Grid and Cloud Computing at IHEP in China

Weidong Li IHEP, CAS, Beijing Grid2016 at Dubna 2016-07-04

Contents

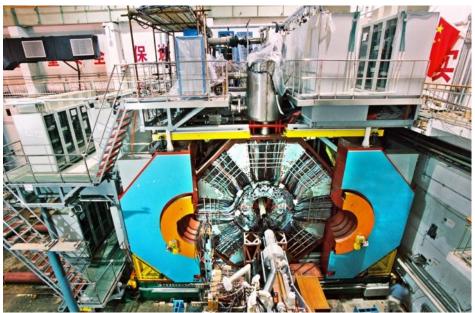
- HEP experiments in China
- Computing environment at IHEP
 - Computing and storage
 - Network and data transfer
- WLCG Tier 2 in Beijing
- BESIII grid computing
- Cloud computing
- High performance computing
- Summary

Experiments at IHEP

BESIII (Beijing Spectrometer III at BEPCII)

DYB (Daya Bay Reactor Neutrino Experiment)

YBJ (Tibet-ASgamma ARGO-YBJ Experiments)

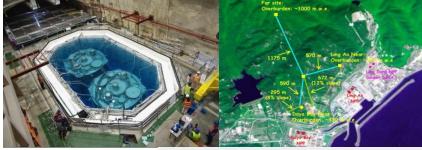

Large High Altitude Air Shower Observatory Hard X-Ray Moderate Telescope

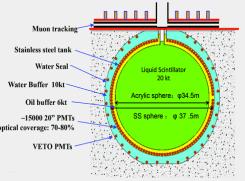
BEPCII/BESIII

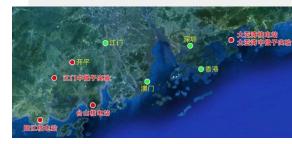
BEPC II: Beijing Electron-Positron Collider II

BES III: BEijing Spectrometer II, general-purpose detector on BEPC II

- Studying tau-charm physics
- Upgrade: BEPCII/BESIII, operational in 2008
- ✤ 2.0 ~ 4.6 GeV/C
- ♦ (3~10)×10³² cm⁻²s⁻¹
- Produce ~100 TB/year raw data
- ~ 5000 CPU cores for data
 process and physics analysis

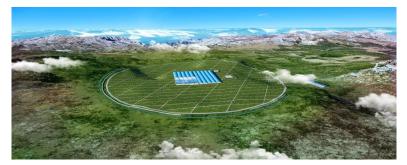

Neutrino experiments


Daya Bay Reactor Neutrino Experiment


- To measure the mixing angle θ_{13}
- 300 collaborators from 38 institutions
- Produces ~200 TB/year (2011-2018)
- JUNO Jiangmen Underground Neutrino

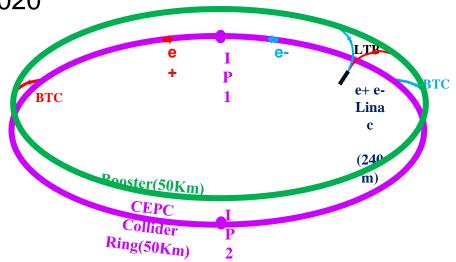
Observatory

- Start to build in 2014, operational in 2020
- 20 kt LS detector, 3% energy resolution
- To determine the neutrino mass hierarchy using reactor antineutrino oscillations
- Estimated to produce 2 PB data/year for 20 years



LHAASO

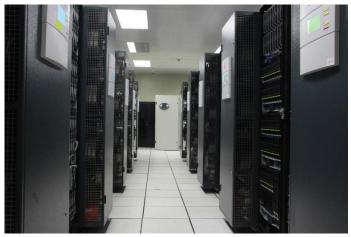
- Large High Altitude Air Shower Observatory, located on the border of Sichuan and Yunnan Province
- Multipurpose project with a complex detector array for high energy gamma ray and cosmic ray detection
- Expected to be operational in 2019
- On-site storage and computing resources. Data will be filtered and compressed and transferred back to IHEP.



