

The 7th International Conference "Distributed Computing
and Grid-technologies in Science and Education"

(GRID'2016)

High-level software for finite-dimensional
and dynamic optimization in distributed

computing infrastructure

 Alexander P. Afanasiev, Vladimir V. Voloshinov

Center of Distributed Computing,
Institute for Information Transmission Problems RAS, Moscow

Supported by the Russian Foundation for Basic Research
(grant # 16-11-10352)

LIT JINR, Dubna, 2016

Content of the report

#2

Optimization modeling (OM) on the base of Dynamical
Optimization & Mathematical Programming

Software for OM considered:
 solvers (LP/MILP, NLP/MINLP ...);
 algebraic modeling languages translators (AMPL, GAMS,
 Mosel-Xpress …).

Review of existing technologies of OM in distributed computing
environment

Principles of our approach (cloud platform Everest & AMPLX)

Examples of AMPLX demos & applications, including
 branch-and-bound algorithm of nanomaterial structure
 identification with a joint X-Ray and neutron diffraction;

 Coarse-grained algorithms for MILP (coarse grained B&B,
 local elimination algorithms for MILP with quiasi-block
 constraints structure

We began with optimal control problem (OCP)

#3

Historically, our
research on the subject
has been inspired by an
optimal trajectories
continuation method
(Alexandr Afanasiev)
which suites for a
distributed computing
environment

OCP with linear constraints

#4

 .

,

,,

min,

00

0

txNtutxM

txLtutxK

xtxtutx

dttutxg
T

),...,(1 txtxtx n tutuu n,...,1

 matrixnktxK matrixnmtxM
 1 kmatrixtxL 1 mmatrixtxN

OCP with linear constraints => Linear Programming

#5

 .

,

min,

00

00

0

xNuxM

xLuxK

uxg

),...,(0010 nxxx nuuu ,...,1
 matrixnkxK 0

 matrixnmxM 0

 10 kmatrixxL 10 mmatrixxN

Find locally optimal control, i.e. for the beginning of the
trajectory

Local OCP with linear constraints (regime)

#6

 .

.

,

,,

min,

00

0

txNtutxM

txNtutxM

txLtutxK

xtxtutx

dttutxg

PP

AA

T

u(t)= ẋ (t)=(K (x (t))
M A(x (t)))

−1

(L(x (t))
N A x (t))) , x (0)= x0 , Caucshy problem

],0[Tt

 .

.

,

min,

00

00

00

0

xNuxM

xNuxM

xLuxK

uxg

PP

AA

There exist [0,T], that if

 Nonlinear inequalities

Continuation of the optimal trajectories in linear OCP

#7

Let is the optimal trajectory of the problem)(tx

 .

,

,,

min,

00

0

txNtutxM

txLtutxK

xtxtutx

dttutxg
T

Continuation of the optimal trajectories to is connected with the
problem

],0[T

 .

,

),(,

],,0[min,),(

xNuxM

xLuxK

txtxux

Ttduxg
t

t

Decomposition is invertible

#8

Decomposition of Computational Problems into
subproblems which may be solved by EXISTENT s/w tool

Typical for Mathematics, Physics, Chemistry, Biology...

Optimization
(LP, NLP, ...)

Data Analysis

Differential
Equations

Mathematical
Statistics

etc.

Mathematical Programming Problems (MP)
object (goal) function

#9

M – additional “simple
constraints” (0, interval,
integer/boolean)

inequalities constraints

 - parameters' setting & «consistence checking»

equalities constr., (I, J) - indices
sets (multi-index-, symbolic ...)

State-of-the-art s/w support MP of various types (constraint
functions' types; presence of binary/integer variables):
● LP/MILP – linear programming (mixed-integer LP);
● QP/MIQP – quadratic goal, linear constraints (MI*);
● QCQP/MI* – QP + quadratic constraints;
● NLP/MINLP – general non-linear (differentiable) functions;
● convex NLP/MILP – convex on all variables (including integer

ones);
...

