Дубна - 2019

Научный руководитель: д. ф.-м. н. Русакович Н. А.

По материалам диссертации на соискание ученой степени Кандидата физико-математических наук Специальность: 01.04.16 – Физика ядра и элементарных частиц

Методы увеличения эффективности регистрации редкого распада $K_L^0 o \pi^0 \nu \tilde{\nu}$ в эксперименте E391а

Степаненко Юрий Юрьевич

Объединенный институт ядерных исследований

Распад $K^0_L ightarrow \pi^0 \nu \widetilde{\nu}$

- Доминирует механизм прямого СР-нарушения
 - Вклад косвенного СР-нарушения $\approx 10^{-3}$
- Вероятность распада связана с параметром η матрицы ККМ

 $Br(K^0_{\iota} \rightarrow \pi^0 \nu \tilde{\nu}) \propto \eta^2$

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2/2 \\ -\lambda \\ 4\lambda^3 (1 - \rho - \rho) \end{pmatrix}$$

$$= \begin{pmatrix} V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}^{-} \begin{pmatrix} -\lambda \\ \lambda^{3}(1-\rho-in) \end{pmatrix}^{-}$$

- Теоретическая неопределенность (\approx 1-2%)
 - Проверка параметров Стандартной Модели
 - Поиск проявлений Новой Физики
- Ультраредкиий распад в СМ:

 $Br(K_L^0 \to \pi^0 \nu \tilde{\nu}) = (3.00 \pm 0.30) \times 10^{-11}$

Экспериментальное ограничение:

 $Br(K_L^0 \to \pi^0 \nu \tilde{\nu}) < 3 \times 10^{-9} (90\% C.L.)$

(J-PARC, KOTO, January 2019)

$$\begin{array}{ccc} \lambda & A\lambda^{3}(\rho - i\eta) \\ -\lambda^{2}/2 & A\lambda^{2} \\ -A\lambda^{2} & 1 \end{array} + O(\lambda^{4})$$

Эксперимент Е391а (КЕК)

- Первый в мире эксперимент посвященный определению $Br(K_L^0 \to \pi^0 \nu \tilde{\nu})$
 - Пилотный эксперимент для КОТО (J-PARC)
- КЕК 12GeV Протонный синхротрон
 - Платиновая мишень (Pt) длиной 60мм, Ø 8мм
 - 2.5х 10¹² протонов на мишень (РОТ) 2 с/spill 4 с. цикл. (медленный сброс)
 - Система коллимации вторичного пучка (10 м)
 - Узкоколлимированный пучок K_L^0 (~18 м от мишени $\sigma = 40$ мм)
 - Максимальная интенсивность K⁰_L в области импульса 2 ГэВ/с (n/K⁰_L~40)

Сеансы набора данных

Run-I	Period	Feb. 2004 to June. 2004		
	Total protons	2.1×10^{18}		
	Remarks	Membrane problem		
Run-II	Period	Feb. 2005 to Apr. 2005		
	Total protons	1.4×10^{18}		
	Remarks	Be absorber		
Run-III	Period	Oct. 2005 to Dec. 2005		
	Total protons	1.2×10^{18}		
	Remarks	New BA,		
		Additional photon counter		

Метод регистрации $K_L^0 o \pi^0 \nu \tilde{\nu}$ в эксперименте

• Идентификация

- 2γ регистрируются CsI калориметром (E, x, y)
- "ничего" отсутствие сигнала в герметичной вето системе
- Восстановление вершины распада Z_{vtx} в предположении:
 - инвариантная масса двух зарегистрированных γ -квантов равна массе π^0
 - вершина распада расположена на оси пучка ($X_{vtx} = Y_{vtx} = 0$)

$$\cos\theta = 1 - \frac{M_{\pi^0}^2}{2E_1 E_2}$$

Отбор событий по наличию восстановленной вершины распада Z_{VTX} и поперечного импульса P_T в "сигнальной области"

