Photon ID in the MPD-ECAL

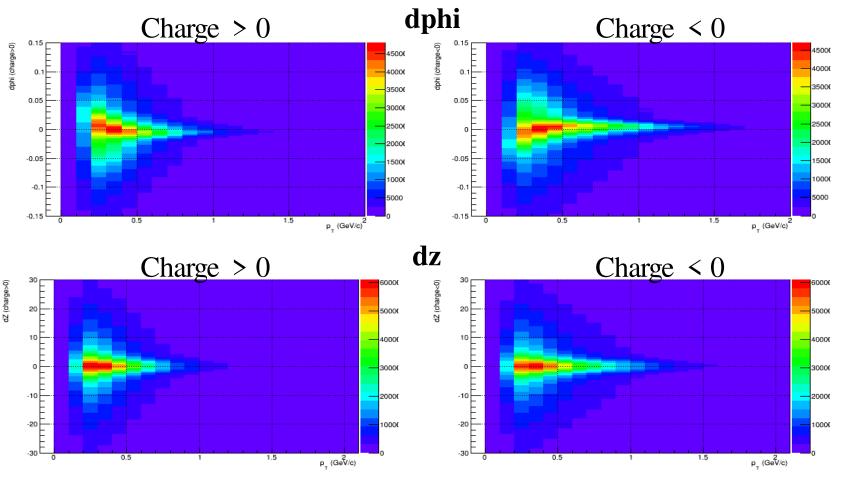
V. Riabov

Outline

- Short reminder
- Photon identification
 - \checkmark Charged track veto
 - ✓ Time of Flight
 - \checkmark Shower shape
- Conclusion

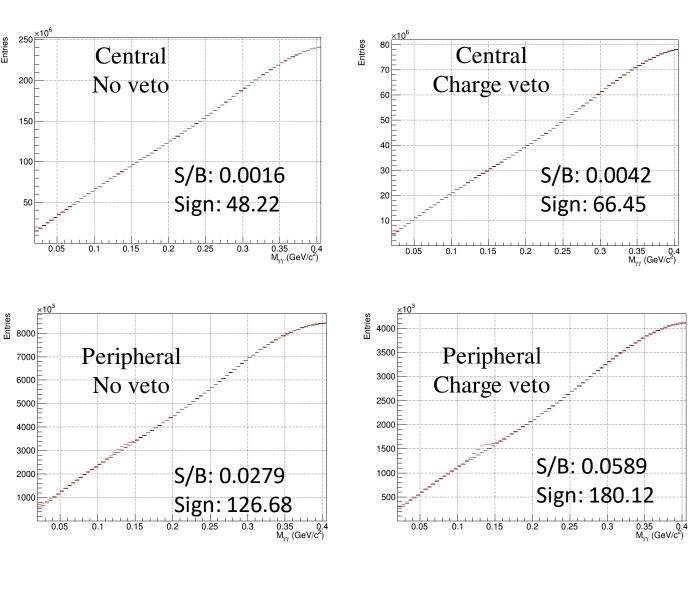
Reminder

- Last meeting: https://indico.jinr.ru/conferenceDisplay.py?confId=867
- Signal averaging and spatial resolution
- Methods of reduction of shower overlap
- Physics performance:
 - $\checkmark \pi^0$ vs p_T & centrality
 - $\checkmark\,$ first observation of η
 - ✓ e/h rejection
 - ✓ K_s , ω no chance for Year-1
- \rightarrow ECAL is a useful detector in many applications


Today

- Identification of e/m signals:
 - \checkmark maximum efficiency for true signals
 - \checkmark high rejection power for hadronic signals
 - ✓ suppression of miss-reconstructed e/m signals (signal merging)
 - ✓ applicability for neutral (γ) and charged particles (e^{\pm})
 - Most common methods:
 - \checkmark charged track veto
 - ✓ time-of-flight
 - \checkmark shower shape

Charge veto cut


Track matching, AuAu@11 (UrQMD)

- Distance to a closest TPC track in dPhi (radians) and dZ (cm) vs. track p_T
- dPhi charge dependent shift at low p_T :
 - \checkmark large incident angles due to magnetic field
 - ✓ different detector response to photons and charged tracks (it is true even for e^{\pm})
- Matchings are to be parametrized vs p_T & charge

6

Charge veto cut efficiency, AuAu@11 (UrQMD)

- $\pi^0 \rightarrow \gamma \gamma$
- $0 < p_T (\text{GeV/c}) < 1$
- Rough veto cut: no tracks in 7x5 cm² vicinity of a cluster
- Charge veto cut is similarly efficient in central (0-5 fm) and peripheral (>10 fm) collisions
- S/B improves by a factor of ~ 2.5
- Charge veto cut reduces number of reconstructed π^0 by 1% in peripheral and by 30% in central collisions