MP solvers must support ...
object (goal) function

#10

M – additional “simple
constraints” (0, interval,
integer/boolean)

inequalities constraints

 - parameters' setting & «consistence checking»

equalities constr., (I, J) - indices
sets (multi-index-, symbolic ...)

In theory & numerical methods often use:
- Lagrange approach (functions & multipliers/dual variables)

- 1st, 2nd derivatives for NLP:

Solvers for optimization problems

#11

Non-exhaustive list of solvers we tried/use in our researches
COmputational INfrastructure for Operations Research,
www.coin-or.org (“IBM’s aegis”), more than 40 solvers&libs:
since ~2005
CBC/CLP (LP, MILP),
Ipopt (NLP),
Bonmin(CBC/Ipopt) (MINLP, convex on cont. & int. vars)
Zuse Institute Berlin, Germany,
SCIP (LP, MILP, MIQP,), ver. 1.0 2007, ver. 3.2.1 the last

GLPK (LP, MILP), A. Makhorin, Mosc. Avia. Institute, ~2002

LP_SOLVE, (LP, MILP) Eindhoven University of Technology,
Netherlands, since ~2000

Commercial: KNITRO, SNOPT, Gurobi, CPLEX

Commersial XPRESS* Fico Optimization (deserves special attention)

The concept of Algebraic Modeling Languages

#12

AML - Algebraic Model Languages (AMPL, GAMS, Zimpl, etc).

Common features:
● Convenient (symbolic "TeX-like") description of object &

constraints functions
● Separation of "symbolic/abstract" models and numerical

data for multivariate computation (parameter sweeping)
● Automatic differentiation (Jacobian & Hessian)
● Support of "Lagrange formalism" - access to optimal

variables and duals found by solver
● Unified open-source (even for "commercial" AMLs) API

for solvers' and applications’ developers

Usage of AMLs is crucial at preliminary phases of R&D

There are a number of AMLs

#13

Non-exhaustive list:
AMPL - A Modeling Language for Mathematical Programming,
 AT&T Bell Laboratories, D.M. Gay, Brian W. Kernighan,
 since 1980-х (1985), http://www.ampl.com

GAMS - General Algebraic Modeling System,
 International Bank for Reconstruction and Development,
 since 1976, http://www.gams.com

XPRESS-MOSEL – с 2001, с 2010 FICO Xpress Optimization Suite,
 http://fico.com
Zimpl - since 2004, http://zimpl.zib.de/ (LP, MILP, NLP ?)
 Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)

OPL - Optimization Programing Lang., IBM,
 ILOG CPLEX (LP, QP, ...), CP Optimizer, http://www-01.ibm.com/

GNU MathProg - "subset" of AMPL for GLPK, GNU LP Kit,
 Andrey Makhorin, MAI, since 2000, http://www.gnu.org/software/glpk/

http://www.ampl.com/
http://www.gams.com/
http://www-01.ibm.com/

General scheme of AMLs usage

#14

AMPL and GAMS -
most popular standards de-facto

"Symbolic" opt. model

Parameters' values

param p : ...;
set I : ...;
set J : ...;

file *.dat

AML-script
model *.mod;
data *.dat;
option solver ipopt;
solve;
display _var, _dvar;
printf ...

AML-translator
ampl.exe
gams.exe
SCIP

Problem's data as a
stub file
AMPL "stub", *.nl

GAMS data exch.,
*.gdx

ZIMPL for SCIP

AML API

AMPL/
Solver
interface
Library

GAMS
....

Solvers
CPLEX
Lpsolve
Minos
Knitro
Snopt
Gurobi
Mosek
...

COIN-OP
CLP, CBC,
Ipopt
Bonmin
...

