Progress in ECAL simulation

V. Riabov for the MPD-ECAL Group

Status on January, 23

- Projective geometry in Geant v.3,4 (ITEF)
- Two versions of digitizer-clusterizer:
 - ✓ by Maxim Martemyanov (ITEF) → basic study of ECAL performance for single photons, not applicable for high multiplicity events
 - ✓ by Alexander Zinchenko (JINR) → study of ECAL performance in realistic multiplicity environment, reconstruction of π^0 mesons in central AuAu@11 (UrQMD)

- Missing parts:
 - \checkmark signal unfolding in high multiplicity events, tuning of signal selection and PID cuts
 - ✓ realistic performance and physics studies

MPD-ECAL program

- Photons (yield, flow, HBT):
 - ✓ inclusive
 - ✓ direct
- Neutral mesons (yield, flow):
 - $\stackrel{\checkmark}{\checkmark} \begin{array}{l} \pi^{0}(\eta) \rightarrow \gamma \gamma \\ \stackrel{\checkmark}{\checkmark} K_{s} \rightarrow \pi^{0} \pi^{0}, \omega \rightarrow \pi^{0} \gamma \end{array}$
- Electron identification, E/p ~ 1:
 - ✓ e^+e^- continuum at low/intermediate mass
 - ✓ LVM $(\rho, \omega, \phi) \rightarrow e^+e^-$
 - $\checkmark e_{\rm HF}$
 - ✓ conversion pairs (alternative reconstruction of photons)
 - ✓ charmonia

Recent progress

- ECAL Software Group formed in February, 2019:
 - ✓ regular meetings with remote access by Vidyo and public agenda on indico, <u>https://indico.jinr.ru/category/276/</u>
 - \checkmark everyone interested is welcome to join (contact me)
- Main tasks:
 - \checkmark actual detector geometry
 - ✓ reconstruction and unfolding of electromagnetic clusters
 - \checkmark cluster matching to reconstructed charged tracks
 - $\checkmark\,$ association of clusters with Monte Carlo contributors
 - ✓ guidance for prototype tests (feedback)
- Final destination:
 - \checkmark fast reconstruction software with friendly interface integrated to 'mpdroot'
 - $\checkmark\,$ documentation, recommendation and examples of use for easy start
 - ✓ basic physics/feasibility studies (to be advanced by Collaboration/PWGs)

Cluster unfolding

- Based on 'known' shape of electromagnetic clusters in the MPD-ECAL:
 - ✓ simulated for single photons: $E_i / \sum E_i : \Delta Mod : \Delta Row$
 - \checkmark shower shape shows weak energy dependence

- Provides higher efficiency of cluster reconstruction and better energy/spatial resolution in high multiplicity environment
- Same shower shape is used for shower shape analysis (γ/e^{\pm} PID)

Chi2 =
$$\sum_{i} \frac{\left(E_{i}^{measured} - E_{i}^{expected}\right)^{2}}{\sigma_{i}^{2}}$$
 $\sigma_{i}^{2} = 0.008 \cdot E_{i}^{expected} \cdot \left(1 - \frac{E_{i}^{expected}}{E}\right)$

Spatial resolution

- Signal averaging: $w_i = \max\left\{0, \left[w_0 + ln\left(\frac{E_i}{E_T}\right)\right]\right\}, w_0 = 3.0$
- Spatial resolution for single photons (black markers)
- Spatial resolution for photons in AuAu@11 simulated by UrQMD (red markers)

• Spatial resolution shows weak multiplicity dependence

Energy resolution

- Energy resolution for single photons and photons in AuAu@11 (UrQMD)
- Energy resolution shows significant multiplicity dependence \rightarrow underlying event serves as noise for reconstructed electromagnetic clusters

Cluster-to-track matching

- Association of clusters with closest tracks (dPhi, dZ, track index)
- Low- p_T tracks, $p_T < 100$ MeV/c, hardly reach the ECAL surface
- dPhi shows charge-dependent shift at low p_T (incidence angle, response to hadrons)

• dZ, not charge sensitive

- Note Logz() scale
- Matchings are parametrized as a function of p_T and charge (black lines in plots are $\pm 2.0 \sigma$)

Photon ID

- Identification of photonic signals in the MPD-ECAL:
 - ✓ charged track veto → no tracks in 2-3 σ vicinity of a cluster
 - ✓ time-of-flight → TOF L/c ~ 0 for photons (< 2 ns, conservative cut)
 - ✓ shower shape → electromagnetic shape of clusters, also works for electrons!
- All three methods are well developed and tested for the MPD-ECAL
- Methods proved to be very efficient for selection of electromagnetic signals
- Efficiency and rejection factors of the cuts are comparable
- Methods are not additive (correlated), best combination of PID cuts is to be decided for each physical analysis

π^0 , η reconstruction

- $\pi^0 \rightarrow \gamma \gamma (BR \sim 99\%)$
- $\eta \rightarrow \gamma \gamma (BR \sim 39\%)$
- Event selection:
 - ✓ minbias AuAu@11 by UrQMD3.4
 - \checkmark |Z_{vrtx}| < 50 cm
- Photon selection:
 - \checkmark clusterizer with unfolding
 - $E\gamma > 0.1 \text{ GeV}$
 - ✓ number of towers > 2
 - ✓ TOF ≤ 2 ns
- Pair cuts:
 - ✓ $|\mathbf{y}| < 0.5$

