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Content of the report
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Optimization modeling (OM) on the base of Dynamical  
Optimization & Mathematical Programming
 

Software for OM considered:
    solvers (LP/MILP, NLP/MINLP ...); 
    algebraic modeling languages translators (AMPL, GAMS,
    Mosel-Xpress …).
 

Review of existing technologies of OM in distributed computing 
environment 
 

Principles of our approach (cloud platform Everest & AMPLX)  

 

Examples of AMPLX demos & applications, including
   branch-and-bound algorithm of nanomaterial structure
   identification with a joint X-Ray and neutron diffraction;
 

   Coarse-grained algorithms for MILP (coarse grained B&B,
   local elimination algorithms for MILP with quiasi-block
   constraints structure



We began with optimal control problem (OCP)
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Historically, our 
research on the subject 
has been inspired by an 
optimal trajectories 
continuation method 
(Alexandr Afanasiev) 
which suites for a 
distributed computing 
environment 



OCP with linear constraints
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OCP with linear constraints => Linear Programming
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Find locally optimal control, i.e. for the beginning of the 
trajectory



Local OCP with linear constraints (regime)
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There exist [0,T], that if 

            Nonlinear inequalities



Continuation of the optimal trajectories in linear OCP
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Let             is the optimal trajectory of the problem )(tx
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Continuation of the optimal trajectories to                 is connected with the 
problem
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Decomposition is invertible

#8

Decomposition of Computational Problems into 
subproblems which may be solved by EXISTENT s/w tool

Typical for Mathematics, Physics, Chemistry, Biology...

Optimization
(LP, NLP, ...)

Data Analysis

Differential 
Equations

Mathematical 
Statistics

etc.



Mathematical Programming Problems (MP)
object (goal) function 
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M – additional “simple 
constraints” (0, interval, 
integer/boolean)

inequalities constraints

 - parameters' setting & «consistence checking»

equalities constr., (I, J ) - indices 
sets (multi-index-, symbolic ...)

State-of-the-art s/w support MP of various types (constraint 
functions' types; presence of binary/integer variables):
● LP/MILP       – linear programming (mixed-integer LP);
● QP/MIQP      – quadratic goal, linear constraints (MI*);
● QCQP/MI*    – QP +  quadratic constraints;
● NLP/MINLP  – general non-linear (differentiable) functions;
● convex NLP/MILP – convex on all variables (including integer 

ones);
... 



MP solvers must support ...
object (goal) function 

#10

M – additional “simple 
constraints” (0, interval, 
integer/boolean)

inequalities constraints

 - parameters' setting & «consistence checking»

equalities constr., (I, J ) - indices 
sets (multi-index-, symbolic ...)

In theory & numerical methods often use:
- Lagrange approach (functions & multipliers/dual variables)

- 1st, 2nd derivatives for NLP:



Solvers for optimization problems

#11

Non-exhaustive list of solvers we tried/use in our researches
COmputational INfrastructure for Operations Research, 
www.coin-or.org (“IBM’s aegis”), more than 40 solvers&libs: 
since ~2005
CBC/CLP (LP, MILP), 
Ipopt (NLP), 
Bonmin(CBC/Ipopt) (MINLP, convex on cont. & int. vars)
Zuse Institute Berlin, Germany, 
SCIP (LP, MILP, MIQP, ), ver. 1.0 2007, ver. 3.2.1 the last

GLPK (LP, MILP), A. Makhorin, Mosc. Avia. Institute,  ~2002

LP_SOLVE, (LP, MILP) Eindhoven University of Technology, 
Netherlands, since ~2000

Commercial: KNITRO, SNOPT, Gurobi, CPLEX 

Commersial XPRESS* Fico Optimization (deserves special attention)



The concept of Algebraic Modeling Languages
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AML - Algebraic Model Languages (AMPL, GAMS, Zimpl, etc).