CEPC (1)

- Next Generation Accelerator in China after BEPCII which will complete its mission about 2021
- Two phases
 - CEPC (Circular Electron Positron Collider, e+e- ~ Higgs/Z factory)
 - Precision measurement of the Higgs/Z boson, about 12 years
 - Beam energy ~120 GeV
 - Estimated to produce 200TB/year raw data for Higgs factory and >100PB/year for Z factory
 - SPPC(Super Proton Proton Collider, pp ~ A discovery machine)
 - Discover new physics
 - Beam energy ~50 TeV
 - Estimated to produce 100PB/year

CEPC (2)


- CEPC collider is planed to build with the 50/100 km ring
- CEPC timetable
 - Pre-study, R&D and preparation work
 - pre-study: 2013-2015
 - R&D: 2016-2020
 - Engineering Design: 2015-2020
 - Construction: 2021-2027
 - Data taking: 2028-2035

Computing resources

- Local clusters
 - ~13,500 CPU cores
 - 300 GPU cards
 - Scheduler:
 - PBS-2.5.5 with Maui-3.3.1
 - HTCondor 8.2.5
- Grid site (WLCG)
 - 1,200 CPU Cores
 - CreamCE (PBS-2.5.5 with Maui-3.3.4)

- The BESIII DIRAC-based distributed computing system
 - ~ 2,000 CPU cores
- IHEPCloud based on Openstack
 - ~ 720 CPU cores

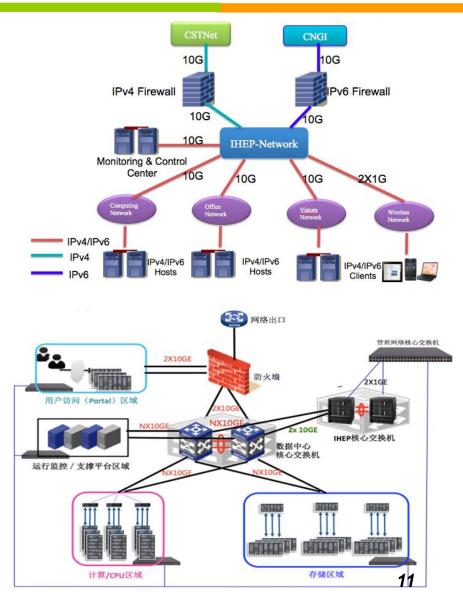
Storage

Lustre as main disk storage

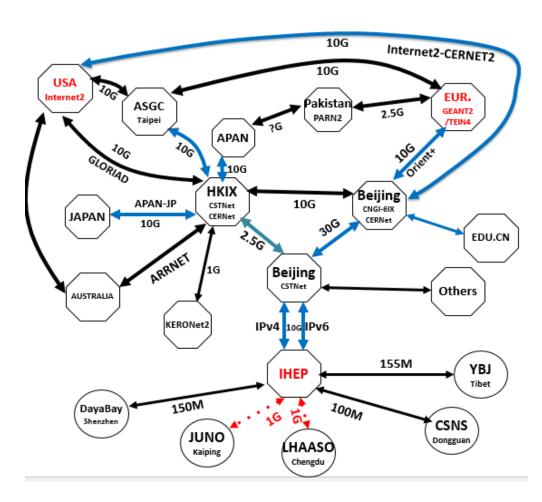
- Capacity: 5.7 PB storage
- Gluster system
 - 734TB storage with replica feature
- DPM & dCache
 - 940TB, With SRM interface

HSM, with modified CASTOR

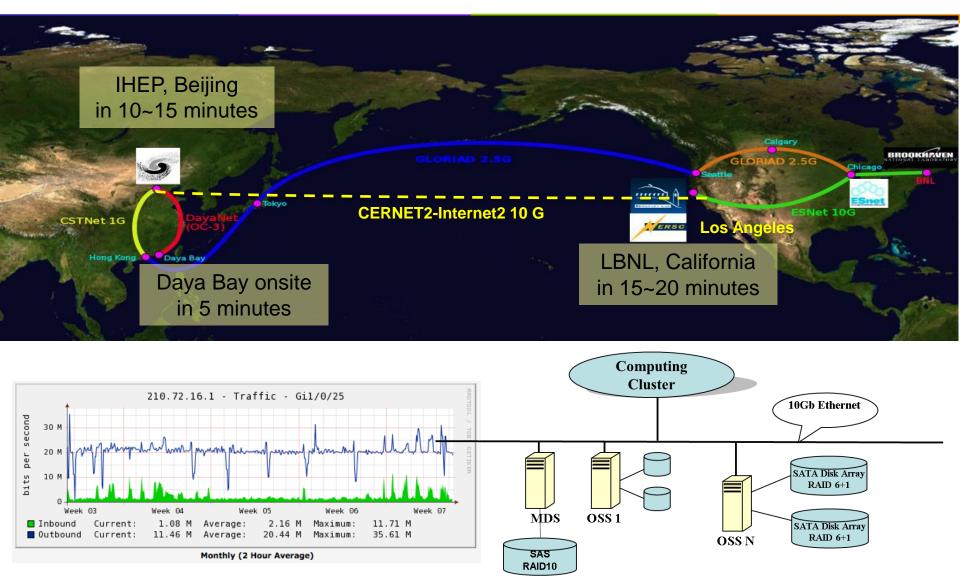
- 2 tape libraries + 2 robots, 26 drives
- Capacity: 5 PB