Установка ЕЗ91а

Установка ЕЗ91а

- Распады *K*⁰_L
 - $K_L^0 \to \pi^0 \pi^0$
 - 2 у не зарегистрированы

$$\cos\theta = 1 - \frac{M(\pi^0)^2}{2E_1 E_2}$$

- Распады *K*⁰_L
 - $K_L^0 o \pi^0 \pi^0$
 - 2 у не зарегистрированы
 - $K_L^0 \to \gamma \gamma$

$$\cos\theta = 1 - \frac{M(\pi^0)^2}{2E_1 E_2}$$

- Распады *K*⁰_L
 - $K_L^0 o \pi^0 \pi^0$
 - 2ү не зарегистрированы
 - $K_L^0 \to \gamma \gamma$
- Взаимодействия нейтронов пучка
 - CC02-π⁰
 - Ошибка в измерении энергии γ (утечки ливней из кристаллов, фотоядерные взаимодействия)
 - Измеренная энергия меньше->угол θ больше

$$\cos\theta = 1 - \frac{M(\pi^0)^2}{2E_1 E_2}$$

- Распады *K*⁰_L
 - $K_L^0 o \pi^0 \pi^0$
 - 2ү не зарегистрированы
 - $K_L^0 \to \gamma \gamma$
- Взаимодействия нейтронов пучка
 - CC02-π⁰
 - Ошибка в измерении энергии γ (утечки ливней из кристаллов, фотоядерные взаимодействия)
 - Измеренная энергия меньше->угол *θ* больше
 - CV- π^0
 - Ошибка в измерении энергии γ (слипшиеся кластеры от 2γ, наложение γ-кластера со случайным событием)
 - Измеренная энергия больше->угол θ меньше

eŭ
eŭ
halo n

$$K_L^0 \rightarrow \gamma\gamma$$

 $K_L^0 \rightarrow \gamma\gamma$
 Z_{vtx} (cm)
 $CV-\pi^0$
 $CV-\pi^0$
 $CV-\pi^0$
 $CV-\pi^0$
 Z_{vtx} (cm)

$$\cos\theta = 1 - \frac{M(\pi^0)^2}{2E_1 E_2}$$

- Распады *K*⁰_L
 - $K_L^0 o \pi^0 \pi^0$
 - 2ү не зарегистрированы
 - $K_L^0 \to \gamma \gamma$
- Взаимодействия нейтронов пучка
 - CC02-π⁰
 - Ошибка в измерении энергии γ (утечки ливней из кристаллов, фотоядерные взаимодействия)
 - Измеренная энергия меньше->угол θ больше
 - CV- π^0
 - Ошибка в измерении энергии γ (слипшиеся кластеры от 2γ, наложение γ-кластера со случайным событием)
 - Измеренная энергия больше->угол θ меньше
 - CV-η
 - Разница в значении масс M_{η} и M_{π^0}
 - угол *θ* меньше

$$\cos\theta = 1 - \frac{M(\pi^0)^2}{2E_1 E_2}$$

Монте-Карло моделирование фоновых и сигнальных событий

Метод измерения угла попадания *ү*-квантов в CsI калориметр

Метод измерения угла попадания ү-квантов в CsI калориметр

Входной слой:

- Энерговыделение в каждом кристалле γ -кластера
- Энергия γ-кванта, (x,y), φ

Обобщенно-регрессионная нейронная сеть (GRNN) с радиально базисными передаточными функциями

Метод измерения угла попадания у-квантов в CsI калориметр

Входной слой:

- Энерговыделение в каждом кристалле у-кластера
- Энергия γ -кванта, (x,y), φ

Первый скрытый слой:

- Слой из N радиальных нейронов
- Количество нейронов соответствует количеству обучающих примеров
- Разность между энергиями (нормированными на полную энергию кластера) в соответствующих кристаллах обучающего восстанавливаемого И события кластера k- кол-во кристаллов

$$D_{i} = \sum_{k=1}^{49} \left(\frac{E_{k}}{\sum_{l=1}^{49} E_{l}} - \frac{T_{i,k}}{\sum_{l=1}^{49} T_{i,l}} \right)$$

- і номер обучающего
- примера
- Е энергия в кристалле восст. события
- Т энергия в кристалле обучающего. события

•Вычисляется вес каждого события из обучающей выборки $W_i = gaus(D_i, \sigma_i)$

Обобщенно-регрессионная нейронная сеть (GRNN) с радиально базисными передаточными функциями

- 7х7 матрица кристаллов 7.0х7.0cm • x, y = [-3.5; 3.5] cm шаг=0.35cm
- Е = [200; 2500] Мэв шаг=50 Мэв
- Phi = [0;45] deg. шаг=3 deg.

Метод измерения угла попадания у-квантов в CsI калориметр

Входной слой:

- Энерговыделение в каждом кристалле у-кластера
- Энергия γ -кванта, (x,y), φ

Первый скрытый слой:

- Слой из N радиальных нейронов
- Количество нейронов соответствует количеству обучающих примеров
- Разность между энергиями (нормированными на полную энергию кластера) в соответствующих кристаллах обучающего восстанавливаемого И события кластера k- кол-во кристаллов

$$D_{i} = \sum_{k=1}^{49} \left(\frac{E_{k}}{\sum_{l=1}^{49} E_{l}} - \frac{T_{i,k}}{\sum_{l=1}^{49} T_{i,l}} \right)$$

- і номер обучающего
- примера
- Е энергия в кристалле восст. события
- Т энергия в кристалле обучающего. события

•Вычисляется вес каждого события из обучающей выборки $W_i = gaus(D_i, \sigma_i)$

Суммирующий слой:

• формирование взвешенной суммы и суммы всех весов

$$\sum_{i}^{n} W_{i} \theta_{i}, \sum_{i}^{n} W$$

Обобщенно-регрессионная нейронная сеть (GRNN) с радиально базисными передаточными функциями

Метод измерения угла попадания у-квантов в CsI калориметр

Входной слой:

- Энерговыделение в каждом кристалле γ -кластера
- Энергия γ -кванта, (x,y), φ

Первый скрытый слой:

- Слой из N радиальных нейронов
- Количество нейронов соответствует количеству обучающих примеров
- Разность между энергиями (нормированными на полную энергию кластера) в соответствующих кристаллах обучающего восстанавливаемого И события кластера k- кол-во кристаллов

$$D_{i} = \sum_{k=1}^{49} \left(\frac{E_{k}}{\sum_{l=1}^{49} E_{l}} - \frac{T_{i,k}}{\sum_{l=1}^{49} T_{i,l}} \right)$$

- і номер обучающего
- примера Е – энергия в кристалле
- восст. события
- Т энергия в кристалле обучающего. события

 $\theta = \sum_{i=1}^{n} W_i \cdot \theta_i \left/ \sum_{i=1}^{n} W_i \right|$

•Вычисляется вес каждого события из обучающей выборки $W_i = gaus(D_i, \sigma_i)$

Суммирующий слой:

• формирование взвешенной суммы и суммы всех весов

$$\sum_{i}^{n} W_{i} oldsymbol{ heta}_{i}$$
 , $\sum_{i}^{n} W_{i}$

Выходной слой:

• Оценка взвешенного среднего

Обобщенно-регрессионная нейронная сеть (GRNN) с радиально базисными передаточными функциями

Характеристики восстановления нейронной сети

Линейность восстановления угла (слева) и зависимость углового разрешения от энергии γ-квантов. Распределения получены для равномерного Монте-Карло по параметрам передаваемым на вход HC

Характеристики восстановления нейронной сети

Распределение абсолютной ошибки восстановления угла для высокоэнергетического (слева) и низкоэнергетического (справа) γ -кванта событий $K_L^0 \to \pi^0 \nu \tilde{\nu}$