Common features:
● Convenient (symbolic "TeX-like") description of object & 

constraints functions 
● Separation of "symbolic/abstract" models and numerical 

data for multivariate computation (parameter sweeping)
● Automatic differentiation (Jacobian & Hessian)
● Support of "Lagrange  formalism" - access to optimal 

variables and duals found by solver
● Unified open-source (even for "commercial" AMLs) API 

for solvers' and applications’ developers

Usage of AMLs is crucial at preliminary phases of R&D 



There are a number of AMLs
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Non-exhaustive list:
AMPL - A Modeling Language for Mathematical Programming, 
               AT&T Bell Laboratories, D.M. Gay, Brian W. Kernighan,
               since 1980-х (1985), http://www.ampl.com

GAMS - General Algebraic Modeling System, 
               International Bank for Reconstruction and Development,
               since 1976, http://www.gams.com

XPRESS-MOSEL –  с 2001, с 2010 FICO Xpress Optimization Suite,
                                   http://fico.com
Zimpl  - since 2004, http://zimpl.zib.de/ (LP, MILP, NLP ?)
              Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB) 

OPL - Optimization Programing Lang., IBM, 
       ILOG CPLEX (LP, QP, ...), CP Optimizer,  http://www-01.ibm.com/

GNU MathProg - "subset" of AMPL for GLPK, GNU LP Kit,
  Andrey Makhorin, MAI, since 2000, http://www.gnu.org/software/glpk/

http://www.ampl.com/
http://www.gams.com/
http://www-01.ibm.com/


General scheme of AMLs usage
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AMPL and GAMS - 
most popular standards de-facto

"Symbolic" opt. model

Parameters' values

param p : ...;
set I : ...;
set J : ...;

file *.dat

AML-script
model *.mod;
data     *.dat;
option solver ipopt;
solve;
display _var, _dvar;
printf ...

AML-translator 
ampl.exe
gams.exe
SCIP

Problem's data as a 
stub file
AMPL "stub", *.nl

GAMS data exch., 
*.gdx

ZIMPL for SCIP      
        

AML API

AMPL/
Solver 
interface
Library

GAMS
....

Solvers
CPLEX
Lpsolve
Minos
Knitro
Snopt
Gurobi
Mosek
...

COIN-OP
CLP, CBC, 
Ipopt
Bonmin
...

SCIP
Solution as 
*.sol



Rating of AMLs at NEOS portal (GAMS vs AMPL)
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https://neos-server.org/neos/report.html

Reflects preferences of 
students and novices mainly
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MPI, 
Object oriented m/w
Web-services,
REST-services, etc

Middleware

Optimization & distributed computing 
Typical problems: 

• efficient usage of state-of-the-art and/or emerging solvers on 
available, heterogeneous, computing infrastructure

• keep “traditional” R&D practice, especially, at the beginning 
phases of researches

Researchers
and their R&D 

specific requirements
Computing resources

AMPL,
GAMS,
Zimpl, etc

Modeling lang. & interpreters

glpk, lpsolve,
clp, cbc, bonmin,
ipopt, scip, etc.

Solvers 

??????

??? ???



Technologies & practice (NEOS & Kestrel client)
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NEOS-Server: «acquaintance» portal with state-of-the-art 
solvers & AMLs, http://www.neos-server.org/neos/
Dozens of solvers (~40), compatible with AMPL, GAMS, ZIMPL, 
XPRESS-Mosel …
 
Simple Web-forms to submit computing jobs
Client aplications for remote access to NEOS:
- Submission Tool (Python + Java GUI): instead of Web-forms
- Kestrel NEOS-client for AMPL- & GAMS-translators (XML-
RPC):
option solver kestrel;
option kestrel_options 'solver=<solverName>';
option neos_server 'www.neos-server.org:3332';
...
solve # Synchronous/blocking remote call of NEOS-solvers

Suites for demonstrations, but problematic for reserch & 
«industry»



Technologies & practice (COIN-OS, Web-services)
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Since 2004, project Optimization Services, 
www.optimizationservices.org, under the aegis of 
COIN-OR (IBM) www.COIN-OR.org/projects/OS.xml 

COIN solvers !!!
AMPL, GAMS - !!!
XML-RPC, WSDL, BPEL - ???
IMHO – Inconvenient & cumbersome!



Technologies & practice (GAMS Grid extension & GUSS)
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In 2006 GAMS team proposes GAMS Grid Extension for.
In 2012 they introduces notion of GUSS: Gather-Update-
Solve/Scatter for typical template of computing scenarios with 
optimization models suiting for parallelization

- Dantzig-Wolfe, Benders ...
  decomposition for block-constraints
- Parameter Sweeping
- low-dimension (1-3d) – global
  optimization
- MILP with quasi-block
  constraints
... 

