66	66	2019 г.
Виц	е-директор Ol	ИЯИ
JIL	и мудино	
YTE	ВЕРЖДАЮ	

НАУЧНО-ТЕХНИЧЕСКОЕ ОБОСНОВАНИЕ ОТКРЫТИЯ ТЕМЫ для включения В ПРОБЛЕМНО-ТЕМАТИЧЕСКИЙ ПЛАН ОИЯИ НА 2020–2022 гг.

Шифр темы

Лаборатория нейтронной физики им. И.М. Франка

Отдел исследований и разработок по конденсированным средам

Направление 04 - Физика конденсированных сред; Радиационные и радиобиологические исследования

Наименование темы Создание лаборатории структурных исследований SOLCRYS на синхротроне SOLARIS

Руководитель темы: Норберт Кучерка

Краткая аннотация

Исследование конденсированных сред является одним из столпов исследований в Объединенном институте ядерных исследований. Эти исследования объединяет теоретические подходы Лаборатории теоретической физики им. Н.А. Боголюбова, прикладные исследования наноматериалов в Лаборатории ядерных реакций им. Г.Н. Флерова и в основном ядерные методы с использованием исследовательского реактора в Лаборатории нейтронной физики им. Франка. Особенно в последнем накоплен богатый опыт исследований в области материаловедения, в том числе твердых и мягких конденсированных сред. Тем не менее, важно также признать необходимость применения дополнительных методов, и в первую очередь, рентгеновского рассеяния. Как нейтронное, так и рентгеновское рассеяния способны предоставить динамическую и структурную информацию, хотя принципиальные различия между ними существуют в их взаимодействиях с веществом. Весьма полезный подход к использованию этих двух типов зондов определяется их взаимодополняющей информацией, получаемой на основе рассеяния, что в свою очередь дает явное преимущество в научной деятельности.

Методы исследования основанные на рассеянии, на протяжении десятилетий оказались одними из наиболее широко используемых методов исследования новых материалов (катализаторов, полимеров и т. д.), наноматериалов (наночастицы, нанокомпозиты и т. д.), материалов в экстремальных условиях (сверхпроводники, перовскиты и т. д.) и биоматериалы (белки, ДНК и т. д.). Результаты этих исследований в первую очередь позволяют расширить наши базовые знания в области физики конденсированных сред. Следовательно, использование таких результатов в конечном итоге находит свое место и в различных областях промышленного применения (машиностроение, строительство, химия, фармацевтика и т. д.).

Недавно начатое сотрудничество между ОИЯИ и Польским национальным центром синхротронного излучения SOLARIS предоставляет уникальную возможность получить доступ к современному источнику синхротронного излучения. ОИЯИ предлагает создать новую лабораторию для структурных исследований с использованием синхротронного рентгеновского излучения в SOLARIS,

которая обеспечит прямой доступ для наших ученых (включая все страны-участницы). Концепция новой лаборатории разрабатывается экспертами обоих институтов в рамках их научных программ. Три измерительные станции, которые позволят достичь этой цели, были определены и выбраны для строительства как:

- макромолекулярная рентгеновская кристаллография посвященная дифракционным исследованиям монокристаллов, которая должна работать во всех диапазонах мощностей с использованием фотонов в диапазоне энергий 6-25 кэВ. Используя полный диапазон доступной мощности, можно будет не только получать дифракционные данные в экспериментах, основанных на методе МАD, но также выполнять измерения поглощения рентгеновских лучей (XAS). Исследования на этой станции будут включать стандартную кристаллографию белка (включая МАD) как в прямом, так и в дистанционном режимах.
- малоугловое рентгеновское рассеяние оснащено высококачественной рентгеновской оптикой, позволяющей проводить малоугловые рентгеновские исследования растворов биомакромолекул (BioSAXS) или суспензий наночастиц, а также SAXS-исследования новых наноматериалов (полимерные системы, молекулярные фильтры, нанокомпозиты, жидкие кристаллы и т. д.). Исследования на этой станции будут включать широкий спектр биологических объектов, включая: белки с внутренним нарушением, глобулярные и мембранные белки, макромолекулярные комплексы, вирусы и вирусоподобные частицы, биологические мембраны, липосомы, нуклеиновые кислоты и их комплексы с белками или системами доставки лекарств.
- порошковая дифракция оснащена порошковым дифрактометром с высококачественным линейным или поверхностным детектором. Вся система позволит измерять дифракцию в широком диапазоне температур (60-1500 К) и давлений.

