
Interface for a Computational Cluster:
Resource Description Approach

Bogdanov A.
Ivanov P.

Gaiduchok V.
Kamande M.
Cubahiro A.

GRID’2016



Agenda

Introduction

Users

Administrators

Applications

Tests

Proposed approach

Conclusions

Conclusions



Introduction

I Creation of a convenient and simple user interface
could be considered one of the most important
tasks of an average computational center.

I Thought-out interface could improve user
experience and resource utilization.

I Inexperienced users could spend much time to learh
the interface.

I They could do mistakes which could lead to
imbalance in system utilization.



Introduction

I Typical computational center consist of several
clusters with different performance.

I Typical organization provide users with a variety of
software applications, free and open source, as well
as proprietary.

I Typical user is interested in one or two applications.



Users

I Users do not want to go deep into details of the
system.

I They want the system interface to be simple.

I They need to calculate their tasks fast.

I They assume administrators will solve all problems.



Administrators

I Administrators need to restrict users for different
reasons (e.g. security).

I They need to comply with organization policies and
to assure that users do it.

I They could improve user decisions in terms of
performance of applications.

I But often it is hard to do if users have direct access
to the underlying system.



Applications

I Different applications have different scalability.

I They can use different libraries which have different
performance.

I Tasks of the same application can use different
modules and vary greatly in requirements for
computational hardware.

I Limited scalability could lead to wasting hardware
resources.

I It is difficult in general case to estimante the
computation time and scalability of an average
application.



Tests

0

10

20

30

40

50

60

70

80

0 5000 10000 15000 20000 25000

T
im

e
, 
s
e
c

Matrix size

CPU 24 cores (single precision)

CPU 24 cores (double precision)

1 GPU (single precision)

1 GPU (double precision)

Applications tests



Tests

0

500

1000

1500

2000

2500

3000

20 40 60 80 100 120 140 160

T
im

e
, 

s
e

c

Cores

GROMACS case 1

GROMACS case 2

GROMACS case 3

Application tests



Proposed approach

I Traditional approaches usually delegates all the
responsibility to users.

I They usually require specification of all the
parameters of a task (harwdare requirements,
system requirements, libraries, etc.).

I User is responsible for the correct choice of various
parameteres which could be obscure.

I They often provide users with CLI only (e.g.
generic PBS implementation).

I As a result some users should learn new
sophisticated interfaces and go deep into details of
the system while others just do many mistakes (in
terms of task submitting, performance, etc.) .



Proposed approach

I Description based system.

I Everything related to application should be written
in a simple language.

I Each supported application gets its own description.

I The system provide administrators with a powerful
language to describe the application, impose some
limitations and improve performance.

I Users are given with a simple and intuitive GUI.

I Cross-platform: it is written in Java (JDK 1.8 is
required) .



Proposed approach: administrators

I Administrators describe applications:
I They choose environment variables (PATH,

LD LIBRARY PATH, etc.), resource specification
(default amount of resources, preferred node types,
etc.), system limitations, etc.

I They could e.g. prefer some MPI library.
I Once it is done, it is available to all users, no additional

manual configuration is required (e.g. changing

/̃.bash profile or /̃.bashrc).

I Such descriptions are propagated to all users.
I Administrators could impose some limitations (e.g.

maximum number of cores for some application
with bad scalability) in order to improve overall
performance.



Proposed approach: applications

I One could write many descriptions with default
settings: for a cluster, for a platform, for some
particular node, for some library, etc.

I These specifications could be combined in order to
make the administration easier.

I Descriptions could vary from specifying one
description for some class of applications to some
particular version of an application.

I Descriptions could be reused in order to facilitate
the administration when one has to support many
applications.



Proposed approach: users

I Users are provided with a convenient GUI.

I They choose resource (e.g. some particular cluster),
application, version.

I All the necessary configurations are already
described by administrators, so users could focus on
their tasks.

I They could specify only the required parameters
(e.g. input file with the task) and use the default
settings proposed by administrators.



Example

default cores 4
. . .
warning ”[Algorithm] has bad scalability . . . ”
. . .
option ”-a” ”Algorithm to use” ”string” ”REQ” . . .
option ”-s” ”Number of domains.” ”int” ”REQ” . . .
option ”-i” ”Input file” ”string” ”REQ” . . .
. . .
env PATH=/openmpi/1.6/bin:. . .
env LD LIBRARY PATH=/openmpi/1.6/lib:. . .
. . .



Comparison

I CLI is considered to be inconvenient by the vast
majority of users.

I Direct access to underlying management system is
considered to be a bad option by many
administrators.

I Administrators often write scripts to ease task
submission, but such approach requires CLI anyway.

I Existing (even web-based) GUI interfaces usually
implies scripting: users work with GUI, but have to
write scripts to submit jobs.

I There are paid proprietary solutions, but such
solutions usually have many unnecesary features
and are too expensive.



Conclusions

I Similar systems usually facilitate the access to the
system (GUI instead of CLI), but not the work with
the system (users are responsible to write scripts,
etc.) .

I The main element is a specific application build
descibed by administrators (invisible to users).

I Users will work with only really necessary aspects.
I The proposed approach meets the user

requirements (simple and convenient way to
calculate a particular task), as well as administrator
needs (impose organization policies and limit the
access to the underlying system).



Conclusions

I Such approach could improve resource utilization.

I Proposed system is designed to work with a generic
PBS implementation.

I Web-interface is under development.



Questions

Thank you!


	Introduction
	Users
	Administrators
	Applications
	Tests
	Proposed approach
	Conclusions
	Conclusions

