Interface for a Computational Cluster:
Resource Description Approach

Bogdanov A.
Ivanov P.
Gaiduchok V.
Kamande M.
Cubahiro A.

GRID'2016



Agenda

Introduction
Users
Administrators
Applications
Tests
Proposed approach
Conclusions

Conclusions



Introduction

Creation of a convenient and simple user interface
could be considered one of the most important
tasks of an average computational center.

Thought-out interface could improve user
experience and resource utilization.

Inexperienced users could spend much time to learh
the interface.

They could do mistakes which could lead to
imbalance in system utilization.



Introduction

» Typical computational center consist of several
clusters with different performance.

» Typical organization provide users with a variety of
software applications, free and open source, as well
as proprietary.

» Typical user is interested in one or two applications.



Users

v

v

v

v

Users do not want to go deep into details of the
system.

They want the system interface to be simple.
They need to calculate their tasks fast.
They assume administrators will solve all problems.



Administrators

Administrators need to restrict users for different
reasons (e.g. security).

They need to comply with organization policies and
to assure that users do it.

They could improve user decisions in terms of
performance of applications.

But often it is hard to do if users have direct access
to the underlying system.



Applications

Different applications have different scalability.

They can use different libraries which have different
performance.

Tasks of the same application can use different
modules and vary greatly in requirements for
computational hardware.

Limited scalability could lead to wasting hardware
resources.

It is difficult in general case to estimante the
computation time and scalability of an average
application.



Tests

Time, sec

80

T
—>¢— CPU 24 cores (single precision)
—A— CPU 24 cores (dguble precision)
70 1 GPU (single precision)

60

50

B
o

w
o

20

10

0 5000 10000 15000 20000
Matrix size

Applications tests

25000



Tests

Time, sec

3000 :
—>¢— GROMACS case 1
—~A— GROMACS case 2
GROMACS case 3
2500
2000
1500
1000
500 )\
A —
e
0
20 4 80 100 140
Cores

Application tests




Proposed approach

Traditional approaches usually delegates all the
responsibility to users.

They usually require specification of all the
parameters of a task (harwdare requirements,
system requirements, libraries, etc.).

User is responsible for the correct choice of various
parameteres which could be obscure.

They often provide users with CLI only (e.g.
generic PBS implementation).

As a result some users should learn new
sophisticated interfaces and go deep into details of
the system while others just do many mistakes (in
terms of task submitting, performance, etc.) .



Proposed approach

Description based system.

Everything related to application should be written
in a simple language.

Each supported application gets its own description.

The system provide administrators with a powerful
language to describe the application, impose some
limitations and improve performance.

Users are given with a simple and intuitive GUI.
Cross-platform: it is written in Java (JDK 1.8 is
required) .



Proposed approach: administrators

» Administrators describe applications:

» They choose environment variables (PATH,
LD_LIBRARY _PATH, etc.), resource specification
(default amount of resources, preferred node types,
etc.), system limitations, etc.

» They could e.g. prefer some MPI library.

» Once it is done, it is available to all users, no additional
manual configuration is required (e.g. changing

7 bash_profile or /.bashrc).

» Such descriptions are propagated to all users.

» Administrators could impose some limitations (e.g.
maximum number of cores for some application
with bad scalability) in order to improve overall
performance.



Proposed approach: applications

One could write many descriptions with default
settings: for a cluster, for a platform, for some
particular node, for some library, etc.

These specifications could be combined in order to
make the administration easier.

Descriptions could vary from specifying one
description for some class of applications to some
particular version of an application.

Descriptions could be reused in order to facilitate
the administration when one has to support many
applications.



Proposed approach: users

Users are provided with a convenient GUI.

They choose resource (e.g. some particular cluster),
application, version.

All the necessary configurations are already
described by administrators, so users could focus on
their tasks.

They could specify only the required parameters
(e.g. input file with the task) and use the default
settings proposed by administrators.



Example

default cores 4

warning "[Algorithm] has bad scalability ..."

option "-a" "Algorithm to use” "string” "REQ" ...
option "-s" "Number of domains.” "int” "REQ" ...

option "-i" "Input file” "string” "REQ" ...

env PATH=/openmpi/1.6/bin:. ..
env LD_LIBRARY _PATH=/openmpi/1.6/lib:. ..



Comparison

CLI is considered to be inconvenient by the vast
majority of users.

Direct access to underlying management system is
considered to be a bad option by many
administrators.

Administrators often write scripts to ease task
submission, but such approach requires CLI anyway.
Existing (even web-based) GUI interfaces usually
implies scripting: users work with GUI, but have to
write scripts to submit jobs.

There are paid proprietary solutions, but such
solutions usually have many unnecesary features
and are too expensive.



Conclusions

Similar systems usually facilitate the access to the
system (GUI instead of CLI), but not the work with
the system (users are responsible to write scripts,
etc.) .

The main element is a specific application build
descibed by administrators (invisible to users).

Users will work with only really necessary aspects.

The proposed approach meets the user
requirements (simple and convenient way to
calculate a particular task), as well as administrator
needs (impose organization policies and limit the
access to the underlying system).



Conclusions

» Such approach could improve resource utilization.

» Proposed system is designed to work with a generic
PBS implementation.

» Web-interface is under development.



Questions

Thank you!



	Introduction
	Users
	Administrators
	Applications
	Tests
	Proposed approach
	Conclusions
	Conclusions