Этапы работы

- 1. Для организации лаборатории SOLCRYS необходимо расширение существующего экспериментального зала. В расширенной части здания будут размещены конечные станции кристаллографической линии, а также лаборатория для подготовки образцов.
- 2. Разработка и развитие технической инфраструктуры в объеме необходимом для установки и правильной эксплуатации исследовательского оборудования лаборатории SOLCRYS.
- 3. Проектирование, приобретение и установка исследовательской инфраструктуры, в том числе:
 - а) разработка, закупка и установка сверхпроводящего вигглера в качестве источника излучения в рентгеновском диапазоне с верхней энергией фотонов не менее 20 кэВ
 - б) проектирование, приобретение и установка исследовательской линии для дифракционных исследований, в том числе:
 - вакуумная система, разделяющая синхротрон и линию так называемый передний конец
 - инфраструктура линии, состоящая из вакуумных систем, систем наведения и контроля луча, оптики и монохроматоров
 - в) проектирование, закупка и установка измерительной станции для дифракционных исследований
 - г) строительство измерительных станций для исследований малоуглового рассеяния рентгеновских лучей (SAXS) и широкоугольного рассеяния рентгеновских лучей (WAXS)
 - д) проектирование и сборка систем управления, а также систем сбора и хранения данных
 - е) строительство объектов для подготовки образцов.

Ожидаемый результат по завершении темы

- 1. Будет создана техническая инфраструктура для лаборатории SOLCRYS.
- 2. В основе источника излучения будет сверхпроводящий вигглер.
- 3. Будет инсталлирована рентгеновская линия для дифракционных исследований.

- 4. Будет инсталлирована рентгеновская линия для исследований рассеяния рентгеновских лучей под малыми углами и широкими углами.
- 5. Появиться лаборатория с оборудованием для подготовки образцов.
- 6. Подготовиться и будет внедрена техническая и организационная часть для доступа к построенной лаборатории SOLCRYS для ученых ОИЯИ (включая все страны-участницы).

Участники от ОИЯИ

Лаборатория	№ <u>№</u> п/п	Ф.И.О.	№ <u>№</u> п/п	Ф.И.О.
ЛНФ		Кучерка Норберт		
		Куклин Александр Иванович		
		Лукин Евгений Валерьевич		

Участвующие страны, институты и организации

Страна или организация	Город	Институт или лаборатория	Участники	Статус
Польша	Краков	СОЛЯРИС	Марек Станкевич Яцек Сзаде	Совместные работы, обмен
				визитами
Польша	Познань	Университет А.	Матей Козак	Совместные
		Мицкевича		работы, обмен
				визитами
Российская	Новосибирск	Институт ядерной	Николай	Договор
Федерация		физики им. Г.И.	Мезенцев	
		Будкера	Виталий Шкаруба	
Республика Беларусь	Минск	Белорусский	Сергей	Совместные
		государственный	Максименко	работы, обмен
		университет	Полина Кужир	визитами

Сроки выполнения работы

Январь 2020 - декабрь 2022

Полная сметная стоимость темы

NºNº	Наименование работ	Полная	Расходы в год (тыс. долл. США)		
п/п		стоимость	1-й	2-й	3-й
			год	год	год
1.	Оборудование	9.061,2	3.020,4	3.020,4	3.020,4
	ВСЕГО	9.061,2	3.020,4	3.020,4	3.020,4

Другие источники финансирования

Смета затрат по теме

№№ статей	Наименование статей бюджета		ВСЕГО 20 <u>20</u> –20 <u>22 </u> гг.	в т.ч. 20 <u>20</u> г.
6	Оборудование		9.061,2	3.020,4
	ВС	СЕГО	9.061,2	3.020,4

СОГЛАСОВАНО:

Главный ученый секретарь ОИЯИ	Директор лаборатории			
<u>"</u>	<u>"</u> <u>"</u> <u>2019</u> г			
Начальник Планово-финансового отдела	Ученый секретарь лаборатории			
<u> </u>				
" <u>2019</u> г.	"			
Начальник Научно-организационного отдела	Экономист лаборатории			
<u> </u>				
<u>"</u>	<u>"</u>			
	Руководитель темы			
	" " 2019 г			