}}| + (1-K) \max_{k=1:n} |z_{k}^{\mathsf{Ne}}| \xrightarrow{(\mathbf{z}^{\mathsf{Xr}}, \mathbf{z}^{\mathsf{Ne}}, \mathbf{x}, \mathbf{y}, a, A, c, B)} \min \quad \text{err. criterion } \mathbf{L}_{inf}$$

$$\sum_{j=1}^{\mathsf{Ne}} |z_{j}^{\mathsf{Xr}}| + (1-K) \max_{j=1} |z_{j}^{\mathsf{Ne}}| \cdot (z_{j}^{\mathsf{Xr}}, \mathbf{z}^{\mathsf{Ne}}, \mathbf{x}, \mathbf{y}, a, A, c, B) \ge 0$$

$$\sum_{i=1}^{\mathsf{Ne}} |z_{i}^{\mathsf{Ne}}| \cdot (z_{i}^{\mathsf{Xr}}, \mathbf{z}^{\mathsf{Ne}}, \mathbf{z}, \mathbf{z}^{\mathsf{Ne}}, \mathbf{z}, \mathbf{z}^{\mathsf{Ne}}, \mathbf{z}^{$$

Formulation of B&B algorithm to solve nonlinear MP

$$y_i = t \cdot x_i \ (i=1:N), \ c=t \cdot a, \ B=t \cdot A, \equiv \left[rac{x_i}{A} = rac{y_i}{B} \ (i=1:N), \ rac{a}{A} = rac{c}{B}
ight.$$

$$\begin{aligned} z_{j}^{\mathsf{Xr}} &= S_{\exp}^{\mathsf{Xr}}(q_{i}) - \sum_{i=1}^{N} x_{i} \cdot S_{i}^{\mathsf{Xr}}(q_{j}) - a \cdot S_{C}^{\mathsf{Xr}}(q_{j}) - A \cdot S_{\mathrm{impur}}^{\mathsf{Xr}}(q_{j}) \ (j = 1:m) \\ z_{k}^{\mathsf{Ne}} &= S_{\exp}^{\mathsf{Ne}}(q_{k}) - \sum_{i=1}^{N} t \cdot x_{i} \cdot S_{k}^{\mathsf{Ne}}(q_{k}) - t \cdot a \cdot S_{C}^{\mathsf{Ne}}(q_{k}) - t \cdot A \cdot S_{\mathrm{impur}}^{\mathsf{Ne}}(q_{k}) \ (k = 1:n) \\ \sum_{i=1}^{n} x_{i} + a = A, \ (x_{i}, a, A) \geqq 0, \ \mathbf{t_{lo}} \leqslant \mathbf{t} \leqslant \mathbf{t_{up}} \end{aligned}$$

Branching over interval of possible values of SCALAR parameter *t* (after fixing – we get convex MP problems) $t_{
u_1}$ $t_{
u_2}$ t_{up}

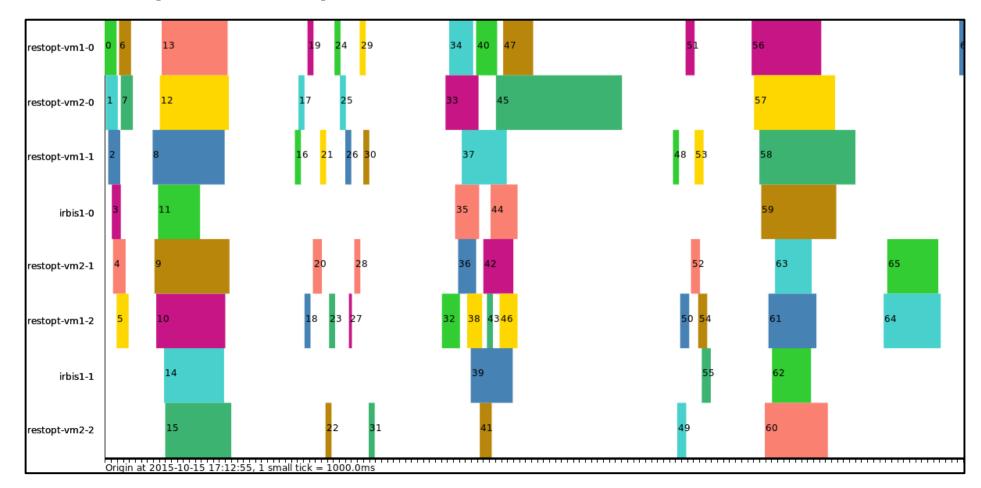
On small sub-intervals bilinear inequalities are relaxed by linear ones – and we get convex (even linear for L1, Linf) MP relaxation problems.

$$\begin{array}{l} t \in [t_{\nu_1}, t_{\nu_2}] \\ t_{\nu_1} \cdot x_i \leqslant y_i \leqslant t_{\nu_2} \cdot x_i \ (i=1:N), \ t_{\nu_1} \cdot a \leqslant c \leqslant t_{\nu_2} \cdot a, \ t_{\nu_1} \cdot A \leqslant B \leqslant t_{\nu_2} \cdot A \\ \end{array}$$