Data exchange «units» :
=>problems as stub-files;
<=solutions in files

ZZZZZ

SunGrid Engine
Condor Res. 
Manager



Technologies & practice (XPRESS-MOSEL)
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Mosel AML & programming language (commercial since 2001). 
Supported by Fico, http://fico.org
Mosel programs are compiled into binary code for Mosel Virtual 
Machine including very fast XPRESS solver!
Since 2010 г. – Fico Optimization Modeler Suite supports 
distributed computing in Fico Cloud

Very comprehensive Event driven 
multi-threaded programming  

SHMEM | MEMPIPE driver for 
inter-thread communication 
(for heterogeneous environment)



Our approach. Requirements
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Everest: Cloud Platform to deploy/develop REST-services, 
http://everest.distcom.org, REST - as an architectural style
HTTP, JSON (JavaScript Object Notation): transport protocol & 
message format (plain text),  
Web-User-Interface (WUI) by HTML+JavaScript 

AMPL - description of optimization modeling & computing 
scenarios including “coarse-grained” decomposition algorithms 
(high-level)
   
AMPL-compatible solvers CLP, CBC, Ipopt, Bonmin, SCIP 
(LP/MILP, NLP, MINLP), BnB (MILP, global opt) 

Everest Python API & Everest Task Protocol – for low-level data 
exchange (solversolver, amplsolver)

http://everest.distcom.org/


Everest platform architecture outlines 

#22

Describe/Develop/Deploy REST-services representing existing applications

https://gitlab.com/everest/server

https://gitlab.com/everest/agent

https://gitlab.com/everest/python-api



AMPLX = AMPL + REST-services of optimization
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We propose technology to run any AMPL-script by 
standard AMPL-translator in such a way that:
 - all MP problems (as well as dynamically composed
   during running of the script) will be solved by remote
   solvers;
-  sets of independent sub-problems will be solved 
   in parallel by a pool of the computing resources, whose
   computing power might be changed transparently for
   users.

Simple methodology/recommendation (verbal) to modify 
any AMPL-program for AMPLX: replace AMPL-operators 
solve, repeat {...}, for {...}  with AMPLX “templates”.

Implementation: Python + Everest Python API + 
AMPL-«macroses» https://gitlab.com/ssmir/amplx 



commands amplx_globals.amp;                        # Initialize AMPLx once (!)
let __amplx_solver := “ipopt";                           # set AMPL-solver, «connected» toAMPLx
let __amplx_solver_opts_file := "ipopt.opt";    # solver options file
... # AMPL operators, intact (!) 
let __amplx_probSet := {};                                  # free list of sub-problems AMPLx
for {p in SetP} { # UPDATE problems sycle
  ... # AMPL operators, preparing  SubProb[p]
  problem SubProb[p];                                          # switch in the context of SubProb[p] 
  let __amplx_probName := ("SubProb_" & p);   # set problem’s name for AMPLx,
  commands amplx_write_problem_stub.amp;  # write stub & update list of sub-probs
}
commands amplx_solve_problems_list.amp;   # parallel solving of all problems in the list
for {p in SetP} { # GATHER results cycle
... # AMPL  operators, preparing SubProb[p] , intact (!)
  problem SubProb[p];                                        # switch to SubProb[p] context
  solution ("SubProb_" & p & ".sol");                # load results from *.sol file DELIVERED by AMPLx
... # оoperators, using solution of SubProb[p]
}
... #

AMPLX templates for modification of an AMPL-script

#24

Replace AMPL for {…} 
or loop {...} with AMPLx 
“template” 

option solver ipopt # select AMPL-solver
option ipopt_options “acceptable_tol=10e-8 …” # solver 
options
... # AMPL operators
for {p in SetP} { 
... # AMPL operators, preparing SubProb[p]
   solve SubProb[p];
... # operators, using solution of SubProb[p]
}
... # more scripts 



AMPLX architecture
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Browser

…
 

run-amplx
agent

AMPLx
+

Python
Everest

API

application/json

multipart/form-data, text/html, application/json

Pool of opt. services
LP, MILP, NLP, MINLP

server | cluster | cloud

E
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…
 Data flow during execution of AMPLx-script

Everest-server

Everest Applications

run-amplx solve-ampl-stub

AMPLx-script
….
….
amplx_solve_list
…

               

               

AMPL-macroses
amplx_*.amp
Python modules
*.py

AMPL-stubs, *.nl

             AMPL-sol, *.sol

$ ... ampl ....