π^0 reconstruction efficiency (|y|<0.5)

π^0 , reconstructed peaks

- Combinatorial background is estimated using event mixing
- Signal can be reconstructed from low momentum, ~ 0.25 GeV, at all centralities
- Cluster merging starts at ~ 6 GeV/c

η, reconstructed peaks

- Combinatorial background is estimated using event mixing
- Signal can be reconstructed from low momentum, ~ 0.25 GeV, at all centralities
 ¹²
- High-p_T reach is limited by available statistics

Electron ID

- Primary e-ID detectors are the TPC and TOF
- MPD-ECAL can help to clean up sample of selected electrons:
 - ✓ tracks matched to ECAl within 2-3 σ
 - ✓ E/p ~ 1.0
- Limitations of the MPD-ECAL for e-ID:
 - ✓ low- p_T tracks do not reach ECAL, $p_T < 0.1$ GeV/c
 - ✓ MIP hadrons leave ~ 0.2 GeV in the ECAL → low-pT hadrons tend to have E/p ~ 1
 - showers from low-p_T electrons often split up in several sub-clusters and have elongated shape (can not be identified as electromagnetic showers by shape analysis)
- ECAL becomes effective at $p_T > 0.2-0.3 \text{ GeV/c}$

Electron ID, efficiency

- AuAu@11 (UrQMD), realistic vertex distribution
- Track selections and PID cuts:
 - ✓ reconstructed tracks: nTPC_hits > 39, DCA_xyz < 3σ
 - ✓ TPC-TOF eID: eID_probability > 0.75
 - ✓ ECAL eID: tracks matched to ECAl within $3\sigma + E/p$, 3σ cut (Gaussian main peak)

- Efficiency drops by $\times 0.5$ (cluster missassociation, wide E/p ratio)
- With ECAL eID, ratio e/h increases by $\times 10$ at 0.5 GeV/c and by $\times 100$ at 1.2 GeV/c

Electron ID, efficiency for hadrons

- AuAu@11 (UrQMD), realistic vertex distribution
- Track selections and PID cuts: same as in previous slide

Acceptance x efficiency (|y| < 0.5)

Tracks Tracks + TPC-TOF eID Tracks + TPC-TOF-ECAL eID

Di-electron spectrum, first look

- AuAu@11 (UrQMD), realistic vertex distribution, 1.5 M events
- LVM \rightarrow e⁺e⁻, vector mesons are weighted to have zero generated width (to be seen)
- Track selections and PID cuts:
 - ✓ reconstructed tracks: nTPC_hits > 39, DCA_xyz < 3σ , pair conversion cuts
 - ✓ TPC-TOF eID: eID_probability > 0.75
 - ✓ ECAL eID: tracks matched to ECAl within $3\sigma + E/p$, 3σ cut (Gaussian main peak)

Data (TPC-TOF eID) Mixed event background True cocktail (π⁰, η, ρ, ω, φ)

MPD DAC Meeting, 18.06.2019

Di-electron spectrum, first look

- AuAu@11 (UrQMD), realistic vertex distribution, 1.5 M events
- LVM \rightarrow e⁺e⁻, vector mesons are weighted to have zero generated width (to be seen)
- Track selections and PID cuts: same as in previous slide
- ECAL improves S/B ratio for LVM by a factor of 5 for p_T -integrated M_{ee} spectrum
- 10M events is a minimum data sample for detailed study of e⁺e⁻ continuum

Conversion

- UrQMD, minbias AuAu@11, realistic vertex distribution, 10M events
- Conversions on the beam pipe and inner TPC vessels can be used to collect a clean sample of photons
- Competing method of γ , π^0 and η reconstruction, especially at low momentum
- Performance can be further improved by using ECAL ePID

Neutral mesons through conversion, π^0

- minbias AuAu@11, UrQMD; $\pi^0 \rightarrow \gamma\gamma \rightarrow (e^+e^-)(e^+e^-)$
- Smaller peak width (better energy resolution) and S/B at low momentum

Near future

- New and more realistic MPD-ECAL geometry:
 - new tower shapes based on two milling angles, new geometrical sizes and positions
 - ✓ solid containers for ECAL modules made from carbon composite medium (total number equal to 25)
 - \checkmark new power frame to mount ECAL containers
 - \checkmark expected in a month
- New geometry will need new digitizer and tuning of the clusterizer

Conclusions

- ECAL enhances physical program of the MPD experiment
- ECAL Software Group is operational and productive
- Basic physical studies will be performed in the Group, others will be advanced by PWGs
- Cross-check of the simulated detector parameters with the beam test results is important

BACKUP

Neutral mesons through conversion, η

- minbias AuAu@11, UrQMD; $\eta \rightarrow \gamma\gamma \rightarrow (e^+e^-)(e^+e^-)$
- first observation of η signal (3 σ bump)

π^0 , mass and width

- Mass and width are multiplicity dependent
- Cluster merging starts at ~ 6 GeV/c \rightarrow increasing masses and widths
- Reconstruction efficiency drops to ~ 0 at 15 GeV/c