SCIP
Solution as
*.sol

Rating of AMLs at NEOS portal (GAMS vs AMPL)

#15

https://neos-server.org/neos/report.html

Reflects preferences of
students and novices mainly

#16

MPI,
Object oriented m/w
Web-services,
REST-services, etc

Middleware

Optimization & distributed computing
Typical problems:

• efficient usage of state-of-the-art and/or emerging solvers on
available, heterogeneous, computing infrastructure

• keep “traditional” R&D practice, especially, at the beginning
phases of researches

Researchers
and their R&D

specific requirements
Computing resources

AMPL,
GAMS,
Zimpl, etc

Modeling lang. & interpreters

glpk, lpsolve,
clp, cbc, bonmin,
ipopt, scip, etc.

Solvers

??????

??? ???

Technologies & practice (NEOS & Kestrel client)

#17

NEOS-Server: «acquaintance» portal with state-of-the-art
solvers & AMLs, http://www.neos-server.org/neos/
Dozens of solvers (~40), compatible with AMPL, GAMS, ZIMPL,
XPRESS-Mosel …

Simple Web-forms to submit computing jobs
Client aplications for remote access to NEOS:
- Submission Tool (Python + Java GUI): instead of Web-forms
- Kestrel NEOS-client for AMPL- & GAMS-translators (XML-
RPC):
option solver kestrel;
option kestrel_options 'solver=<solverName>';
option neos_server 'www.neos-server.org:3332';
...
solve # Synchronous/blocking remote call of NEOS-solvers

Suites for demonstrations, but problematic for reserch &
«industry»

Technologies & practice (COIN-OS, Web-services)

#18

Since 2004, project Optimization Services,
www.optimizationservices.org, under the aegis of
COIN-OR (IBM) www.COIN-OR.org/projects/OS.xml

COIN solvers !!!
AMPL, GAMS - !!!
XML-RPC, WSDL, BPEL - ???
IMHO – Inconvenient & cumbersome!

Technologies & practice (GAMS Grid extension & GUSS)

#19

In 2006 GAMS team proposes GAMS Grid Extension for.
In 2012 they introduces notion of GUSS: Gather-Update-
Solve/Scatter for typical template of computing scenarios with
optimization models suiting for parallelization

- Dantzig-Wolfe, Benders ...
 decomposition for block-constraints
- Parameter Sweeping
- low-dimension (1-3d) – global
 optimization
- MILP with quasi-block
 constraints
...

Data exchange «units» :
=>problems as stub-files;
<=solutions in files

ZZZZZ

SunGrid Engine
Condor Res.
Manager

Technologies & practice (XPRESS-MOSEL)

#20

Mosel AML & programming language (commercial since 2001).
Supported by Fico, http://fico.org
Mosel programs are compiled into binary code for Mosel Virtual
Machine including very fast XPRESS solver!
Since 2010 г. – Fico Optimization Modeler Suite supports
distributed computing in Fico Cloud

Very comprehensive Event driven
multi-threaded programming

SHMEM | MEMPIPE driver for
inter-thread communication
(for heterogeneous environment)

Our approach. Requirements

#21

Everest: Cloud Platform to deploy/develop REST-services,
http://everest.distcom.org, REST - as an architectural style
HTTP, JSON (JavaScript Object Notation): transport protocol &
message format (plain text),
Web-User-Interface (WUI) by HTML+JavaScript

AMPL - description of optimization modeling & computing
scenarios including “coarse-grained” decomposition algorithms
(high-level)

AMPL-compatible solvers CLP, CBC, Ipopt, Bonmin, SCIP
(LP/MILP, NLP, MINLP), BnB (MILP, global opt)

Everest Python API & Everest Task Protocol – for low-level data
exchange (solversolver, amplsolver)

http://everest.distcom.org/

Everest platform architecture outlines

#22

Describe/Develop/Deploy REST-services representing existing applications

https://gitlab.com/everest/server

https://gitlab.com/everest/agent

https://gitlab.com/everest/python-api

AMPLX = AMPL + REST-services of optimization

#23

We propose technology to run any AMPL-script by
standard AMPL-translator in such a way that:
 - all MP problems (as well as dynamically composed
 during running of the script) will be solved by remote
 solvers;
- sets of independent sub-problems will be solved
 in parallel by a pool of the computing resources, whose
 computing power might be changed transparently for
 users.