AMPL-translator



Transport problems (classical block structure)
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Set of commodities should be supplied from a number of storages to to the 
consumers over transport network with limited bandwidth.
Sets: O – warehouses, D — deliver point, P — commodities
Supply

o,p
     - volume of p in storage o,  Demand

d,p
  - consumption of p in d

c
o,d,p

            - transport cost of p unit over arc (o->d) 

l
o,d

               - bandwidth of arc (o->d)

Wellknown class LP with block structure for decompose algorithms 
(Dantzig-Wolfe, Benders) and their demo-implementations in GAMS, 
MOSEL, ... AMPL
 www.ampl.com/NEW/LOOP2/multi2.mod, multi2.run, multi.dat



Demo AMPL Dantzig-Wolfe (multi2.run) is not parallel
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«Original» AMPL demo script
 http://www.ampl.com/NEW/LOOP2/ multi2.run 
uses cycle [for] to solve sub-problems in turn

...
for {p in PROD} { printf "\nPRODUCT %s\n\n", p;
   solve SubII[p];
   ...
   if Reduced_Cost[p] < - 0.00001 then  {
   /* change subproblems parameters */;
   ...
   };
...



AMPLX-script (multi2_amplx_[cbc|scip|ipopt].amp) 

#28

Replace for {...} for three groups (GUSS in terms of AMPLx)

for {p in PROD} { printf "\nPRODUCT %s\n\n", p;
   solve SubII[p];
   ...
   if Reduced_Cost[p] < - 0.00001 then  {
   /* change subproblems parameters */;
   ...
   };

for {p in PROD} { printf "\nPRODUCT %s ==> stub \n\n", p;
   problem SubII[p];
   let __amplx_probName := ("SubII_" & p);
   commands amplx_write_problem_stub.amp; # Generates sub-problems AMPL-stubs
}
  
commands amplx_solve_problems_list.amp; # Parallel solving of SubII_*

for {p in PROD} { printf "\nPRODUCT %s <== solution\n\n", p;
      # solve SubII[p]
      problem SubII[p];
      solution ("SubII_" & p & ".sol");
if Reduced_Cost[p] < - 0.00001 then  {
   /* change subproblems parameters */;
   ...
   };

Note that dual vars at 
optimal solution are 
required



multi2_amplx_[cbc|scip|ipopt].amp start Web-form 

#29

                                 Kept intact

                                    AMPLx script



multi2_amplx_*.amp execution timespan/solvers log
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We developed some profiling tools to analyze logs of distributed 
execution of AMPLX algorithms in solvers pool presented in our 
Everest  infrastructure

56 subproblems (both Master* and Sub-problems)     ~ 300 sec

Solvers                    

time



Carbon nano-structure by X-Ray & neutron diffraction
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Structure identification of amorphous carbonaceous nanomaterials 
deposited in vacuum chamber of thermonuc. reactor Tokamak T-10 
with a joint x-ray and neutron diffraction data analysis

Diffraction curve (x-ray)



Diffraction curves for X-Ray & neutron diffraction

#32

X-Ray
diffract on nuclei and electronic shells 

Neutrons
diffracs on nuclei only



Main approach – sampling curves & opt. fitting
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Modeling diffraction on homogeneous amorphous fractions of 
nanoparticles, then optimization identification of these fractions’ 
portions in the sample



Formalization as Nonlinear Math. Programming Problems
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We use three independent criteria of model-experiment error to get 
an additional estimate of the accuracy of the final results

err. criterion L
1

err. criterion L
2

err. criterion L
inf

Bilinear (!!!) constraints to
“reduce to a common denominator” 
data of two experiments  



Formulation of B&B algorithm to solve nonlinear MP
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Branching over interval of possible values of SCALAR 
parameter t (after fixing – we get convex MP problems)

On small sub-intervals bilinear inequalities are relaxed by 
linear ones – and we get convex (even linear for L1, Linf) MP 
relaxation problems.