Network at IHEP


For office users

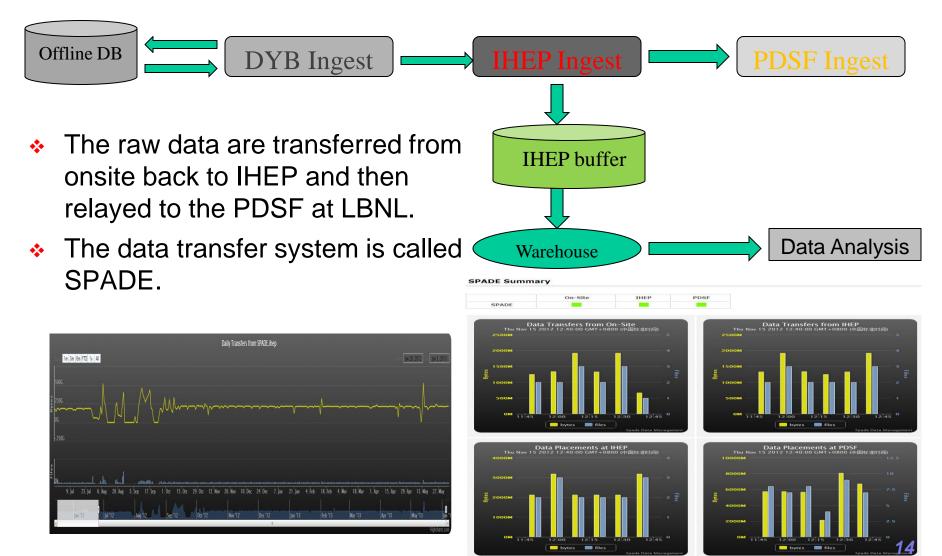
- The largest campus network and bandwidth among all CAS institutes
 - 10G backbone
 - IPv4/IPv6 dual-stack
 - Wireless covered at (>250 APs)
- Email/web/ services
- >3000 end users
- For the data center at computing center
 - 160 Gbps (4X40Gbps) for 2-layer switches
 - 2X10 Gbps for storage nodes



International and domestic links

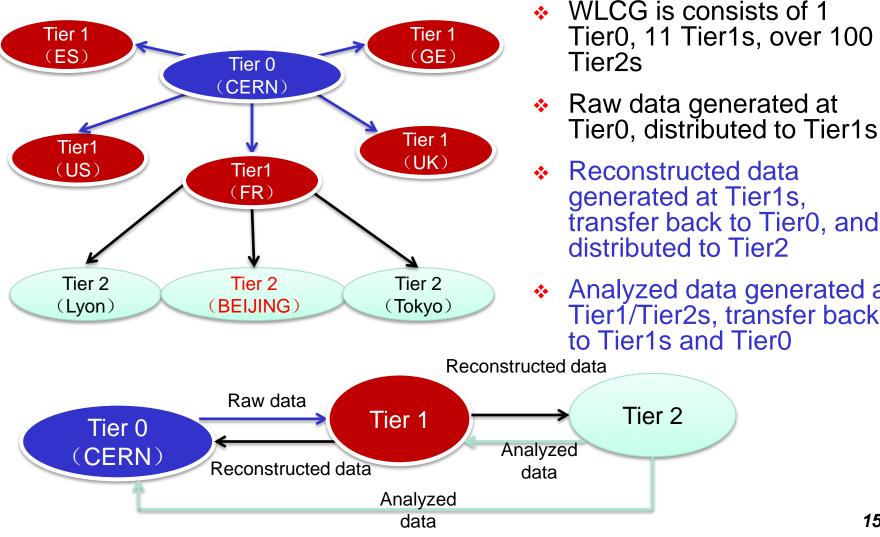
- Dedicated Links for three other IHEP sites (two in the future)
 - Shenzhen (Dayabay)
 - Dongguan (CSNS)
 - Tibet (YBJ/ARGO)
 - Kaiping (JUNO)
 - Chengdu (LHAASO)
- Good Internet connections
 - IHEP-Europe: 10 Gbps
 - IHEP-USA: 10 Gbps
 - ~4 PB/year data exchange

Data Transfer: DYB (1)



Daya Bay onsite network monitoring

Infrastructure of data storage


Data Transfer: DYB (2)