$$\begin{array}{l} \#35 \end{array}$$

 t_{lo}

Everest-application implementing alg. By AMPLX

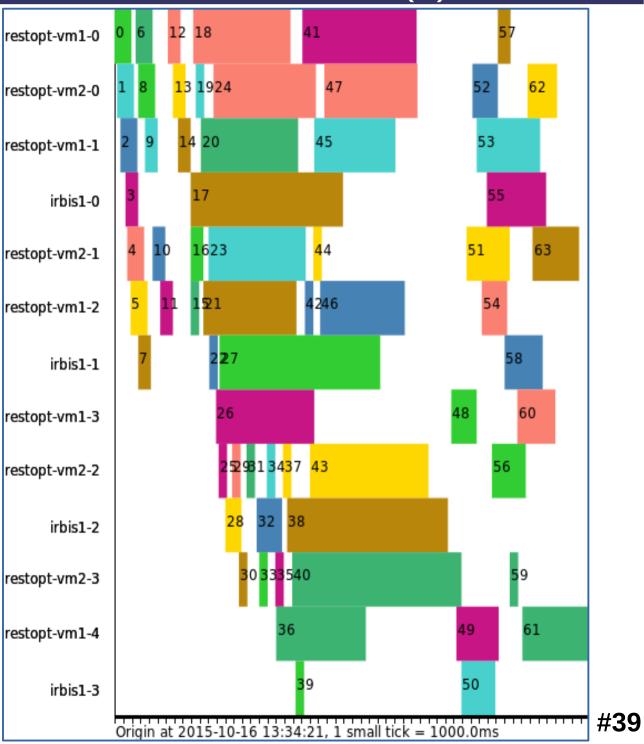

Job submission Web- form:	Everest Fverest Everest ^β Φ Applica optBnB_Nlp-] ♥ ୶ ≉ •
	About Parameters	Submit Job optBnB_Nlp-2-amplx	
data-file;	Experimental data file (AMPL-dat)	http://dcs.isa.ru/~vladimirv/xnd/AMPLdata_joint-2.dat Should be AMPL *.dat file	+ Add file
criteria to be used; 📃	List of criteria	L1 L2 Linf Enlist some of L1, L2 or Linf, empty means ALL	
tolerance to stop B&B	Type of opt. algorithm Relative tol. for B&B	branch-and-bound Select type of opt. algorithm B&B or NLP 0.05 Relative tolerance, 5% by default (!!! for B&B only !!!)	
X-Ray<>Neutron weight coefficient	Weight coefficient between X-ray & Neutron,"The more K the more X-ray"	0.5 Weight coefficient, float in [0,1], K=1 means XRD only!	
	(for DEBUG only) reduce number of exp. data	1 let M := M div \$div\$	
	Email Notification	☐ Send me email when the job completes.	
	Request JSON		
	► Submit		#36

"Behind the scene" Everest manages AMPLX session jobs

Everest ^β & Applicatio	ns 🖻 Jobs 📥 Resourc	es 😁 😁 Grou	ups 🚯 About		📥 optdemo 🕶
Jobs				🔀 Auto Update 📿 Update	▼ Filters
Name	Application	State	Submitted	Finished	Actions
amplx4944 - Job 7	solve-ampl-stub	DONE	27 Nov 2015 15:40:07	27 Nov 2015 15:41:53	1
amplx4944 - Job 6	solve-ampl-stub	RUNNING	27 Nov 2015 15:40:01		
amplx4944 - Job 5	solve-ampl-stub	DONE	27 Nov 2015 15:39:54	27 Nov 2015 15:41:31	1
amplx4944 - Job 4	solve-ampl-stub	DONE	27 Nov 2015 15:39:49	27 Nov 2015 15:41:55	1
amplx4944 - Job 3	solve-ampl-stub	RUNNING	27 Nov 2015 15:39:43		
amplx4944 - Job 2	solve-ampl-stub	RUNNING	27 Nov 2015 15:39:38		
amplx4944 - Job 1	solve-ampl-stub	RUNNING	27 Nov 2015 15:39:33		
amplx4944 - Job 0	solve-ampl-stub	DONE	27 Nov 2015 15:39:27	27 Nov 2015 15:41:09	1
amplx4944 - Job 7	solve-ampl-stub	DONE	27 Nov 2015 15:37:58	27 Nov 2015 15:38:25	
amplx4944 - Job 6	solve-ampl-stub	DONE	27 Nov 2015 15:37:54	27 Nov 2015 15:38:17	
amplx4944 - Job 5	solve-ampl-stub	DONE	27 Nov 2015 15:37:50	27 Nov 2015 15:38:14	
amplx4944 - Job 4	solve-ampl-stub	DONE	27 Nov 2015 15:37:46	27 Nov 2015 15:38:09	
amplx4944 - Job 3	solve-ampl-stub	DONE	27 Nov 2015 15:37:42	27 Nov 2015 15:38:10	
amplx4944 - Job 2	solve-ampl-stub	DONE	27 Nov 2015 15:37:38	27 Nov 2015 15:38:02	
amplx4944 - Job 1	solve-ampl-stub	DONE	27 Nov 2015 15:37:34	27 Nov 2015 15:38:02	
amplx4944 - Job 0	solve-ampl-stub	DONE	27 Nov 2015 15:37:30	27 Nov 2015 15:37:48	
optBnB_Nlp-2-amplx	optBnB_Nlp-2-amplx	RUNNING	27 Nov 2015 15:36:42		

Problem of effective resource load (1)