Everest-application implementing alg. By AMPLX

#36

Job submission Web-
form:

data-file;

criteria to be used;

tolerance to stop B&B;

X-Ray<>Neutron 
weight coefficient



“Behind the scene” Everest manages AMPLX session jobs

#37



Problem of effective resource load (1)
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Everest logs analysis via Everest Python API helps to increase 
effectiveness of resource usage

Tracing of session with successive solving of three problems (L1, L2, Linf) 
in one OptBnb* job. 

More than 60 sub-tasks took ~25 minutes. Not more than 8 solvers (from 
16 available) worked in parallel



Problem of effective resource load (2)
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Parallel submission of 
three problems (L1, L2, 
Linf) in three OptBnb* 
jobs. 

Three jobs took ~10 min. 

13 solvers (from 16 
available) worked in 
parallel



Coarse-grained & fixed decomposition for MILP
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Relatively “non-standard” approaches for discrete (MILP) problems

Preliminary analysis of constraints, then “fixed” decomposition 
into sub-problems might be solved in parallel

Two examples (both based on AMPLx):

1. Local Elimination Algorithms (LEA) for MILP with quasi-block 
constraints’ structure investigated by Dr. Oleg A. Shcherbina  
(Crimean Federal University, Institut für Mathematik Universität 
Wien, Austria) (here we collaborate with prof. Vladimir I.Tsurkov, 
Computing Center RAN)

2. Coarse-grained B&B for MILP with preliminary heuristic fixed 
decomposition into subproblems by fixing some of binary variables



Local Elimination Algorithms for quasi-block MILP  
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MILP with quasi-block structure, 
of “stairs” type.

“free” 
vars

“binding” 
vars



LEA for MILP with tree-type quasi-block constraints
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MILP with quasi-block structure, 
of “tree” type.

“free” 
vars/block

“binding” 
vars/blocks



LEA @ AMPLx experiments (Submit form)
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LEA as 
AMPLX

Data, quasi-
block structure, 
etc



LEA @ AMPL experiments (Time-profile-plotting)
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100x50000, quasi-block, tree-type, ~750 subtasks 
E
v
e
r
e
s
t
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r
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o
r
s

Time, 0 <=======> ~15 min (standalone > 3 hours)



LEA @ AMPL experiments (Time-profile-plotting)
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100x100000, quasi-block, tree-type, ~850 subtasks 
E
v
e
r
e
s
t

p
r
o
c
e
s
s
o
r
s

Time, 0 <=======> ~5.5 hours (standalone ????)

Very unbalanced 
(by complexity) 
set of subtasks



Branch-and-bound for MI... problem (e.g. boolean)

#46
B&B is one of the best algorithms which is suited for parallel implementation

General scheme of search tree traversal for problem P(XB ,XC)

Sx1x... Sx0x...

Sx1x1... Sx1x0... Sx0x1... Sx0x0...

P(x)

… … … 

Current state of B&B (changed dynamically): 

- list of nodes to be processed (green);

- known Upper-Bound (aka incumbent | record)

Node (subproblem) operation: 

1) calc. Lower-Bound of S, LB(S), by relaxation of boolean constraints to, e.g. LP;

2) if, accidentally, feasible set of variables found                                       update UB:

3) if LB(S) >= UB – discard node from the list (grey);

4) select boolean variable to split node and add new ones to the tree



  

#47

Sx1x... Sx0x...

Sx1x1... Sx1x0... Sx0x1... Sx0x0...

P(x)

… 

Usually, the approach is based on MPI and run at high-performance cluster 

… 

Master B&B
process

Slave B&B
processes

… 
… 

… 

… 

Master-slave data exchange: 

sub-trees and incumbents (!!!)

Sub-tree (sub-problems) are generated dynamically

Fine-grained decomposition of B&B (traditional approach)



  

Coarse-grained (“static”) decomposition of B&B 
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Sx1x... Sx0x...

Sx1x1... Sx1x0... Sx0x1... Sx0x0...

P(x)

The approach is not so popular as fine-grained one, but

is much more easy for implementation via solvers’ API and some 

“light-weight” middleware, e.g. Erlang, Zeroc Ice, ZeroMQ etc. 

Preliminary decomposition is crucial for speed-up and requires 

analysis of the problem’s data ! E.g. by AMPL (!)

