

## **BM@N first results**



### M.Kapishin for the BM@N Collaboration





## **NICA Heavy Ion Complex**



BM@N: heavy ion energy 1 - 4.5 GeV/n, beams: p to Au, Intensity ~few 10<sup>6</sup> /s (Au)



![](_page_2_Picture_0.jpeg)

## Three meetings on formation of the MPD and BM@N Collaborations

![](_page_2_Picture_2.jpeg)

carried out in Dubna in 2018 and April 2019

![](_page_2_Picture_4.jpeg)

#### BM@N Collaboration: 21 Institutions from 11 countries, 230 participants

**M.Kapishin** 

## **Heavy Ion Collision Experiments**

![](_page_3_Figure_1.jpeg)

![](_page_4_Picture_0.jpeg)

8

NN

0.2

Ъ

0 0

VS-VSth (GeV)

#### I. In A+A collisions at Nuclotron energies:

**Opening thresholds for strange and multistrange hyperon production** 

10-3

10-4

10-5

10-6

EC+C Ni+Ni

□ 0 K\*

→ strangeness at threshold

Need more precise data for strange mesons and hyperons, multi- variable distributions, unexplored energy range

Collective flows v<sub>1</sub>, v<sub>2</sub>

II. In *p+p*, *p+n*, *p+A* collisions:

Adron production in elementary reactions and ,cold' nuclear matter as ,reference' to pin down nuclear effects

![](_page_4_Figure_9.jpeg)

BM@N

**M.Kapishin** 

**BM@N** experiment

-0.2

## Heavy-ions A+A: Study of the EoS with strangeness

![](_page_5_Picture_1.jpeg)

The nuclear dynamics is defined by the
 EoS (via density dependent NN-interaction)

**Observables sensitive to EoS:** collective flow (v<sub>1</sub>,v<sub>2</sub>,...) particle ratios

Direct information – proton v<sub>1</sub>,v<sub>2</sub> Alternative information – via strangeness

□ Experience from SIS and AGS : ratio of K<sup>+</sup> yield Au+Au/C+C at SIS energies and proton v<sub>1</sub>,v<sub>2</sub> favor a soft EoS (somewhat sensitive to the details of models)

Density dependence of the EoS can be studied in BM@N by a beam energy scan

![](_page_5_Picture_7.jpeg)

![](_page_5_Figure_8.jpeg)

### Explore high density baryonic matter

**Baryonic densities in central Au+Au collisions** 

![](_page_6_Figure_2.jpeg)

I.C. Arsene at al., Phys. Rev. C75 (2007) 34902.

## EOS of symmetric and asymmetric nuclear matter

Ch. Fuchs and H.H. Wolter, EPJA 30 (2006) 5

![](_page_7_Figure_2.jpeg)

EOS: relation between density, pressure, temperature, energy and isospin asymmetry

$$\mathsf{E}_{\mathsf{A}}(\rho,\delta) = \mathsf{E}_{\mathsf{A}}(\rho,0) + \mathsf{E}_{\mathsf{sym}}(\rho) \cdot \delta^2$$

with  $\delta = (\rho_n - \rho_p)/\rho$ 

Curvature defined by nuclear incompressibility:  $K = 9\rho^2 \delta^2 (E/A)/\delta \rho^2$ 

Study symmetric matter EOS at  $\rho$ =3-5  $\rho$ <sup>0</sup>  $\rightarrow$  elliptic flow of protons, mesons and hyperons

 $\rightarrow$  sub-threshold production of strange mesons and hyperons

Constrain symmetry energy E<sub>sym</sub>  $\rightarrow$  elliptic flow of neutrons vs protons  $\rightarrow$  sub-threshold production of particles with opposite isospin 8 **BM@N** experiment

#### **M.Kapishin**

![](_page_8_Picture_0.jpeg)

## Heavy-ions A+A: Hypernuclei production

BM@N

![](_page_8_Figure_2.jpeg)

**In heavy-ion reactions:** production of hypernuclei through coalescence of  $\Lambda$  with light fragments enhanced at high baryon densities

**D** Maximal yield predicted for  $\sqrt{s}=4-5A$  GeV (stat. model) (interplay of  $\Lambda$  and light nuclei excitation function)

BM@N energy range is suited for search of hyper-nuclei

M.Kapishin

![](_page_9_Picture_0.jpeg)

## Nuclotron and BM@N beam line

![](_page_9_Picture_2.jpeg)

![](_page_9_Picture_3.jpeg)

26 elements of magnetic optics:

- $\rightarrow$  8 dipole magnets
- $\rightarrow$  18 quadruple lenses

Requirements for Au beam:

Minimum dead material

 $\rightarrow$  need to replace air intervals / foils with

![](_page_9_Figure_10.jpeg)

## Configuration of BM@N detector for heavy ion program (without beampipe)

BM@N

![](_page_10_Figure_1.jpeg)

![](_page_11_Figure_0.jpeg)

- Central tracker inside analyzing magnet  $\rightarrow$  6 GEM detectors 163 x 45  $cm^2$  and forward Si strip detectors for tracking
- ToF system, trigger detectors, hadron and EM calorimeters, outer tracker

 $\rightarrow$  Partial coverage of BM@N design configuration

**Program:** 

- Measure inelastic reactions Ar (Kr) + target  $\rightarrow$  X on targets AI, Cu, Sn, Pb
- $\rightarrow$  Hyperon production measured in central tracker (Si + GEM)
- $\rightarrow$  Charged particles and nuclear fragments identified with ToF
- $\rightarrow$  Gamma and multi-gamma states identified in ECAL