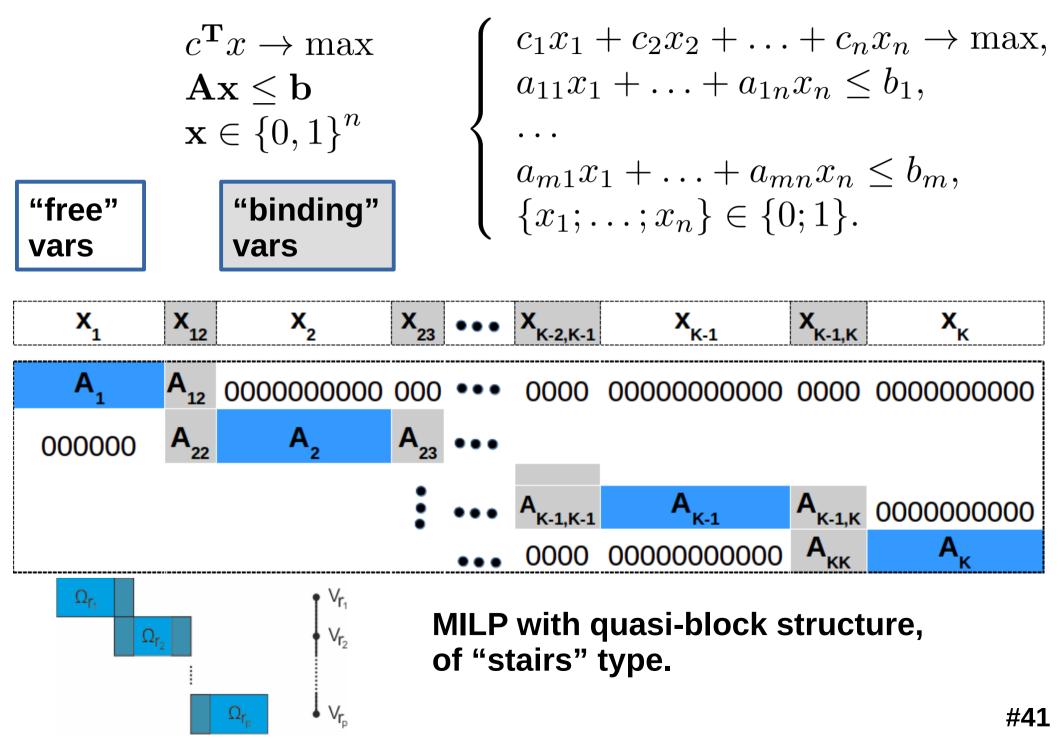
- Everest logs analysis via Everest Python API helps to increase effectiveness of resource usage
- Tracing of session with successive solving of three problems (L1, L2, Linf) in one OptBnb* job.
- More than 60 sub-tasks took ~25 minutes. Not more than 8 solvers (from 16 available) worked in parallel

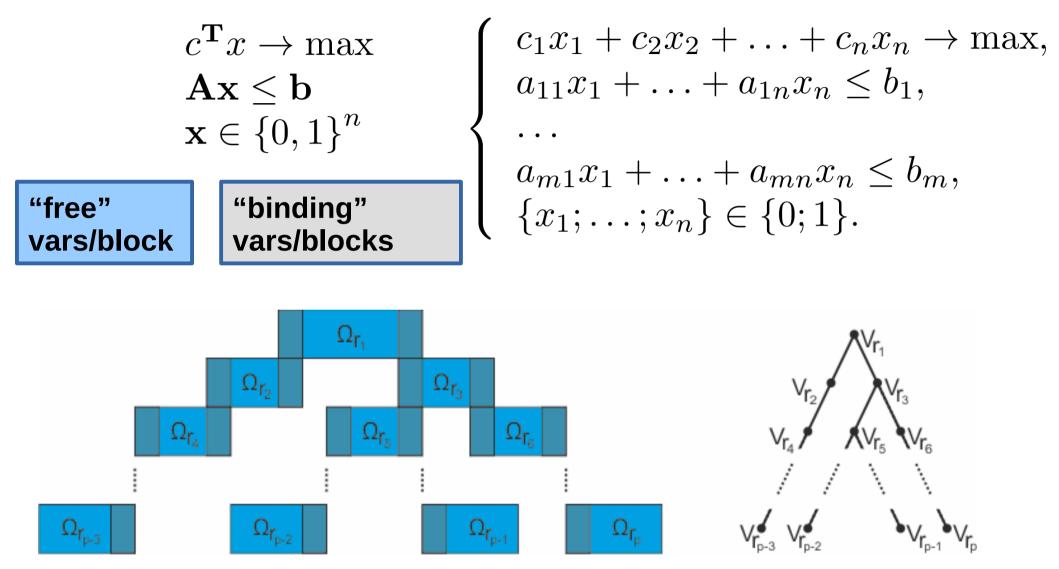


Problem of effective resource load (2)

Parallel submission of three problems (L1, L2, Linf) in three OptBnb* jobs.

Three jobs took ~10 min.