Track matching, summary

• PROS:

 \checkmark effectively rejects signals from primary tracks, improves signal significance

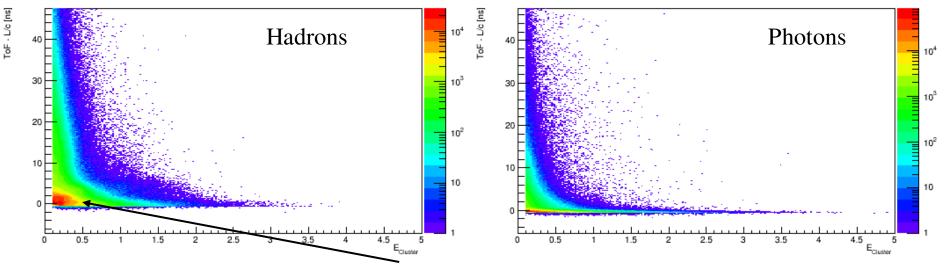
- CONS:
 - ✓ multiplicity dependent efficiency \rightarrow problem of consistency between data and MC
 - ✓ not sensitive to conversion and nuclear reaction in/after the TPC (gas volume, TPC outer walls, TOF etc.)
 - \checkmark does not help to identify electrons
 - \checkmark does not reject miss-reconstructed (merged) e/m clusters

Transparent and effective cut \rightarrow should/can be used

Time of flight cut

Time-of-Flight

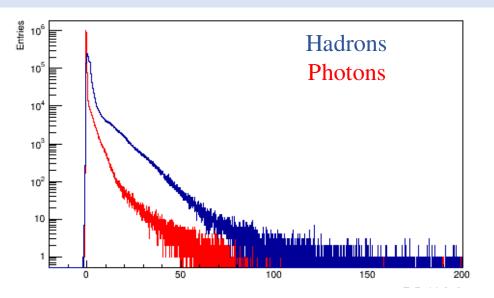
• PROS:

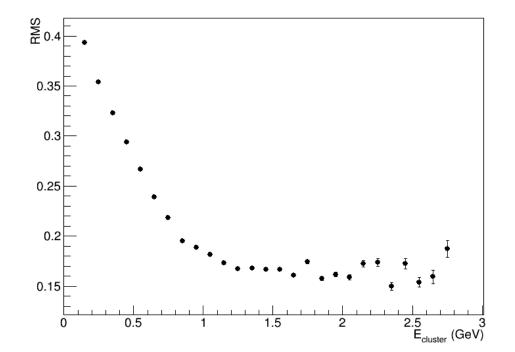

✓ for photons: ToF = $T_{\text{measured}} - L/c \sim 0$, L is a path along a line [vertex → cluster]

✓ effectively rejects signals from low- p_T hadrons (longer flight path, slower)

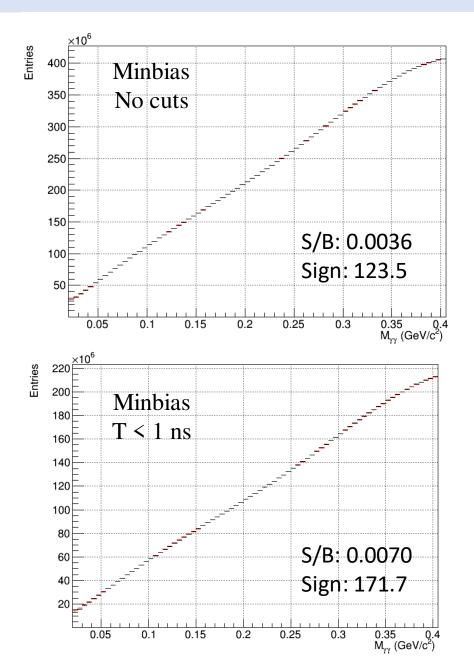
- CONS:
 - \checkmark does not reject miss-reconstructed (merged) photonic clusters
 - \checkmark very limited applicability for electrons
 - \checkmark simulation of time resolution is not realistic/reliable
 - strong dependence on electronics in data
 - ➢ strong dependence on method in MC
 - detector timing calibration usually comes last, after full production, requires huge statistics

Simulation of ToF, AuAu@11 (UrQMD)


- Utilized just one of possible methods, alternatives exist
- Digit:
 - \checkmark Geant point with the smallest time
- Cluster:
 - \checkmark time of tower with maximum energy (local maximum seed for the cluster)
- Simulations account for cluster overlaps & biases
- ToF L/c vs. cluster energy (expect zero for photons):