 $K_L^0 \to \pi^0 \nu \tilde{\nu}$ Монте-Карло

Характеристики восстановления нейронной сети

Распределение абсолютной ошибки восстановления угла *ү*-квантов

Восстановление Z_{vtx} и M_X событий $X o \gamma \gamma$

процедуру кинематического фитирования, полагая ЧТО два гамма имеют общую вершину рождения:

$$z_{g1} - z_{g2} = \frac{\sqrt{x_1^2 + y_1^2}}{tg(\theta_1)} - \frac{\sqrt{x_2^2 + y_2^2}}{tg(\theta_2)} \equiv 0$$

Используя метод неопределенных множителей Лагранжа

$$\chi^{2} = \frac{(\theta_{1} - \theta_{1}^{0})^{2}}{\sigma_{\theta_{1}}^{2}} + \frac{(\theta_{2} - \theta_{2}^{0})^{2}}{\sigma_{\theta_{2}}^{2}} + 2\lambda \left(\frac{\sqrt{x_{1}^{2} + y_{1}^{2}}}{tg(\theta_{1})} - \frac{\sqrt{x_{2}^{2} + y_{2}^{2}}}{tg(\theta_{2})}\right)$$

Где $\theta_{1}^{0}, \theta_{2}^{0}$ начальные

Восстановление Z_{vtx} и M_X событий $X o \gamma \gamma$

	Монте-Карло	$K_L^0 \to \pi^0 \nu \tilde{\nu}$		Используем кинематическог	процедуру о		
dz	dz	massnn	massnn	humunopour	HARAFAG UTA		
Испол	пьзуя восста	новленные	значения угл	ов, были по	олучены		
новые кинематические переменные, которые существенно расширили							
возможности анализа данных эксперимента: $\Delta \theta_1$, $\Delta \theta_2$ – разность между							
углом, восст	ановленным	нейронной	сетью и угл	юм, получе	нным в		
предположении того, что инвариантная масса двух ү-квантов равна							
массе π^0 , а так же масса (<i>MassNN</i>) распавшейся частицы $X \rightarrow \gamma \gamma$.							
Применение их в анализе второго сеанса набора данных (Run-							
II) позволило увеличить чувствительность установки к регистрации							
распада <i>К</i> ⁰ –	• π ⁰ νν̃ на 35 ⁶	%					
	Constant 2395 ± 17.6	800	Prop 0.6522 Constant 1014 ± 8.8	$(\sqrt{x_1^2 + v_1^2})$	$x_{2}^{2} + v_{2}^{2}$		

Znn-Zkine (cm)

26

Недостатки метода:

Трудоемкий процесс, требует больших затрат времени
 Нет явных признаков и гарантии что значение S/N улучшится
 Невозможно учесть корреляции между параметрами отбора

Метод автоматической оптимизации критериев отбора событий на основе генетических алгоритмов

• Алгоритм оптимизации:

 Генерация начальной популяции особей
 Для каждой особи из популяции (набора критериев отбора):

– вычисление величины S

– вычисление величины N

- оценка функцией пригодности F(S,N)

3) Отбор наиболее пригодных особей для генерации нового поколения

4) Генерация нового поколения путем применения генетических операторов
5) повтор 2-4 заданное количество раз

Особенность функции пригодности F(S,N): используя различные виды определения функции можно менять концепцию направления оптимизации – максимизировать значение S или уменьшать значение N, или сохранять значение S/N на заданном уровне.

Free source code: http://garage.cse.msu.edu/software/lil-gp/

Метод автоматической оптимизации критериев отбора событий на основе генетических алгоритмов

Генерация

• Алгоритм оптимизации:

Генерация начальной популяции особей
 Для каждой особи из популяции (набора

В результате применения разработанной процедуры автоматической оптимизации были получены новые значения критериев отбора величин для анализа данных второго сеанса набора данных Run-II, с помощью которых чувствительность установки удалось увеличить на 10%

применения генетических операторов 5) повтор 2-4 заданное количество раз

Особенность функции пригодности F(S,N): используя различные виды определения функции можно менять концепцию направления оптимизации – максимизировать значение S или уменьшать значение N, или сохранять значение S/N на заданном уровне.