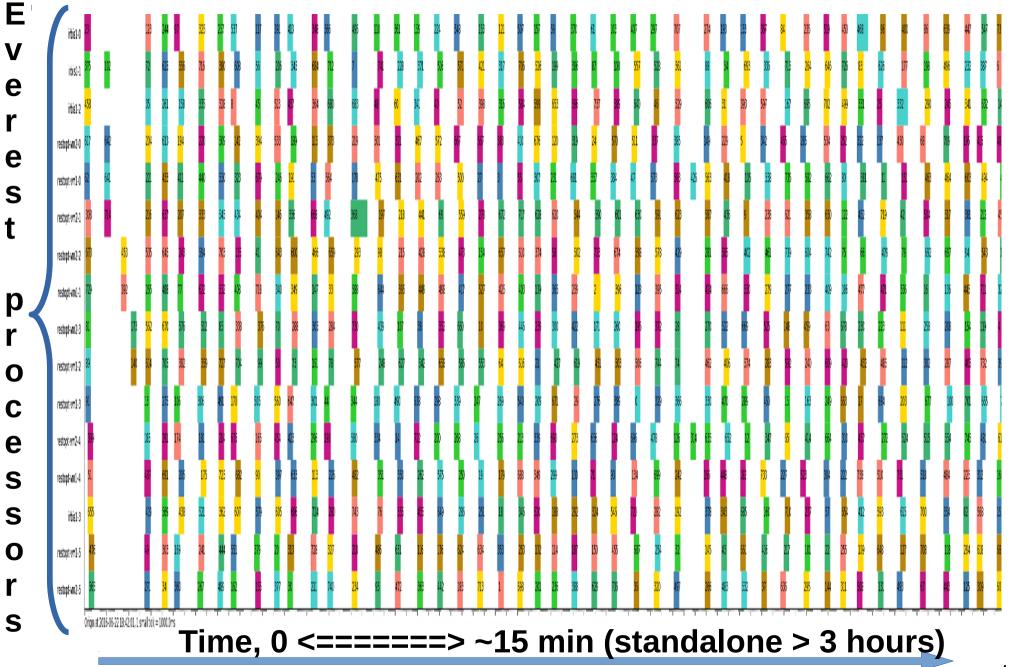

13 solvers (from 16 available) worked in parallel


Coarse-grained & fixed decomposition for MILP

- **Relatively "non-standard" approaches for discrete (MILP) problems**
- Preliminary analysis of constraints, then "fixed" decomposition into sub-problems might be solved in parallel
- Two examples (both based on AMPLx):
- 1. Local Elimination Algorithms (LEA) for MILP with quasi-block constraints' structure investigated by Dr. <u>Oleg A. Shcherbina</u> (Crimean Federal University, Institut für Mathematik Universität Wien, Austria) (here we collaborate with prof. Vladimir I.Tsurkov, Computing Center RAN)
- 2. Coarse-grained B&B for MILP with preliminary heuristic fixed decomposition into subproblems by fixing some of binary variables

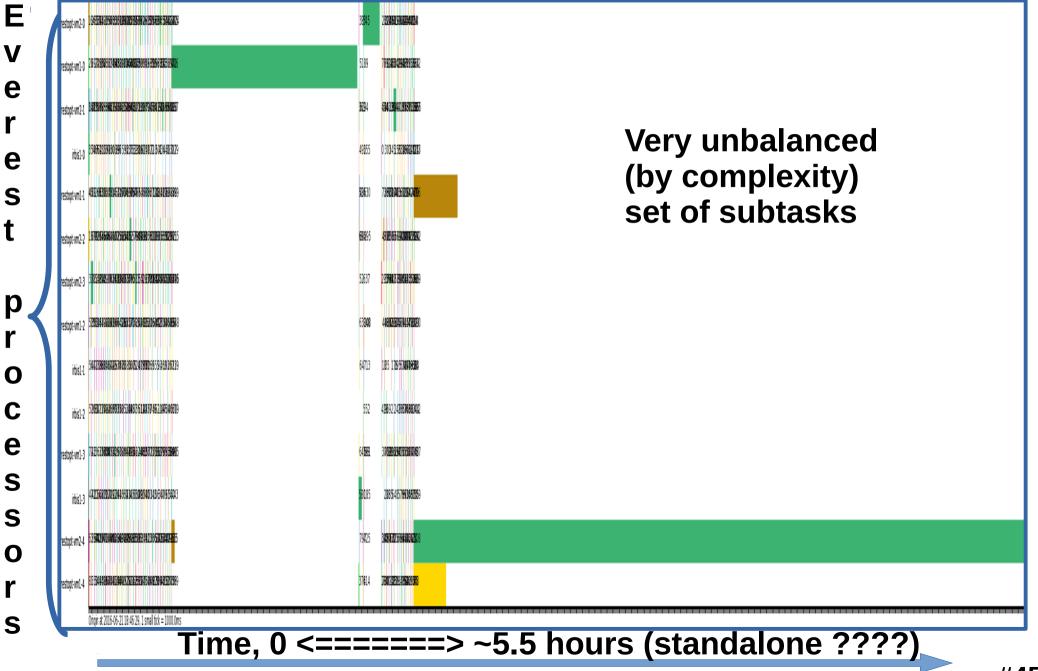
Local Elimination Algorithms for quasi-block MILP

LEA for MILP with tree-type quasi-block constraints


MILP with quasi-block structure, of "tree" type.

LEA @ AMPLx experiments (Submit form)

	Everest	× +	apps/5460af4735000068307362a1	?jobId=576adbf22d		1 🖗 ▼ 🙁 = La optdemo -
	About Parameter		Discussion			☆ Star
LEA as	Job Name	darabp-amplx				
AMPLX	AMPL-script as a file Additional files	Any correct AMPL-scri	d000051e028a756/lea18-x.amp pt with call to remote solvers ^.*\.a d0000a2c62892b7/scipx4dual.s	amp	×	
Data, quasi- block structure		/api/files/575e28292	c000087d6e277b4/lea8.mod	+ Add file) × ×	
etc	l	+ Add item	c000084d9e27812/Itest05.dat	+ Add file	comp.ru/~vladimirv/res	stopt/amplx
	Email	/dw/multi2.mod http://d /amplx/cbcTest.opt	<i>listcomp.ru/~vladimirv/restopt/am</i>			
	Notification Request JSON					


LEA @ AMPL experiments (Time-profile-plotting)

100x50000, quasi-block, tree-type, ~750 subtasks

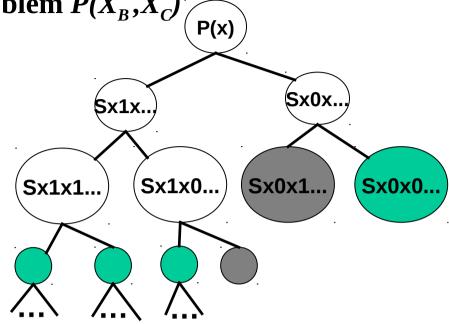
LEA @ AMPL experiments (Time-profile-plotting)