✤ 250 GB raw data per day

Grid computing for LHC

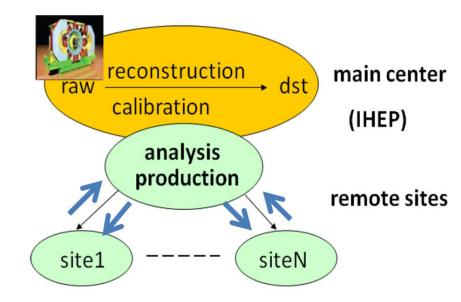
Raw data->Reconstructed data-> Analyzed data

- transfer back to Tier0, and distributed to Tier2
- Analyzed data generated at Tier1/Tier2s, transfer back to Tier1s and Tier0

Beijing Tier-2 site (1)

- Tier 2 (BEIJING-LCG2) to support both CMS and Atlas
- ✤ ~1200 CPU resources shared between CMS and Atlas experiments
- ✤ 540TB for CMS dCache SE, 400 TB for Altas DPM SE
- In production since 2007, about 2M jobs every year

	CPU Hours (kSI2K-hours)	Jobs
2009	4.55 M	1.33M
2010	8.64 M	2.45 M
2011	11 M	4.79 M
2012	12 M	5.50 M
2013	7.7 M	1.87 M
2014	9.8 M	1.89 M
2015	7.0 M	2.15 M

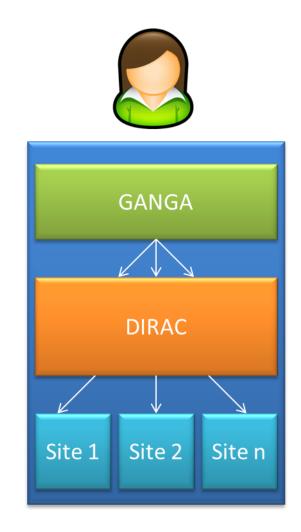

Beijing Tier-2 site (2)

BESIII Grid Computing

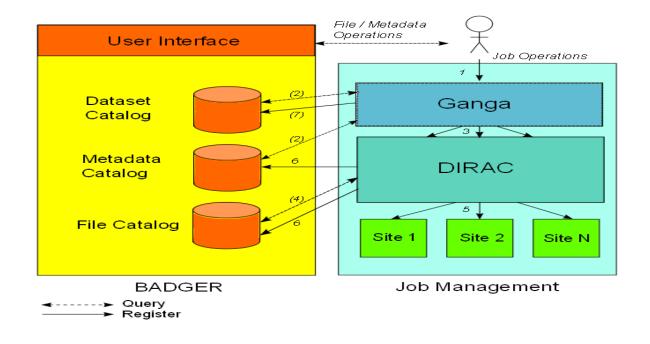
IHEP as central site

- Raw data processing, bulk reconstruction, analysis etc
- Remote sites for peak needs
 - MC production, analysis
- Data flow
 - Central storage in IHEP
 - IHEP -> Sites, DST for analysis
 - Sites -> IHEP, MC data for backup

BESIII Grid resources

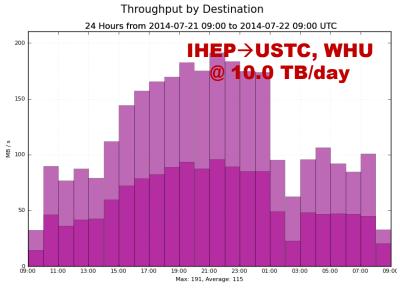

- About 14 sites from USA, Italy, Russia, China universities
- About 2000 cores CPU resources, 500 TB storage have been integrated
- 4 resource type resources are supported
 - Grid, Cluster, Cloud and Volunteer computing

Workload management


Main Components

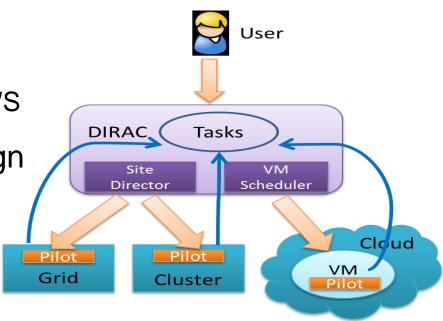
- DIRAC (Distributed Infrastructure with Remote Agent Control)
 - interware to cope with heterogeneous resources
- GANGA and JSUB
 - Massive job submission user interface
- CVMFS (CERN VM File System)
 - deploy experiment software to remote sites