• Time for hadrons (h^{\pm}) is shifted towards larger values + long tail, as expected

Simulation of ToF, AuAu@11 (UrQMD)

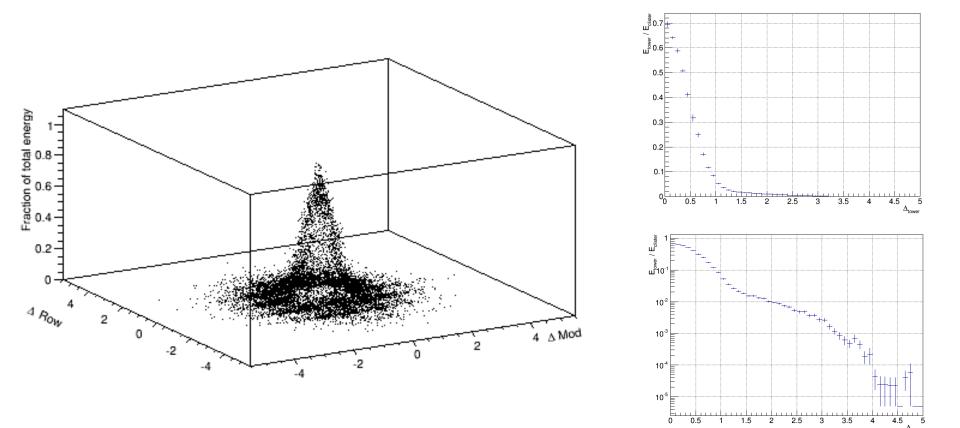

• Time (energy integrated):

• Energy resolution (RMS) for photons vs. energy:

Efficiency of ToF cut, AuAu@11 (UrQMD)

- $\pi^0 \rightarrow \gamma \gamma$
- $0 < p_T (\text{GeV/c}) < 1$
- Timing cut of T < 1 ns is efficient
- S/B improves by a factor of ~ 2
- Timing cut reduces number of reconstructed π^0 by 0.5% only
- Results are most optimistic and not realistic → see next page

Time-of-Flight, summary


- Time of flight cut is very efficient for photons
- Significant uncertainties for the reached realistic/simulated time resolution
- Eventually, time resolution is to be tuned to data \rightarrow prototype tests
- To be more realistic (for now only):
 - \checkmark additionally smear timing by 0.5 ns
 - ✓ use a cautions cut of T < 2 ns

Effective but not transparent cut \rightarrow should be used with caution

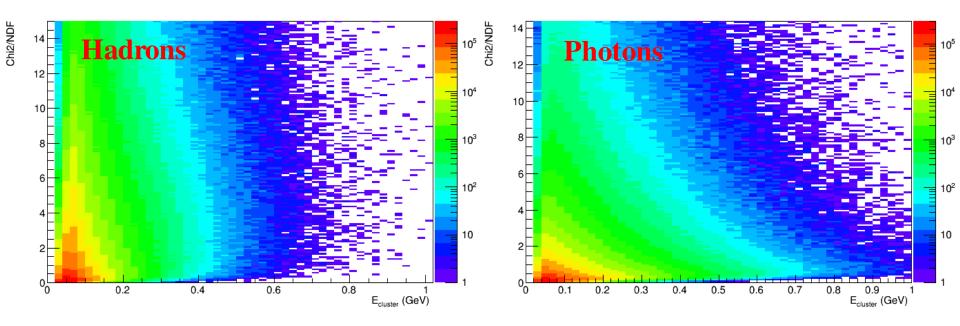
Shower shape

Shower shape in the MPD-ECAL

- Simulated for single photons: , $E_i / \sum E_i : \Delta Mod : \Delta Row$
- Shower shape shows weak energy dependence
- Same shower shape is used to unfold merged clusters at reconstruction

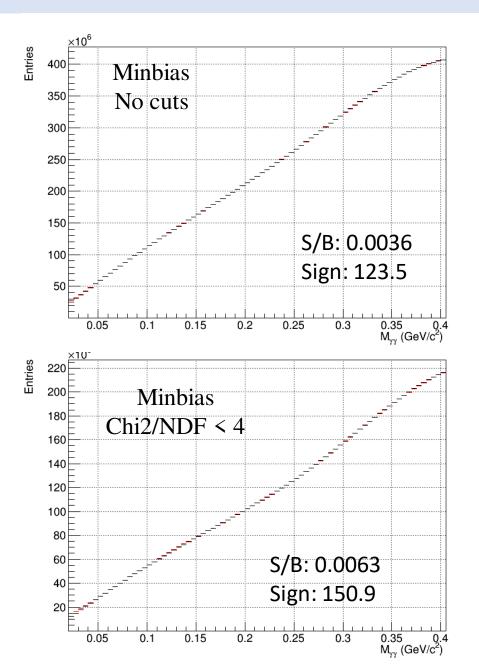
Shower shape cut, Chi2/NDF

• Compare measured distribution of tower energies in a cluster with the expected one:


Chi2 =
$$\sum_{i} \frac{\left(E_{i}^{measured} - E_{i}^{expected}\right)^{2}}{\sigma_{i}^{2}}$$

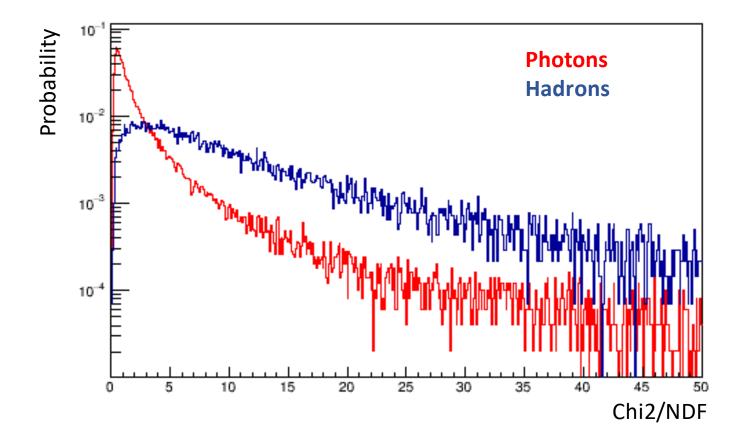
- $E_i^{expected}$ is calculated for each tower based on the known shower shape
- σ_i^2 is expected fluctuation of the energy distribution (empirical tuning):

$$\sigma_i^2 = A \cdot E_i^{expected} \cdot \left(1 - \frac{E_i^{expected}}{E}\right), A = 0.008 \text{ GeV}$$


- σ_i^2 is tuned from simulations (different versions tried)
- NDF number of towers in the cluster

Chi2/NDF distributions, AuAu@11 (UrQMD)

- Shower shapes are obviously different for photons and hadrons
- Shower shape can be analyzed only for clusters with number of towers > 1


Chi2/NDF cut, AuAu@11 (UrQMD)

- $\pi^0 \rightarrow \gamma \gamma$
- $0 < p_T (\text{GeV/c}) < 1$
- Chi2/NDF < 4 cut is almost as efficient as timing cut of T < 1 ns
- S/B improves by a factor of ~ 2
- Chi2/NDF < 4 cut reduces number of reconstructed π⁰ by 16%. At this π⁰ peak becomes narrower → cut mostly rejects pairs with miss-reconstructed clusters

Chi2/NDF cut, AuAu@11 (UrQMD)

- Chi2/NDF cut us most effective at high energies
- Probability for a cluster with E > 0.5 GeV to have a particular value of Chi2/NDF (distributions are normalized to unity)

Chi2/NDF, summary

- PROS:
 - \checkmark based on ECAL information only, available on day-1
 - ✓ rejects hadronic and miss-reconstructed e/m clusters
 - \checkmark works for photons
 - ✓ works for electrons with $p_T > 0.3$ GeV/c
 - \checkmark very efficient at higher energies
- CONS:
 - $\checkmark\,$ not very efficient for small, low-E clusters

Effective and transparent cut \rightarrow should/can be used

Conclusion

- Studied three methods of cluster identification :
 - \checkmark charged track veto
 - ✓ time-of-flight
 - \checkmark shower shape
- All methods work providing comparable efficiency for photon ID
- All methods have advantages and obvious disadvantages/limitations
- Methods are not additive, results are correlated
- Optimal combination of different ID methods \rightarrow to be studied