100x100000, quasi-block, tree-type, ~850 subtasks

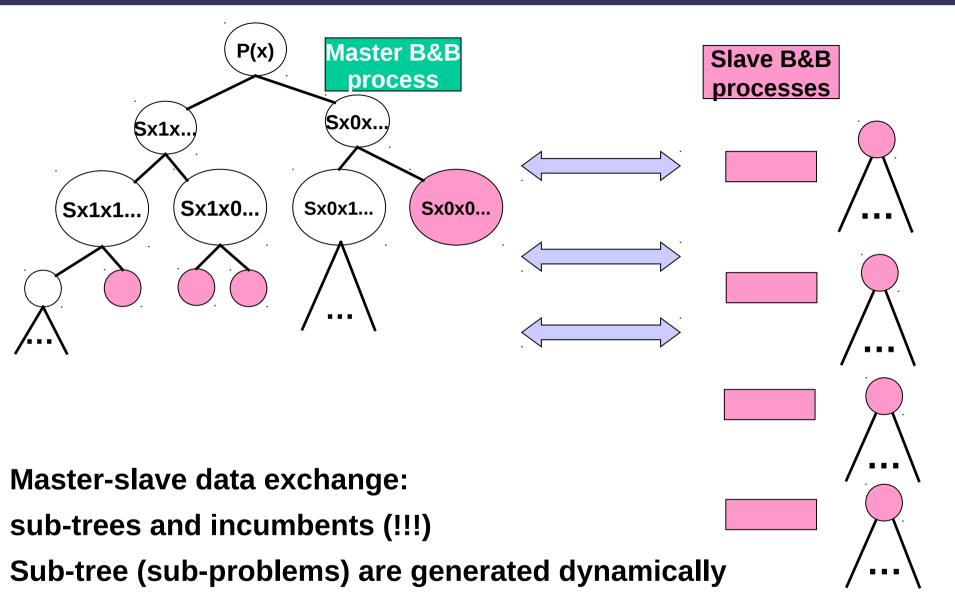
Branch-and-bound for MI... problem (e.g. boolean)

General scheme of <u>search tree</u> traversal for problem $P(X_B, X_C)$ $f_0(X_B, X_C) \rightarrow \min_{X_B, X_C} (X_C, X_B) \in Q$

- **Current state of B&B (changed dynamically):**
- list of nodes to be processed (green);
- known Upper-Bound (aka incumbent | record)

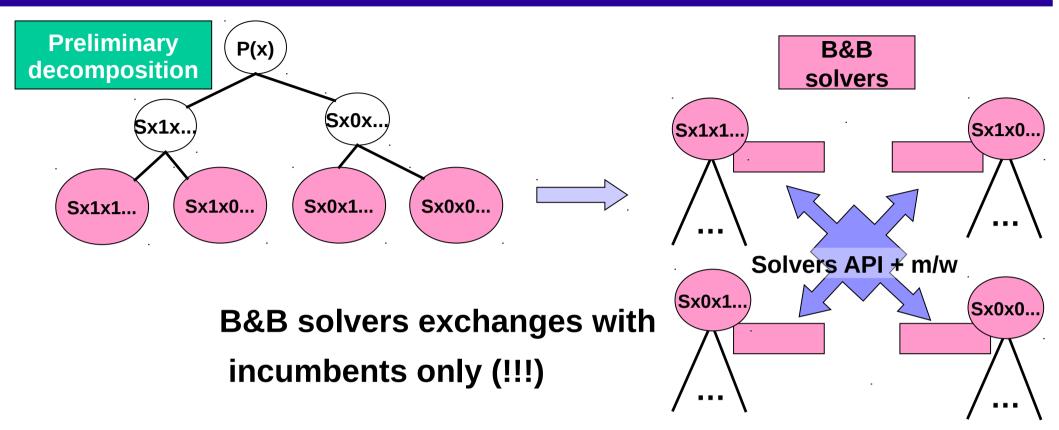

 $\mathbf{UB} = f_0(X'_B, X'_C) : \ (X'_C, X'_B) \in Q$

Node (subproblem) operation:


1) calc. Lower-Bound of S, LB(S), by relaxation of boolean constraints to, e.g. LP;

- 2) if, accidentally, feasible set of variables found $(X''_C, X''_B) \in Q \Rightarrow$ update UB: $\mathbf{UB}:=\min \{\mathbf{UB}, f_0(X''_B, X'')\}$
- 3) if LB(S) >= UB discard node from the list (grey);
- 4) select boolean variable to split node and add new ones to the tree

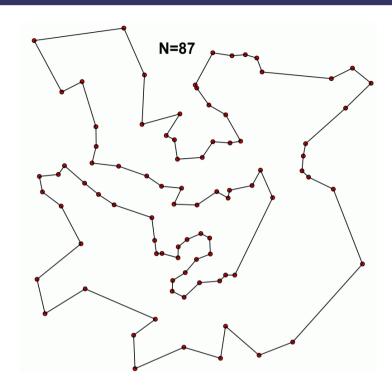
B&B is one of the best algorithms which is suited for parallel implementation



Fine-grained decomposition of B&B (traditional approach)

Usually, the approach is based on MPI and run at high-performance cluster

Coarse-grained ("static") decomposition of B&B



The approach is not so popular as fine-grained one, but is much more easy for implementation via solvers' API and some "light-weight" middleware, e.g. Erlang, Zeroc Ice, ZeroMQ etc.

Preliminary decomposition is crucial for speed-up and requires analysis of the problem's data ! E.g. by AMPL (!) #48

Traveling Salesmen Problem by Coarse-grained B&B (1)

$$\begin{split} &\sum_{i>j} d_{ij} \boldsymbol{x}_{ij} \to \min_{\boldsymbol{x}_{ij}, f_{ij}} \text{ wrt:} \\ &\sum_{j \in V, i>j} \boldsymbol{x}_{ij} + \sum_{j \in V, i 1 \end{cases} \right)^* \left(\begin{cases} \boldsymbol{x}_{ij}, \text{ if } i < j \\ \boldsymbol{x}_{ji}, \text{ if } i > j \end{cases} \right) \quad ((i, j) \in V \times V); \\ &\sum_{j:(i,j) \in V \times V} f_{ij} - \sum_{j:(i,j) \in V \times V} f_{ji} \leq \begin{cases} n-1, \text{ if } i = 1 \\ -1, \text{ if } i > 1 \end{cases} \quad (i \in V); \\ &\sum_{j:(i,j) \in V \times V} f_{ij} \geq 1 \quad (i \in V); \\ &\boldsymbol{x}_{ij} = \{0,1\}. \end{split}$$

"Random" selection of x_{ij} to decompose doesn't give speed-up Heuristic rule: sort $\{d_{ij}\}$ in ascending order and decompose by x_{ij} :=0|1 corresponding to the smallest d_{ij} (to get "balanced" by incumbents subproblems ??)