Free source code: http://garage.cse.msu.edu/software/lil-gp/

Повторный анализ данных эксперимента Е391а

Повторный анализ данных эксперимента Е391а

- Порядка 40 величин использовались при оптимизации
- Направление поиска решения: поиск такого набора значений ограничений при котором значение N будет сохраняться на уровне величины анализа эксперимента E391a, а значение S, при этом будет максимально возможным
- Функция пригодности: $F(S, N) = 35 (1.2 \times S + 10) \times N$
 - Значение N зафиксировано в интервале [0.7, 0.95]
- ~2 месяца, 46 СРU ЦИВК ОИЯИ
 - ~11000 генераций поколений

Результаты: оценка вклада фоновых событий

Вклад фоновых событий: на уровне ЕЗ91а

	Область-1	Область-2	Область-З	Область-4	Сигн. обл.
Данные	752	151 (101)	9 (8)	16 (8)	0
МК фона	752	127.5	8.1	5.3	0.87
	(360)	(77.2)	(5.9)	(2.9)	(0.87)

Результаты: оценка сигнальных событий

Вклад фоновых событий: на уровне E391а События в сигнальной области отсутствуют Чувствительность установки: увеличение на 65%

Заключение

Целью данной работы является разработка новых методов для анализа данных эксперимента E391a, которые позволяют увеличить чувствительность установки к регистрации редкого распада $K_L^0 \to \pi^0 \nu \tilde{\nu}$.

Были получены следующие результаты:

- 1. Проведена модернизация и доработка метода восстановления угла попадания γ -квантов в главный CsIкалориметр установки E391a, в результате чего удалось улучшить линейность восстановления угла нейронной сетью, а также уменьшить ошибки в определении величины углов. На основе полученного метода были получены новые переменные для анализа: $\Delta \theta_1, \Delta \theta_2$ – разность между углом, восстановленным нейронной сетью и углом, полученным в предположении того, что инвариантная масса двух γ -квантов равна массе π^0 . В дополнение к этому, впервые в эксперименте были получены распределения по эффективной массе для распавшейся частицы $X \to \gamma \gamma$. Применение данного метода и полученных новых переменных в анализе данных второго сеанса набора данных (Run-II) эксперимента E391a позволило увеличить чувствительность установки к регистрации распада $K_L^0 \to \pi^0 \nu \tilde{\nu}$ на 35%.
- 2. На основе метода генетического программирования, для эксперимента E391a был разработан метод оптимизации критериев отбора событий, позволяющий в автоматическом режиме находить наиболее "приспособленные" решения (ограничения на значения величин), удовлетворяющие заданному направлению оптимизации на основе значений величины *S/N*. В результате применения разработанной процедуры автоматической оптимизации в анализе второго сеанса набора данных (Run-II) были получены новые значения ограничений величин, в результате использования которых чувствительность установки увеличилась на 10%
- 3. Была предложена и реализована схема повторного анализа полной статистики эксперимента E391a, которая представляет собой интеграцию разработанных независимо друг от друга методов. В результате вычислений был получен новый оптимизированный набор ограничений величин для отбора событий, применение которого позволило увеличить чувствительность установки к распаду на 65%, при этом общий вклад фоновых событий в сигнальную область остался на том же уровне что и в результате финального анализа данных.