Data management


- Badger (BESIII Advanced Data Manager)
 - Based on DFC (Dirac File Catalogue)
 - Developed for BESIII file and metadata management
 - Replica Catalogue, Metadata Catalogue, Dataset Catalogue

Data transfer

- Data transfer system is designed and developed
 - Dataset supported
 - Massive transfer among sites
- Maximum speed can reach
 1.9Gb/s at first production
 - close to IHEP outbound network bandwidth in 2014
- Each year, about 90TB data exchange


					eate New Request	low Files' State	Refresh Sh
tatus	submit time s	Protocol	0	src SE	Dataset	User Name	ReqID
finish	2013-09-14 08:1	DIRACDMS	J USER	IHEPD-USER	jpsi-664-inclusiv.	lintao	20
finish	2013-09-14 05:	DIRACDMS	J USER	IHEPD-USER	jpsi-all-ok	lintao	19
finish	2013-09-14 03:	DIRACDMS	ER	IHEP-USER	jpsi-all-ok	lintao	18
finish	2013-09-03 11:3	DIDAOCTO	U LIOED		jpsi-all-ok	lintao	17
finish	2013-09-03 09:	DIRACETS		Create New Tran	jpsi-all-ok	lintao	16
finish	2013-09-03 00:		er Request	- Create Transfe	jpsi-all-ok	lintao	15
finish	2013-09-02 23:			Dataset:	jpsi-all-ok	lintao	14
finish	2013-08-31 08:			SRC SE:	jpsi-all-ok	lintao	13
finish	2013-08-31 02:				jpsi-test-10	lintao	12
finish	2013-08-31 02:			DST SE:	jpsi-test	lintao	11
finish	2013-08-31 02:	*		Protocol:	jpsi-test	lintao	10
finish	2013-08-31 01:				jpsi-test	lintao	9
finish	2013-08-23 05:				my-dataset	lintao	8
finish	2013-08-23 03:		create		my-dataset	lintao	7
finish	2013-08-23 03:				my-dataset	lintao	6
finish	2013-08-23 03:	DIRACFTS	IHEPD-USER	IHEP-USER	my-dataset	lintao	5
finish	2013-08-23 03:	FTS	IHEPD-USER	IHEP-USER	my-dataset	lintao	4
finish	2013-08-23 03:	DIRACDMS	IHEPD-USER	IHEP-USER	my-dataset	lintao	3
finish	2013-08-23 03:	DIRACDMS	IHEPD-USER	IHEP-USER	my-dataset	lintao	2
finish	2013-08-23 03:	DIRACDMS	IHEPD-USER	IHEP-USER	my-dataset	lintao	1

USTC-USER 50.3% WHU-USER 49.7%

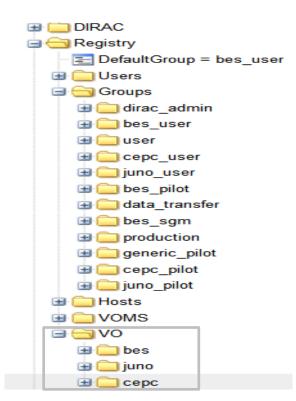
Cloud integration

- Elastic scheduling has been implemented for flexible resource allocation
 - Based on VMDIRAC1.0 with extra VM scheduler
- Cloud resources were in production since 2014, including
 - INFN, IHEP, JINR, CNIC
- Cloud types supported
 - OpenStack, OpenNebula, AWS
- VMDIRAC2.0 is under design
 - Easy configuration
 - Adopt new pilot tech

Integration of commercial clouds

- In June 2015, AWS cloud has been integrated
 - With the support of Amazon AWS China region
 - BOSS image created and upload to AWS
 - Connect with AWS API in VMDIRAC elastic scheduling
- Tests done and price evaluated
 - 400,000 BOSS rhopi events have been simulated with 100% success rate
 - c3.large is more suitable type than other CPU types
 - About 0.20 CNY for every 1000 events, mainly used by computing 92%
- Other domestic commercial clouds (eg. AliYun) are in the assessment process

Multi-VO supports (1) VOMS Admin endpoints

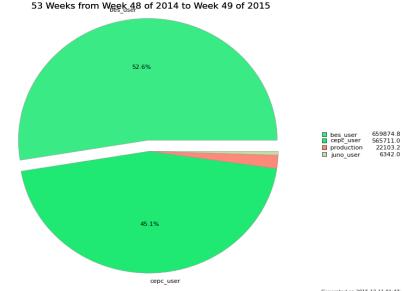

Motivation

- More experiments express interests on using or evaluating distributed computing
- Joint resources belongs to more than one experiments
- Save manpower and simplify management of resources
- Multi-VO has been supported in one set-up
 - VOMS system to help classify different VO and groups
 - VO-based authentication and priority control to be added in DIRAC central scheduling system