BACKUP

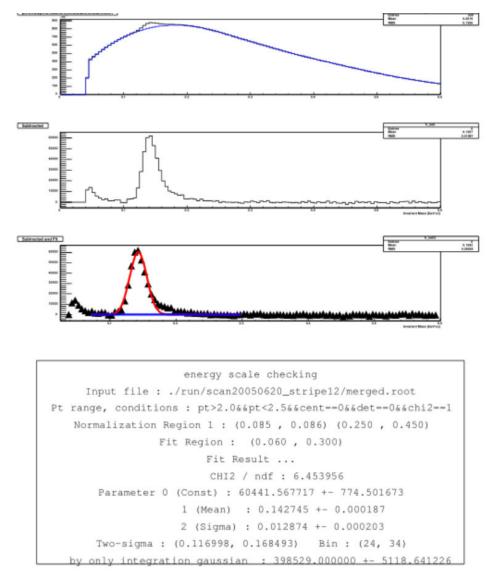


Figure 8: Sample output of π^0 extraction program. This plot shows π^0 -peak measured in the PbSc in the range 2.0 < pT < 2.5 GeV in our most central events (0-5%). The top plot shows the invariant mass distribution in real events along with the scaled mixed events background. The middle plot shows the π^0 after background subtraction, and finally, the bottom plot shows the Gaussian fit to the π^0 peak.

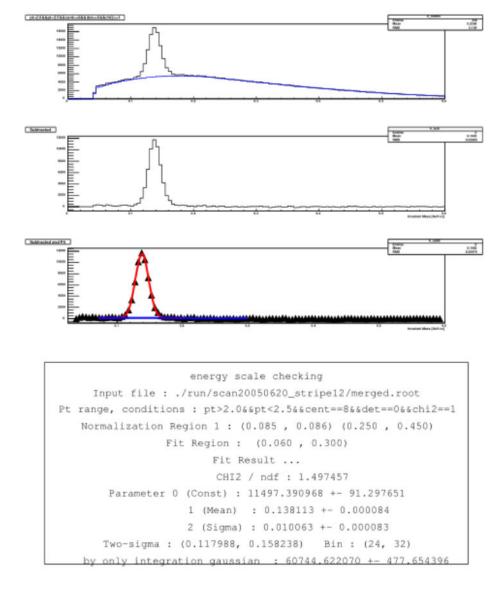
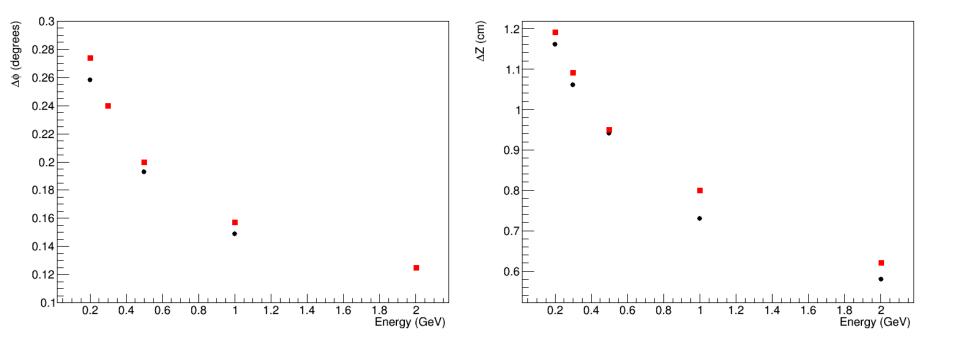
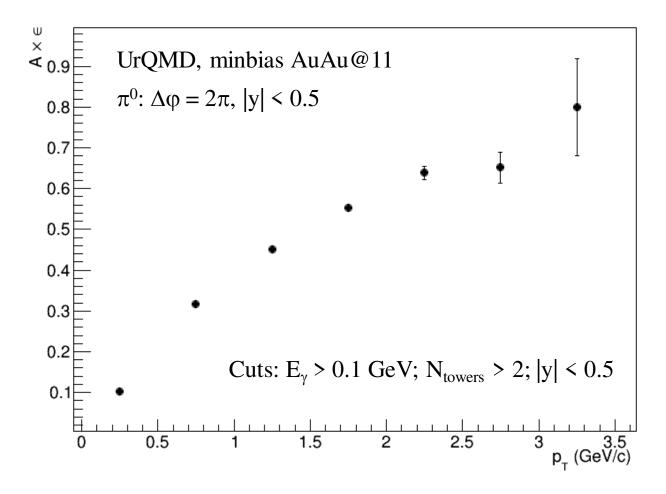



Figure 9: Sample output of the π^0 extraction program showing the π^0 peak as measured in the PbSc in the range 2.0 < pT < 2.5 GeV in our most peripheral (80-93%) events.


Spatial resolution: MPD-ECAL

- Black markers single photons (one per event), realistic vertex distribution
- Red markers UrQMD, minbias AuAu@11, realistic vertex distribution
- High occupancy worsens the spatial resolution, but not dramatically

π^0 , AuAu@11 (UrQMD)

• Аксептанс х эффективность: $\Delta \phi = 2\pi$, $|\eta| < 0.5$, размытие вершины