Список публикаций по теме диссертации

- 1. Method for selection cut optimization for the E391 Experiment veto system / Podolsky S.V., Kurilin A.S., Stepanenko Y.Y. // The 11th Small Triangle Meeting, (Kysak, September 20-23, 2009) – Kosice, 2010. – 120 P.
- Восстановление массы pi0 в событиях K⁰_L → π⁰νν эксперимента E391 / Степаненко Ю. Ю., Подольский С.В., Курилин А. С. // Труды XIV научной конференции молодых ученых и специалистов ОИЯИ (Дубна, 1-6 февраля 2010) Дубна, 2010. Р. 118-121.
- Search for K⁰_L → π⁰νν decay (experiments E391, KLOD, E14) / Kurilin A., Podolsky S., Stepanenko Y. et al. // Proceedings of International School-Seminar: Actual problems of microworld physics (Gomel, Belarus, July 15-26, 2009) – Dubna, 2011.- Vol. 1. – P. 45-48.
- 4. Некоторые особенности методики повторного анализа данных эксперимента E391 / Степаненко Ю. Ю., Курилин А. С., Подольский С.В. и др. // «Гомельский научный семинар по теоретической физике, посвященный 100-летию со дня рождения Ф. И. Федорова» (20–22 июня 2011 г.): [материалы] / редкол.: А. В. Рогачев (гл. ред.) [и др.]. Гомель: ГГУ им. Ф. Скорины, 2011. С. 193-197.
- 5. New method for the cuts threshold optimization in the E391 experiment: conception and current implementation / N. V. Maksimenko et. al. // Проблемы физики, математики и техники. 2010. №3. Р. 22–24.
- 6. Experimental study of the decay $K_L^0 \rightarrow \pi^0 \nu \tilde{\nu} / J.K.$ Ahn et al. (E391a collaboration) // Phys. Rev. D. 2010. Vol. 81. P. 072004.
- Method for reconstructing of direction of gamma quanta registered by the CsI calorimeter in E391 experiment / Kurilin A. S., Podolsky S. V., Stepanenko Yu. Yu. // Physics of Particles and Nuclei Letters. – 2011. - Vol. 8., No.1 - P. 46–49.
- 8. Новые методы анализа данных в эксперименте ЕЗ91 // Подольский С. В., Курилин А. С., Степаненко Ю. Ю. // Письма в ЭЧАЯ. 2011. Т. 8, №5(168) С. 833-836.
- 9. Increase in the detection efficiency for the $K_L^0 \rightarrow \pi^0 \nu \tilde{\nu}$ decay in the E391 experiment / Stepanenko Yu. Yu., Podolsky S.V., Kurilin A. S. // Physics of Particles and Nuclei Letters. - 2017. - Vol. 14, No. 6 - P. 168–174.

Спасибо за внимание!

Основные положения, выносимые на защиту

- Модернизация и доработка метода восстановления угла попадания γквантов в главный CsI-калориметр установки E391a с использованием обобщённо-регрессионной нейронной сети (GRNN - Generalized Regression Neural Network).
- Процедура восстановления вершины распада и эффективной массы распавшейся частицы X → γγ на основе информации о восстановленных углах попадания γ-квантов в калориметр установки.
- Метод автоматической оптимизации критериев отбора событий в эксперименте E391a, основанный на применении генетического программирования.
- Повторный анализ данных эксперимента E391a с использованием методов восстановления угла попадания γ-кванта в калориметр при помощи нейронной сети и автоматической оптимизации критериев отбора событий на основе генетических алгоритмов.

Восстановление кинематики распада

$$dz = Z_{CSI} - Z_{vtx}.$$

$$r_{12}^2 = d_1^2 + d_2^2 - 2d_1d_2\cos\theta,$$

$$d_1 = \sqrt{r_1^2 + (dz)^2}$$

$$d_2 = \sqrt{r_2^2 + (dz)^2}$$

$$cos\theta = 1 - \frac{M_{\pi^0}^2}{2E_1E_2}$$

$$P_T = \sqrt{\left(P_x^{\pi^0}\right)^2 + \left(P_y^{\pi^0}\right)^2}$$

Генетические операторы