202.122.33.60

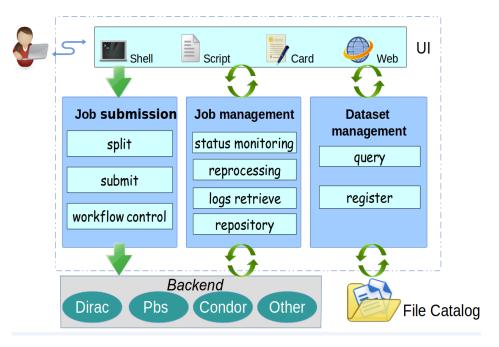
This page lists the locally configured Virtual Organizations

bes	active
серс	active
juno	active



Multi-VO supports (2)

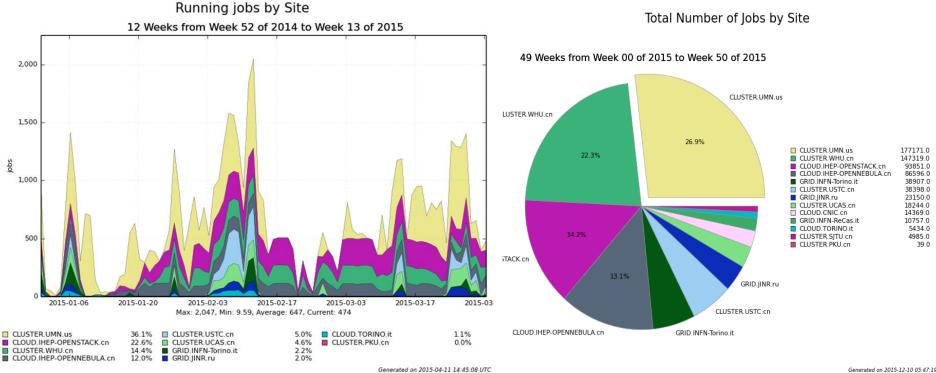
- Independent software publishing repositories defined in CVMFS
 - /cvmfs/boss.ihep.ac.cn, /cvmfs/cepc.ihep.ac.cn, /cvmfs/juno.ihep.ac.cn
- Badger and StoRM central storage have been extended to support multi-vo


FC:/>ls -al						
drwxrwxr-x 0 zhangxm	production	0	2011-11-12	22:43:18	bes	
drwxr-xr-x 0 yant	cepc user	0	2014-12-28	14:31:41	cepc	
drwxrwxrwx 0 zhaoxh	dirac admin	0	2014-11-13	02:35:09	dataset	
drwxr-xr-x 0 yant	juno user	0	2014-12-30	07:59:14	juno	
						Total Number of Jobs by UserGroup

- Current experiments supported
 - BESIII, JUNO, CEPC

General task submission tool (JSUB)

- Aim to ease the procedure of experiments to use grid
- A general framework to take care of life cycle of tasks split->submit->workflow control->status monitor->results retrieve -> reprocess
 - User interface
 - Use YAML, easy to parse with python, clear to users
 - Job submission
 - Support definition of experimental Job-splitting and workflow
 - Job management
 - Dataset management
 - Query Input dataset and register output dataset
 - Backend supports
 DIRAC, PBS, Condor

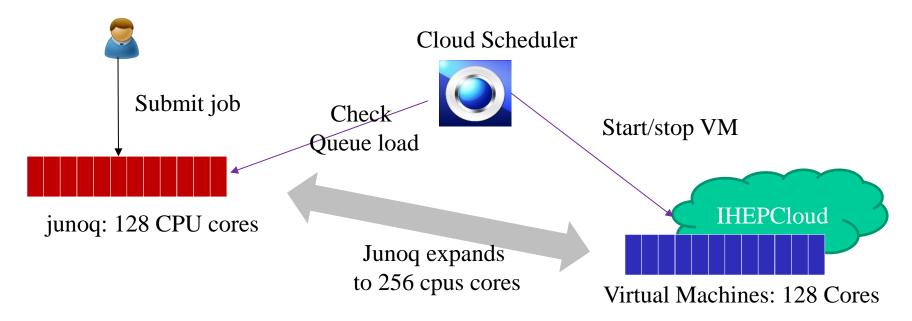

General task submission tool (JSUB)

- Monitor and reprocess through web portal or commands
 - Task progress can be easily tracked, even to jobs and events
 - Reschedule and delete are provided