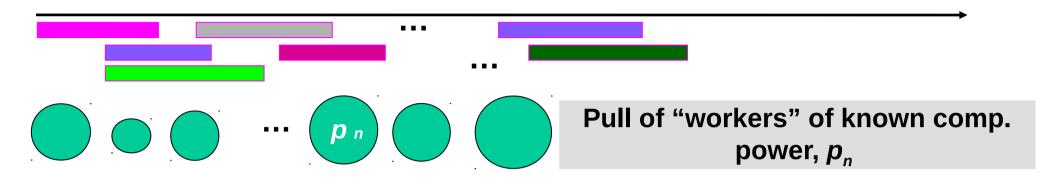
Subproblems has been generated as AMPL-stubs by special AMPL "preprocessing" script #49

Traveling salesmen problem coarse-grained experiment (2)

dCBC prototype (CBC, CBC API + Erlang)

Ν	T(CBC), min	T(SCIP), min
80	5.3	1.6
90	20.3	6
100	623	10
110	>10000	75

Ν	n of Xij fixed	n of subprobs	T(CBCx1), min	T(dCBC), min	Speed Up
80	4	16	5.3	2	200%
90	5	32	20.3	11	
100	6	64	623	229	300%
110	7	128	>10000	1212	∞ !!!


Computing resources (12 CBC instances) :

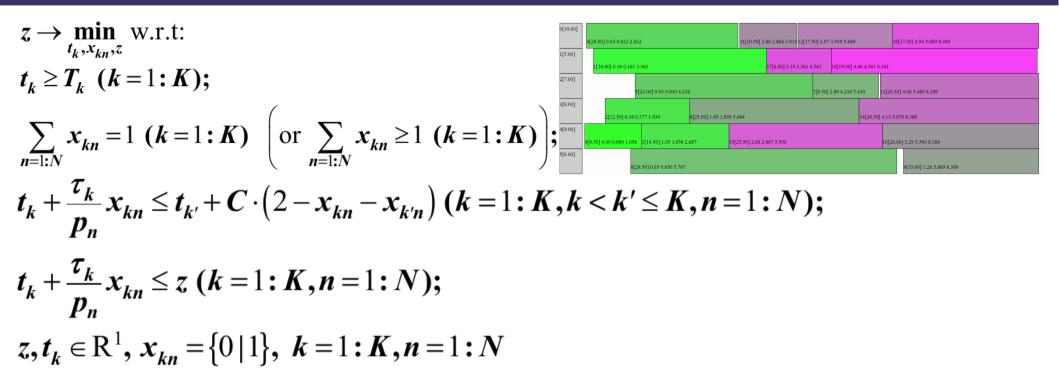
8 CBC instances at 2 x Intel Xeon E5620 @ 2.40GHz

4 CBC instances at Intel Core i7-2600K @ 3.40GHz

Task-to-worker scheduling problem (fully deterministic)

Queue (with arrival times) of tasks of known complexities (processing times)

 T_k, τ_k T_k – arrival time, τ_k – processing time for "unit" of comp. power Need to determine a "schedule", i.e. set of variables { x_{kn}, t_k }:


- boolean $x_{kn} = 1$ if task "k" is submitted to worker "n" (0 if not);
- continues $t_k \ge T_k$ task submission time.

Constraints:

 $[t_k]$

- $t_k \ge T_k$ (submission after arrival)
- each worker can process only one task at a time.
 Objective: minimize time of queue completion
 - $t_k + (\tau_k / p_n)$] actual task's span, if $X_{kn} = 1$

Task-worker scheduling problem coarse-grained experiment (1)

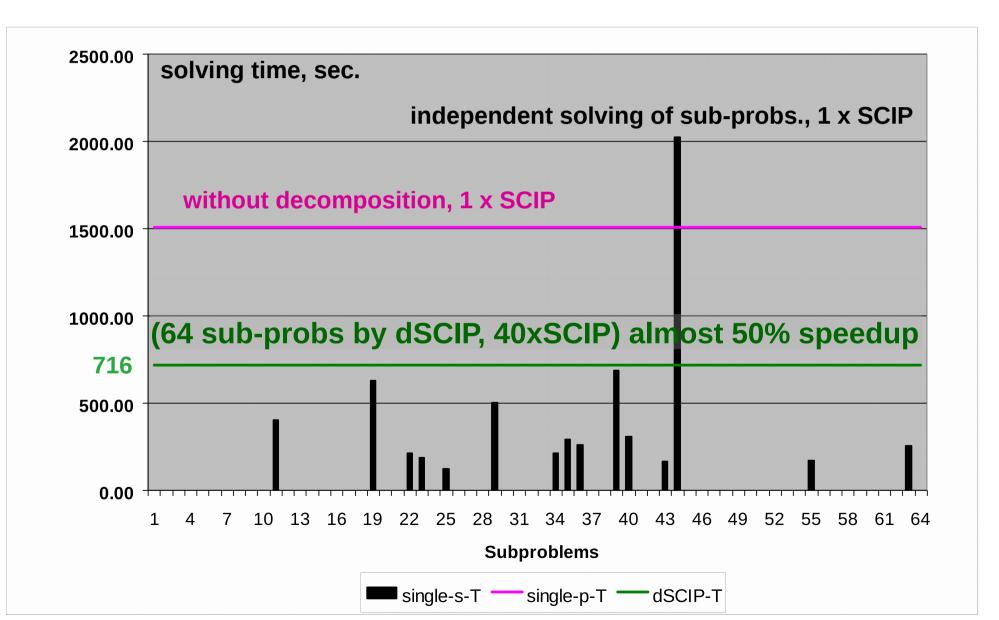
"Random" selection of x_{kn} to decompose doesn't give speed-up Heuristic rule: sort { τ_k/p_n } in ascending order and decompose by x_{kn} :=0|1 corresponding to the smallest τ_k/p_n (to get "balanced" by incumbents subproblems ??)