Simple methodology/recommendation (verbal) to modify
any AMPL-program for AMPLX: replace AMPL-operators
solve, repeat {...}, for {...} with AMPLX “templates”.

Implementation: Python + Everest Python API +
AMPL-«macroses» https://gitlab.com/ssmir/amplx

commands amplx_globals.amp; # Initialize AMPLx once (!)
let __amplx_solver := “ipopt"; # set AMPL-solver, «connected» toAMPLx
let __amplx_solver_opts_file := "ipopt.opt"; # solver options file
... # AMPL operators, intact (!)
let __amplx_probSet := {}; # free list of sub-problems AMPLx
for {p in SetP} { # UPDATE problems sycle
 ... # AMPL operators, preparing SubProb[p]
 problem SubProb[p]; # switch in the context of SubProb[p]
 let __amplx_probName := ("SubProb_" & p); # set problem’s name for AMPLx,
 commands amplx_write_problem_stub.amp; # write stub & update list of sub-probs
}
commands amplx_solve_problems_list.amp; # parallel solving of all problems in the list
for {p in SetP} { # GATHER results cycle
... # AMPL operators, preparing SubProb[p] , intact (!)
 problem SubProb[p]; # switch to SubProb[p] context
 solution ("SubProb_" & p & ".sol"); # load results from *.sol file DELIVERED by AMPLx
... # оoperators, using solution of SubProb[p]
}
... #

AMPLX templates for modification of an AMPL-script

#24

Replace AMPL for {…}
or loop {...} with AMPLx
“template”

option solver ipopt # select AMPL-solver
option ipopt_options “acceptable_tol=10e-8 …” # solver
options
... # AMPL operators
for {p in SetP} {
... # AMPL operators, preparing SubProb[p]
 solve SubProb[p];
... # operators, using solution of SubProb[p]
}
... # more scripts

AMPLX architecture

#25

Browser

…

run-amplx
agent

AMPLx
+

Python
Everest

API

application/json

multipart/form-data, text/html, application/json

Pool of opt. services
LP, MILP, NLP, MINLP

server | cluster | cloud

E
v
e
r
e
s
t

a
g
e
n
t
s

…
 Data flow during execution of AMPLx-script

Everest-server

Everest Applications

run-amplx solve-ampl-stub

AMPLx-script
….
….
amplx_solve_list
…

AMPL-macroses
amplx_*.amp
Python modules
*.py

AMPL-stubs, *.nl

 AMPL-sol, *.sol

$... ampl

AMPL-translator

Transport problems (classical block structure)

#26

Set of commodities should be supplied from a number of storages to to the
consumers over transport network with limited bandwidth.
Sets: O – warehouses, D — deliver point, P — commodities
Supply

o,p
 - volume of p in storage o, Demand

d,p
 - consumption of p in d

c
o,d,p

 - transport cost of p unit over arc (o->d)

l
o,d

 - bandwidth of arc (o->d)

Wellknown class LP with block structure for decompose algorithms
(Dantzig-Wolfe, Benders) and their demo-implementations in GAMS,
MOSEL, ... AMPL
 www.ampl.com/NEW/LOOP2/multi2.mod, multi2.run, multi.dat

Demo AMPL Dantzig-Wolfe (multi2.run) is not parallel

#27

«Original» AMPL demo script
 http://www.ampl.com/NEW/LOOP2/ multi2.run
uses cycle [for] to solve sub-problems in turn

...
for {p in PROD} { printf "\nPRODUCT %s\n\n", p;
 solve SubII[p];
 ...
 if Reduced_Cost[p] < - 0.00001 then {
 /* change subproblems parameters */;
 ...
 };
...