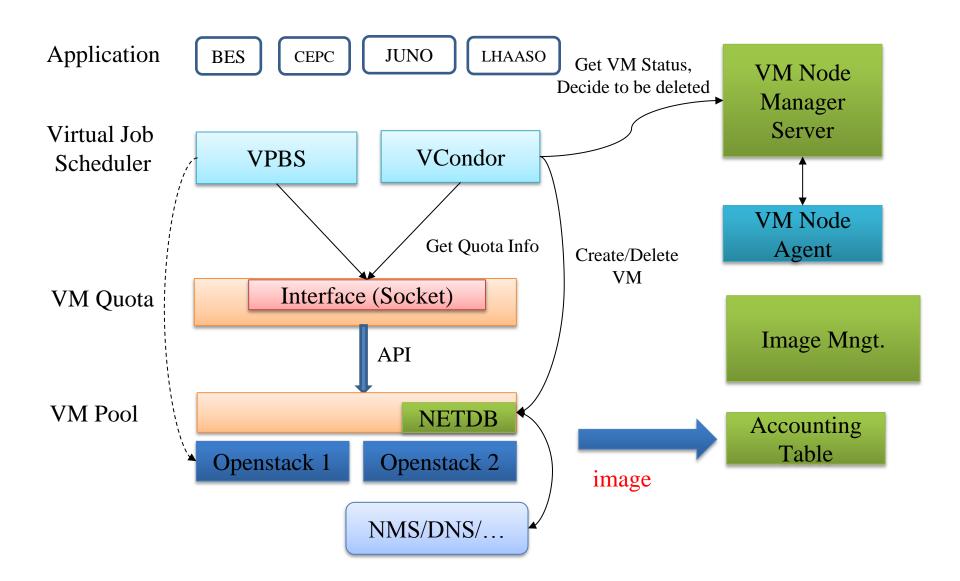
TaskID	TaskName	Status	Jobs	Progress (D F R W O)	CreationTime[UTC] A
235	sim_hadr_3@4009	Finished	500/500	490 10 0 0 0	2015-11-28 12:51:56
236	simrec_hadr_1@4600	Finished	898/898	897 1 0 0 0	2015-11-29 02:48:54
237	sim_cont_1@4009	Processing	1132/1132	1085 9 37 1 0	2015-11-29 03:28:34
238	sim_hadr@4230	Progress		1050 5 2 0 0	2015-11-29 03:58:51
239	sim_DDbar@4009	Jobs Statistics		0 0 0 0 842	2015-11-29 06:38:36
240	sim_DDbar@4009			842 0 0 0 0	2015-12-02 04:33:39
241	sim_bhabha@4230	Information	5	3549 0 7 0 0	2015-12-02 06:05:46
242	sim_mumu@4230	History	7	1041 0 14 2 0	2015-12-02 09:37:06
243	sim_tautau@4230	Show Jobs	7	902 1 131 23 0	2015-12-02 13:22:25
244	tagDm_eff12M_151203_sra	Jobs Informati	on 3	3526 52 0 0 0	2015-12-03 02:23:53
245	tagDp_eff12M_151203_sra	Rename	3	3512 66 0 0 0	2015-12-03 03:11:59
246	sim_d0kpi_140512	Reschedule Fa	iled Jobs	0 0 0 0 12	2015-12-04 12:41:36
247	sim_d0kpi_140512	Reschedule All	Jobs	0 0 0 0 5	2015-12-04 13:59:27
248	f980_70MeV_dp	🛛 💥 Delete	3	3573 0 0 0 0	2015-12-04 16:24:02
249	f980_70MeV_dm	Finished	3573/3573	3573 0 0 0 0	2015-12-04 16:24:32
250	sim_rhopi_140512	Finished	10/10	10 0 0 0 0	2015-12-07 03:22:07
251	sim_gg@4230	Processing	1718/1718	201 0 54 1463 0	2015-12-07 04:08:02
252	sim_DDbar@4230	Processing	1715/1715	0 0 0 1715 0	2015-12-07 05:08:22
253	sim_rhopi_140512	Expired	0/10	0 0 0 0 0 10	2015-12-07 07:37:39
254	tagDm_eff12M_151207_sra	Processing	3578/3578	2975 4 346 253 0	2015-12-07 07:51:34
255	sim_hadr@4230	Processing	1056/1056	152 0 24 880 0	2015-12-07 08:24:12
256	tagDp_eff12M_151207_sra	Processing	3578/3578	906 0 142 2530 0	2015-12-07 08:32:00
257	sim_BestTwogam@4230	Processing	1057/1057	172 0 0 885 0	2015-12-07 08:44:51
258	sim_hadron_140124	Finished	26/26	0 26 0 0 0	2015-12-07 08:59:04
259	sim_cont@4230	Processing	1706/1706	0 0 0 1706 0	2015-12-07 09:17:32