Subproblems has been generated as AMPL-stubs by special AMPL "preprocessing" script #52

Task-worker scheduling problem coarse-grained experiment (2)

dCBC prototype (SCIP, SCIP API + Erlang)

4[28.00] 0.03 0.032 2.832		11[10.50] 2.86 2.864 3.914 12	[17.50] 2.97 3	.939 5.689		16[27.00] 4.94 5.689 8.389			
1[16.00] 0.16 0.161 3.361		17[6.00] 3.19 3.3	61 4.561 1	.8[19.00] 4.	46 4.561 8.361				
5[23.00] 0.93 0.930 4.216			7[8.50] 2.89 4.216 5.430 13[20.50] 4.		430 13[20	.50] 4.00 5.460 8.389			
2[12.50] 0.38 0.377 1.939 8[25.00] 1.65 1.939 5.064					14[26.50] 4.13 5.076 8.389				
0[9.50] 0.00 0.000 1.056 3[14.50] 1.05 1.056 2	667 15[2	5.50] 2.06 2.667 5.500			10[2	6.00] 3.29 5.500 8.389			
6[29.50] 0.85 0.850 5.767						9[15.00] 1.26 5.889 8.389			
orkers 19 task	s exact	t solution	host	n of	SCIP insta	nces	T(SCIPx1), sec		
	o, onao	Condion							
				8 X					
nputina resour	ces (40	SCIP) :	server-:	8 X L Intel	(R) Core(T	M) i7-2600K CPU @ 3.40GHz	929.7		
nputing resour	ces (40	SCIP) :	server-:	L Intel	. /	M) i7-2600K CPU @ 3.40GHz	929.7		
nputing resour	ces (40	SCIP) :		L Intel	<u> </u>				
	•	-	server-:	1 Intel 16 X 2 Intel	<u> </u>	M) i7-2600K CPU @ 3.40GHz R) CPU E5620 @ 2.40GHz	929.7		
nputing resour polean x _{kn} has	•	-	server-2	L Intel 16 X 2 Intel 8 X	(R) Xeon(F	R) CPU E5620 @ 2.40GHz	1368.59		
olean x_{kn} has	been fix	ked	server-2	L Intel 16 X 2 Intel 8 X	(R) Xeon(F				
	been fix	ked	server-2 xen-vm	L Intel 16 X Intel 8 X -2 Intel 8 X	(R) Xeon(F (R) Xeon(F	R) CPU E5620 @ 2.40GHz	1368.59		
	1[16.00] 0.16 0.161 3.361 5[23.00] 0.93 0.930 4.21 2[12.50] 0.38 0.377 1.939 0[9.50] 0.00 0.000 1.056 3[14.50] 1.05 1.056 2 6[29.50] 0.85 0.850 5.767	1[16.00] 0.16 0.161 3.361 5[23.00] 0.93 0.930 4.216 2[12.50] 0.38 0.377 1.939 8[25.00] 1.65 1.939 5.0 0[9.50] 0.00 0.000 1.056 3[14.50] 1.05 1.056 2.667 15[2 6[29.50] 0.85 0.850 5.767	1[16.00] 0.16 0.161 3.361 17[6.00] 3.19 3.3 5[23.00] 0.93 0.930 4.216 5[23.00] 0.93 0.930 4.216 2[12.50] 0.38 0.377 1.939 8[25.00] 1.65 1.939 5.064 0[9.50] 0.00 0.000 1.056 3[14.50] 1.05 1.056 2.667 15[25.50] 2.06 2.667 5.500 6[29.50] 0.85 0.850 5.767 15[25.50] 2.06 2.667 5.500	1[16.00] 0.16 0.161 3.361 17[6.00] 3.19 3.361 4.561 1 5[23.00] 0.93 0.930 4.216 7[8.50] 2. 2[12.50] 0.38 0.377 1.939 8[25.00] 1.65 1.939 5.064 0[9.50] 0.00 0.000 1.056 3[14.50] 1.05 1.056 2.667 15[25.50] 2.06 2.667 5.500 6[29.50] 0.85 0.850 5.767 15[25.50] 2.06 2.667 5.500	1[16.00] 0.16 0.161 3.361 17[6.00] 3.19 3.361 4.561 18[19.00] 4. 5[23.00] 0.93 0.930 4.216 7[8.50] 2.89 4.216 5. 2[12.50] 0.38 0.377 1.939 8[25.00] 1.65 1.939 5.064 0[9.50] 0.00 0.000 1.056 3[14.50] 1.05 1.056 2.667 15[25.50] 2.06 2.667 5.500	1[16.00] 0.16 0.161 3.361 17[6.00] 3.19 3.361 4.561 18[19.00] 4.46 4.561 8.361 5[23.00] 0.93 0.930 4.216 7[8.50] 2.89 4.216 5.430 13[20 2[12.50] 0.38 0.377 1.939 8[25.00] 1.65 1.939 5.064 14[26.50] 4.13 0[9.50] 0.00 0.000 1.056 3[14.50] 1.05 1.056 2.667 15[25.50] 2.06 2.667 5.500 10[2 6[29.50] 0.85 0.850 5.767 15[25.50] 2.06 2.667 5.500 10[2	1[16.00] 0.16 0.161 3.361 17[6.00] 3.19 3.361 4.561 18[19.00] 4.46 4.561 8.361 5[23.00] 0.93 0.930 4.216 7[8.50] 2.89 4.216 5.430 13[20.50] 4.00 5.460 8.389 2[12.50] 0.38 0.377 1.939 8[25.00] 1.65 1.939 5.064 14[26.50] 4.13 5.076 8.389 0[9.50] 0.00 0.000 1.05 3[14.50] 1.05 1.056 2.67 15[25.50] 2.06 2.67 5.500 10[26.00] 3.29 5.500 8.389 0[9.50] 0.85 0.850 5.767 15[25.50] 2.06 2.67 5.500 10[26.00] 3.29 5.500 8.389		