AMPLX-script (multi2_amplx_[cbc|scip|ipopt].amp)

#28

Replace for {...} for three groups (GUSS in terms of AMPLx)

for {p in PROD} { printf "\nPRODUCT %s\n\n", p;
 solve SubII[p];
 ...
 if Reduced_Cost[p] < - 0.00001 then {
 /* change subproblems parameters */;
 ...
 };

for {p in PROD} { printf "\nPRODUCT %s ==> stub \n\n", p;
 problem SubII[p];
 let __amplx_probName := ("SubII_" & p);
 commands amplx_write_problem_stub.amp; # Generates sub-problems AMPL-stubs
}

commands amplx_solve_problems_list.amp; # Parallel solving of SubII_*

for {p in PROD} { printf "\nPRODUCT %s <== solution\n\n", p;
 # solve SubII[p]
 problem SubII[p];
 solution ("SubII_" & p & ".sol");
if Reduced_Cost[p] < - 0.00001 then {
 /* change subproblems parameters */;
 ...
 };

Note that dual vars at
optimal solution are
required

multi2_amplx_[cbc|scip|ipopt].amp start Web-form

#29

 Kept intact

 AMPLx script

multi2_amplx_*.amp execution timespan/solvers log

#30

We developed some profiling tools to analyze logs of distributed
execution of AMPLX algorithms in solvers pool presented in our
Everest infrastructure

56 subproblems (both Master* and Sub-problems) ~ 300 sec

Solvers

time

Carbon nano-structure by X-Ray & neutron diffraction

#31

Structure identification of amorphous carbonaceous nanomaterials
deposited in vacuum chamber of thermonuc. reactor Tokamak T-10
with a joint x-ray and neutron diffraction data analysis

Diffraction curve (x-ray)

Diffraction curves for X-Ray & neutron diffraction

#32

X-Ray
diffract on nuclei and electronic shells

Neutrons
diffracs on nuclei only

Main approach – sampling curves & opt. fitting

#33

Modeling diffraction on homogeneous amorphous fractions of
nanoparticles, then optimization identification of these fractions’
portions in the sample

Formalization as Nonlinear Math. Programming Problems

#34

We use three independent criteria of model-experiment error to get
an additional estimate of the accuracy of the final results

err. criterion L
1

err. criterion L
2

err. criterion L
inf

Bilinear (!!!) constraints to
“reduce to a common denominator”
data of two experiments

Formulation of B&B algorithm to solve nonlinear MP

#35

Branching over interval of possible values of SCALAR
parameter t (after fixing – we get convex MP problems)

On small sub-intervals bilinear inequalities are relaxed by
linear ones – and we get convex (even linear for L1, Linf) MP
relaxation problems.

Everest-application implementing alg. By AMPLX

#36

Job submission Web-
form:

data-file;

criteria to be used;

tolerance to stop B&B;

X-Ray<>Neutron
weight coefficient

“Behind the scene” Everest manages AMPLX session jobs

#37

Problem of effective resource load (1)

#38

Everest logs analysis via Everest Python API helps to increase
effectiveness of resource usage

Tracing of session with successive solving of three problems (L1, L2, Linf)
in one OptBnb* job.

More than 60 sub-tasks took ~25 minutes. Not more than 8 solvers (from
16 available) worked in parallel

Problem of effective resource load (2)

#39

Parallel submission of
three problems (L1, L2,
Linf) in three OptBnb*
jobs.

Three jobs took ~10 min.

13 solvers (from 16
available) worked in
parallel

Coarse-grained & fixed decomposition for MILP

#40

Relatively “non-standard” approaches for discrete (MILP) problems

Preliminary analysis of constraints, then “fixed” decomposition
into sub-problems might be solved in parallel

Two examples (both based on AMPLx):

1. Local Elimination Algorithms (LEA) for MILP with quasi-block
constraints’ structure investigated by Dr. Oleg A. Shcherbina
(Crimean Federal University, Institut für Mathematik Universität
Wien, Austria) (here we collaborate with prof. Vladimir I.Tsurkov,
Computing Center RAN)

2. Coarse-grained B&B for MILP with preliminary heuristic fixed
decomposition into subproblems by fixing some of binary variables

Local Elimination Algorithms for quasi-block MILP

#41

MILP with quasi-block structure,
of “stairs” type.