… 

Preliminary
decomposition

B&B
solvers

… 

… … 

B&B solvers exchanges with

 incumbents only (!!!)

Solvers API + m/w

Sx1x1... Sx1x0...

Sx0x1... Sx0x0...



Traveling Salesmen Problem by Coarse-grained B&B (1) 
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“Random” selection of xij to decompose doesn’t give speed-up
Heuristic rule: sort {dij} in ascending order and decompose by 

xij:=0|1 corresponding to the smallest dij 

(to get “balanced” by incumbents subproblems ??)

Subproblems has been generated as AMPL-stubs by special AMPL 
“preprocessing” script



  

Traveling salesmen problem coarse-grained experiment (2) 
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Computing resources (12 CBC instances) :

8 CBC instances at 2 x Intel Xeon E5620 @ 2.40GHz

4 CBC instances at Intel Core i7-2600K @ 3.40GHz

dCBC prototype (CBC, CBC API + Erlang)

Speed Up

200%

300%





  

Task-to-worker scheduling problem (fully deterministic) 
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Need to determine a “schedule”, i.e. set of variables {xkn, tk}:

- boolean xkn = 1 if task “k” is submitted to worker “n” (0 – if not);

- continues tk  Tk – task submission time. 

Constraints: 

- tk  Tk   (submission after arrival)

- each worker can process only one task at a time.

Objective: minimize time of queue completion

Queue (with arrival times) of tasks of known complexities (processing times)

…
…

Pull of “workers” of known comp. 
power, pn 

p n

… 

Tk, k Tk – arrival time, k – processing time for “unit” of comp. power

[tk   ,         tk + ( k/pn ) ] 
- actual task’s span, if xkn = 1 



  

Task-worker scheduling problem coarse-grained experiment (1) 
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Heuristic rule: sort {k /pn} in ascending order and decompose by 

xkn:=0|1 corresponding to the smallest k /pn 

(to get “balanced” by incumbents subproblems ??)

Subproblems has been generated as AMPL-stubs by special AMPL 

“preprocessing” script

“Random” selection of xkn to decompose doesn’t give speed-up



  

Task-worker scheduling problem coarse-grained experiment (2)
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6 workers, 19 tasks, exact solution

Computing resources (40 SCIP) :

6 boolean xkn has been fixed 

(64 subproblems) took 720 sec.

dCBC prototype (SCIP, SCIP API + Erlang)

The result is rather poor, speedup is less than 25% (720 vs 930 seconds). 

Very different performance, no load balance.



  

Task-worker scheduling problem coarse-grained experiment (3)

#54

2 x (20-cores VM at www.DigitalOcean.com)

40 SCIP at QEMU Virtual CPU version 1.0 @ 2.4Ghz
The same decomposition by 6 boolean vars. into 64 sub-problems

(64 sub-probs by dSCIP, 40xSCIP) almost 50% speedup

solving time, sec.

716

without decomposition, 1 x SCIP

independent solving of sub-probs., 1 x SCIP

http://www.DigitalOcean.com/


TO-DO Plans
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Increase computing power of the computing resources (dedicated 
for optimization) connected to Everest:
      stand alone servers and server with 
      Intel Xeon Phi co-processor (+ ~50 cores);
      small cluster deploying now in our Center (+~20 cores).

Use Everest Task Protocol and special “multi-task” Everest jobs 
to exchange message within special AMPLx session

To allow to use in AMPLx “pure” Python computing scenarios 
on the base on Pyomo, http://www.pyomo.org, an open source 
package supporting AMPL-stub/solution formats and compatible 
with AMPL-solvers

http://www.pyomo.org/


  

Instead of conclusion

Our contacts:                        http://distcomp.ru, 

Everest platform web-site:  http://everest.distcomp.org, 

AMPLX sources:                   https://gitlab.com/ssmir/amplx

Examples of AMPLx-scripts: 

http://distcomp.ru/~vladimirv/restopt/amplx

 Thank you for your 
attention.

Questions?

http://distcomp.ru/
http://everest.distcomp.org/
https://gitlab.com/ssmir/amplx
http://distcomp.ru/~vladimirv/restopt/amplx


  

Visual “spaghetti-wire” programming vs. scrpting

xxx



  

Visual “spaghetti-wire” programming vs. scrpting

Too complex even for simple calculation
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