The result is rather poor, speedup is less than 25% (720 vs 930 seconds). Very different performance, no load balance. #53

Task-worker scheduling problem coarse-grained experiment (3)

2 x (20-cores VM at www.DigitalOcean.com)

40 SCIP at QEMU Virtual CPU version 1.0 @ 2.4Ghz

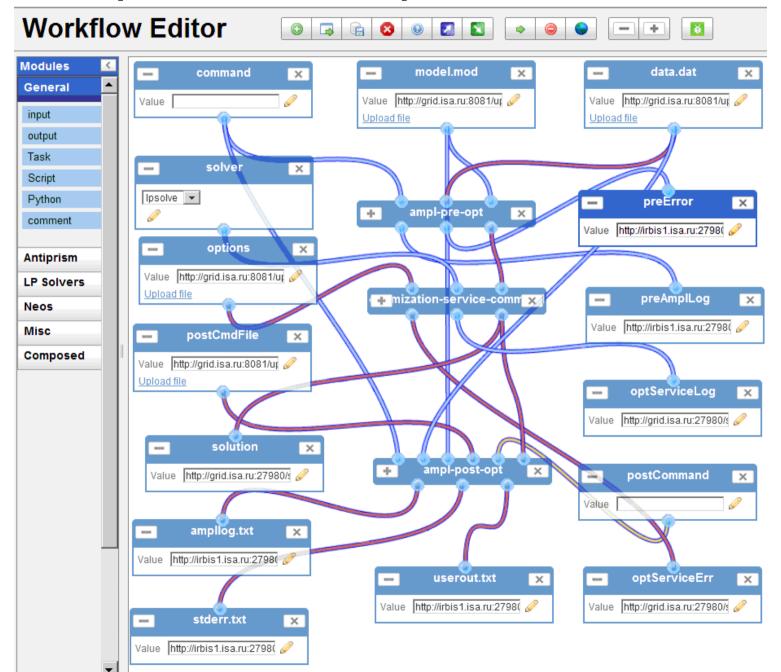
The same decomposition by 6 boolean vars. into 64 sub-problems

Increase computing power of the computing resources (dedicated for optimization) connected to Everest: stand alone servers and server with Intel Xeon Phi co-processor (+ ~50 cores); small cluster deploying now in our Center (+~20 cores).

Use Everest Task Protocol and special "multi-task" Everest jobs to exchange message within special AMPLx session

To allow to use in AMPLx "pure" Python computing scenarios on the base on Pyomo, http://www.pyomo.org, an open source package supporting AMPL-stub/solution formats and compatible with AMPL-solvers Our contacts:http://distcomp.ru,Everest platform web-site:http://everest.distcomp.org,AMPLX sources:https://gitlab.com/ssmir/amplxExamples of AMPLx-scripts:http://distcomp.ru/~vladimirv/restopt/amplx

Thank you for your attention.


Questions?

Visual "spaghetti-wire" programming vs. scrpting

new@fuji MathCloud - ... × C figure_Linf.png (2445×... × + → C ③ fuii.isa.ru:7077 4 62 7 0 . - + Ŭ. Num. of calculation experiment × – noise xml configurations × _ -structures × Value http://fuji.isa.ru:7077/uploa 🥔 Value 7 Value http://fuji.isa.ru:7077/uplos 🥔 Value http://fuji.isa.ru:7077/uploa 🥔 Value http://fuji.isa.ru:7077/uplos Upload file Upload file Upload file Upload file tic ++ XRD_Calculation × + XRD_AMPL_data_converter XRdCalcTime 🗕 XRD modelling results 🗙 Value 2667.347 CarbonStructure × 15 Value http://fuji.isa.ru:1999/XRD @ View + Optim, results -× X Value http://fuji.isa.ru:7582/Carb @ http://fuji.isa.ru:7582/Carb Value View 🐺 XRD_Optimization_Visualizer 🗙 View XRD_Plotter_mini Experiment Summary theoretical profile (L2) 2.5 Carbon atoms background - 21.0% + L1 pict. -× Other elements background 12 Constant background torus 0.3 0.65 1.2 - 10.5% Value http://fuji.isa.ru:1999/XRD torus_0.3_0.6_0.95 - 17.6% torus_0.3_0.5_1.05 - 22.1% View pictures torus 0.3 0.5 1.1 - 27.8% × XRdOptTime 0.01 http://fuji.isa.ru:1999/XRD 0.6 0.8 1.0 Value 5.402 L2 pict. -× Value http://fuji.isa.ru:1999/XRD 🖉 View Linf pict × -Value http://fuji.isa.ru:1999/XRD 🥔 1 August and a second second View $g A^{-1}$

Visual "spaghetti-wire" programming vs. scrpting

Too complex even for simple calculation