“free”
vars

“binding”
vars

LEA for MILP with tree-type quasi-block constraints

#42

MILP with quasi-block structure,
of “tree” type.

“free”
vars/block

“binding”
vars/blocks

LEA @ AMPLx experiments (Submit form)

#43

LEA as
AMPLX

Data, quasi-
block structure,
etc

LEA @ AMPL experiments (Time-profile-plotting)

#44

100x50000, quasi-block, tree-type, ~750 subtasks
E
v
e
r
e
s
t

p
r
o
c
e
s
s
o
r
s

Time, 0 <=======> ~15 min (standalone > 3 hours)

LEA @ AMPL experiments (Time-profile-plotting)

#45

100x100000, quasi-block, tree-type, ~850 subtasks
E
v
e
r
e
s
t

p
r
o
c
e
s
s
o
r
s

Time, 0 <=======> ~5.5 hours (standalone ????)

Very unbalanced
(by complexity)
set of subtasks

Branch-and-bound for MI... problem (e.g. boolean)

#46
B&B is one of the best algorithms which is suited for parallel implementation

General scheme of search tree traversal for problem P(XB ,XC)

Sx1x... Sx0x...

Sx1x1... Sx1x0... Sx0x1... Sx0x0...

P(x)

… … …

Current state of B&B (changed dynamically):

- list of nodes to be processed (green);

- known Upper-Bound (aka incumbent | record)

Node (subproblem) operation:

1) calc. Lower-Bound of S, LB(S), by relaxation of boolean constraints to, e.g. LP;

2) if, accidentally, feasible set of variables found update UB:

3) if LB(S) >= UB – discard node from the list (grey);

4) select boolean variable to split node and add new ones to the tree

#47

Sx1x... Sx0x...

Sx1x1... Sx1x0... Sx0x1... Sx0x0...

P(x)

…

Usually, the approach is based on MPI and run at high-performance cluster

…

Master B&B
process

Slave B&B
processes

…
…

…

…

Master-slave data exchange:

sub-trees and incumbents (!!!)

Sub-tree (sub-problems) are generated dynamically

Fine-grained decomposition of B&B (traditional approach)

Coarse-grained (“static”) decomposition of B&B

#48

Sx1x... Sx0x...

Sx1x1... Sx1x0... Sx0x1... Sx0x0...

P(x)

The approach is not so popular as fine-grained one, but

is much more easy for implementation via solvers’ API and some

“light-weight” middleware, e.g. Erlang, Zeroc Ice, ZeroMQ etc.

Preliminary decomposition is crucial for speed-up and requires

analysis of the problem’s data ! E.g. by AMPL (!)

…

Preliminary
decomposition

B&B
solvers

…

… …

B&B solvers exchanges with

 incumbents only (!!!)

Solvers API + m/w

Sx1x1... Sx1x0...

Sx0x1... Sx0x0...

Traveling Salesmen Problem by Coarse-grained B&B (1)

#49

“Random” selection of xij to decompose doesn’t give speed-up
Heuristic rule: sort {dij} in ascending order and decompose by

xij:=0|1 corresponding to the smallest dij

(to get “balanced” by incumbents subproblems ??)

Subproblems has been generated as AMPL-stubs by special AMPL
“preprocessing” script

Traveling salesmen problem coarse-grained experiment (2)

#50

Computing resources (12 CBC instances) :

8 CBC instances at 2 x Intel Xeon E5620 @ 2.40GHz

4 CBC instances at Intel Core i7-2600K @ 3.40GHz

dCBC prototype (CBC, CBC API + Erlang)

Speed Up

200%

300%

Task-to-worker scheduling problem (fully deterministic)

#51

Need to determine a “schedule”, i.e. set of variables {xkn, tk}:

- boolean xkn = 1 if task “k” is submitted to worker “n” (0 – if not);

- continues tk Tk – task submission time.

Constraints:

- tk Tk (submission after arrival)

- each worker can process only one task at a time.