Running Status

- The system is in production since the end of 2012
- Total Jobs are 665K in 2015, 340K in 2014
- Max running jobs can reach 2K (First season in 2015)

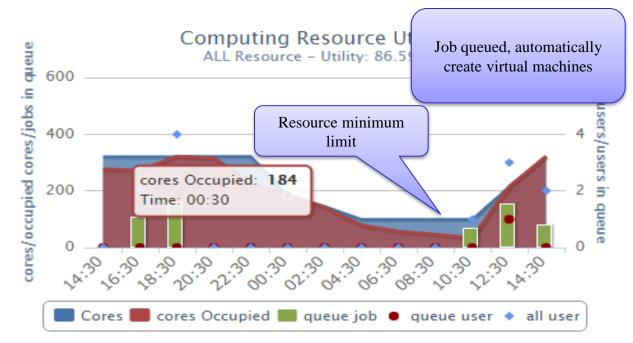

IHEPCloud: a Private laaS platform

- Launched in May 2014
- Three use cases
 - User self-service virtual machine platform (laaS)
 - User register and destroy VM on-demand
 - Virtual Computing Cluster
 - Combined with physical queue, jobs will be allocated to virtual queue automatically when physical one is busy.
 - Distributed computing system
 - Working as a cloud site: Dirac call cloud interface to start or stop virtual work nodes

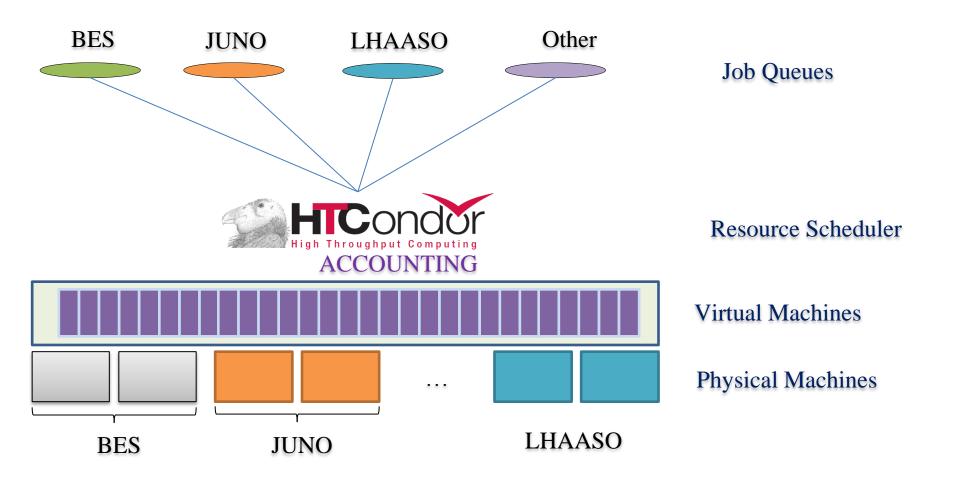

	http://cloud.ihep.ac.cn
登录	
密码	
帮助	<u>월</u>)

Virtual computing cluster

- If a job queue is busy, new virtual machines will be created automatically to expand the queue
- Easy to be used for different experiments
- Provide dynamic virtual resource on demand
- Transparent to user, no change of user job submission



VM management



Dynamic scheduling

- Support multiple batch systems: PBS/Torque, HTCondor
- Dynamic VM provision: virtual machines are created and destroyed on demand
- Fair-share algorithm: guarantee resources are equally distributed among different experiments.

Future setup

High Performance Computing

- Needs from experiments and theoretical calculation
 - BESIII partial wave analysis
 - Geant4 detector simulation (CPU time and memory consuming)
 - Simulation and modelling for accelerator design
 - Lattice QCD calculation
- ♦ A HPC cluster at IHEP is being planned in 2017
 - NVIDIA Tesla GPUs
 - Xeon Phi coprocessors
 - Interconnected by the InfiniBand network
- A HPC prototype was set up and testing with the HybriLIT at JINR has been scheduled.

Summary

- Grid and cloud computing technologies were adopted to support various types of HEP experiments in China.
 - Dirac-based grid to integrate resources within an experiment
 - Cloud to promote sharing of resources among different experiments
- In collaboration with JINR, the BESIII Grid system has been developed and is running well in both M.C. data production and physics analysis.
- Hope we could continue to strengthen the collaboration with JINR on HEP computing.