Objective: minimize time of queue completion

Queue (with arrival times) of tasks of known complexities (processing times)

…
…

Pull of “workers” of known comp.
power, pn

p n

…

Tk, k Tk – arrival time, k – processing time for “unit” of comp. power

[tk , tk + (k/pn)]
- actual task’s span, if xkn = 1

Task-worker scheduling problem coarse-grained experiment (1)

#52

Heuristic rule: sort {k /pn} in ascending order and decompose by

xkn:=0|1 corresponding to the smallest k /pn

(to get “balanced” by incumbents subproblems ??)

Subproblems has been generated as AMPL-stubs by special AMPL

“preprocessing” script

“Random” selection of xkn to decompose doesn’t give speed-up

Task-worker scheduling problem coarse-grained experiment (2)

#53

6 workers, 19 tasks, exact solution

Computing resources (40 SCIP) :

6 boolean xkn has been fixed

(64 subproblems) took 720 sec.

dCBC prototype (SCIP, SCIP API + Erlang)

The result is rather poor, speedup is less than 25% (720 vs 930 seconds).

Very different performance, no load balance.

Task-worker scheduling problem coarse-grained experiment (3)

#54

2 x (20-cores VM at www.DigitalOcean.com)

40 SCIP at QEMU Virtual CPU version 1.0 @ 2.4Ghz
The same decomposition by 6 boolean vars. into 64 sub-problems

(64 sub-probs by dSCIP, 40xSCIP) almost 50% speedup

solving time, sec.

716

without decomposition, 1 x SCIP

independent solving of sub-probs., 1 x SCIP

http://www.DigitalOcean.com/

TO-DO Plans

#55

Increase computing power of the computing resources (dedicated
for optimization) connected to Everest:
 stand alone servers and server with
 Intel Xeon Phi co-processor (+ ~50 cores);
 small cluster deploying now in our Center (+~20 cores).

Use Everest Task Protocol and special “multi-task” Everest jobs
to exchange message within special AMPLx session

To allow to use in AMPLx “pure” Python computing scenarios
on the base on Pyomo, http://www.pyomo.org, an open source
package supporting AMPL-stub/solution formats and compatible
with AMPL-solvers

http://www.pyomo.org/

Instead of conclusion

Our contacts: http://distcomp.ru,

Everest platform web-site: http://everest.distcomp.org,

AMPLX sources: https://gitlab.com/ssmir/amplx

Examples of AMPLx-scripts:

http://distcomp.ru/~vladimirv/restopt/amplx

 Thank you for your
attention.

Questions?

http://distcomp.ru/
http://everest.distcomp.org/
https://gitlab.com/ssmir/amplx
http://distcomp.ru/~vladimirv/restopt/amplx

Visual “spaghetti-wire” programming vs. scrpting

xxx

Visual “spaghetti-wire” programming vs. scrpting

Too complex even for simple calculation

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Mathematical programming problems (MPP)
	Slide 9
	Math.Progr.Duals etc.
	Solvers
	AML features
	AML list
	Slide 14
	AMLs@NEOS
	Opt&Distr Computing ???
	KESTREL
	COIN-OS
	GAMS Grid & GUSS
	Mosel-XPRESS
	AMPLx principles
	Everest
	AMPLx idea
	AMPLx rules
	AMPLx arch
	TransportProblem
	DW multi2
	AMPLX multi2
	multi2 Submit
	multi2 profile
	CarbonStruct1
	X-Ray_Neutr
	MainIdea
	CarbonNLP
	CarbonBnB
	OptBnB-Submit
	OptBnB-jobs
	IneffectiveOptBnB
	EffectiveOptBnB
	LEA 1
	LEA Stairs
	LEA Tree
	LEA Submit Form
	LEA 50000 profile
	LEA 100000 profile
	remind B&B
	Fine-grained B&B
	Coarse-grained B&B
	TSP
	TSP Results
	LB
	Slide 52
	LB heterog.
	LB DigitalOcean
	Slide 55
	Slide 56
	Slide 57
	Slide 58