## + analyze data from previous technical run with Carbon beam of 3.5 - 4.5 GeV/n

M.Kapishin

![](_page_12_Picture_0.jpeg)

## BM@N set-up in Ar, Kr run, March 2018

![](_page_12_Picture_2.jpeg)

**CSC** chamber

![](_page_12_Picture_4.jpeg)

#### **ToF-400** installation

![](_page_12_Picture_6.jpeg)

![](_page_12_Picture_7.jpeg)

![](_page_12_Picture_8.jpeg)

BM@N

New detector components: 6 big GEMs, trigger detectors, 3 Si detectors, CSC chamber, full set of ToF detectors

![](_page_12_Picture_10.jpeg)

![](_page_13_Picture_0.jpeg)

## BM@N setup behind magnet, 2018

![](_page_13_Picture_2.jpeg)

![](_page_13_Picture_3.jpeg)

![](_page_14_Picture_0.jpeg)

### Silicon + GEM central tracker in Ar, Kr runs

![](_page_14_Picture_2.jpeg)

![](_page_14_Picture_3.jpeg)

#### **3 Forward Si detectors and 6 GEM detectors**

![](_page_14_Picture_5.jpeg)

Ar+Cu interaction reconstructed in central tracker

![](_page_14_Picture_7.jpeg)

![](_page_14_Picture_8.jpeg)

M.Kapishin

![](_page_15_Picture_0.jpeg)

## ToF-400 and ToF-700 based on mRPC

![](_page_15_Picture_2.jpeg)

![](_page_15_Figure_3.jpeg)

![](_page_15_Picture_4.jpeg)

ToF-700 wall

![](_page_15_Figure_6.jpeg)

## **BM@N** Status of TOF-400 particle identification

β

#### First expected results:

- Ratio of K<sup>+</sup>/π<sup>+</sup> in Ar nucleus interactions at beam kinetic energy of 3.2 AGeV
- Ratio of K<sup>+</sup>/π<sup>+</sup> in Kr nucleus interactions at beam kinetic energy of 2.4 AGeV

![](_page_16_Figure_4.jpeg)

![](_page_16_Figure_5.jpeg)

## BM@N BMN & SRC program

## to study SRC with hard inverse kinematic reactions

![](_page_17_Figure_2.jpeg)

#### First SRC @ BMN run in March 2018

TEL AUIU UNIVERSITY

**TECHNISCHE** 

UNIVERSITÄT DARMSTADT

![](_page_17_Picture_4.jpeg)

#### **Objectives:**

- identify 2N-SRC events with inverse kinematics
- study isospin decomposition of 2N-SRC
- study A-2 spectator nuclear system

#### **First expected result:**

 Study A-2 residual system after SRC knockout

#### **Identification of A-2 system**

![](_page_17_Figure_12.jpeg)

#### **M.Kapishin**

#### **Λ hyperon production in 4A GeV Carbon-BM@N nucleus interactions**

 $\Lambda \rightarrow p\pi^{-}$  decay reconstruction in Si+GEM tracker in C+C interaction

![](_page_18_Picture_2.jpeg)

![](_page_18_Figure_3.jpeg)

#### Event topology:

- $\checkmark$  **PV** primary vertex
- ✓  $V_0$  vertex of hyperon decay
- $\checkmark$  *dca* distance of the closest approach
- ✓ *path* decay length

#### Analysis without PID

![](_page_19_Figure_0.jpeg)

![](_page_20_Figure_0.jpeg)

- Yield of  $\Lambda$  in C+C, C+AI, C+ Cu minimum bias interactions in dependence on rapidity y\* in c.m.s.  $y^* = y_{lab}$ -1.17
- ► y\* spectrum becomes softer with increase of target atomic weight
- Data compared with predictions of DCM-QGSM and UrQMD models
- ► DCM-QGSM overestimates data in C+C interactions, but more compatible with data measured with heavier targets (C+Cu)

## ► UrQMD predictions are below data for heavier targets, but in better agreement for C+C

M.Kapishin

## Λ hyperon invariant p<sub>T</sub> spectra in 4A GeV BM@N Carbon-nucleus interactions

![](_page_21_Figure_1.jpeg)

 Fit of invariant p<sub>T</sub> spectra of Λ yields in C+C, C+AI, C+Cu minimum bias interactions by function:

$$1/p_T \cdot d^2 N/dp_T dy = A \cdot exp(-(m_T - m_\Lambda)/T), \quad m_T = \sqrt{(m_\Lambda^2 + p_T^2)}$$

• Inv slope *T* in comparison with predictions of DCM-QGSM and UrQMD models

|                  | <i>T</i> [MeV] <i>C</i> + <i>C</i> | <i>T</i> [MeV] <i>C</i> + <i>Al</i> | <i>T</i> [MeV] <i>C</i> + <i>Cu</i> |
|------------------|------------------------------------|-------------------------------------|-------------------------------------|
| BM@N Preliminary | $98 \pm 24 \pm 25$                 | $157\pm24\pm12$                     | $160 \pm 27 \pm 21$                 |
| DCM-QGSM         | 122                                | 129                                 | 131                                 |
| UrQMD            | 107                                | 127                                 | 132                                 |

**M.Kapishin** 

![](_page_22_Picture_0.jpeg)

## A hyperon yield and cross section in 4 AGeV Carbon-nucleus interactions

![](_page_22_Picture_2.jpeg)

|                                                                                            | C+C                              | C+Al                                | C+Cu                           |
|--------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------|--------------------------------|
| Λ yield in the<br>measured kinematic<br>range 0.1< $p_T$ <1.05<br>GeV/c, 0.03< $y^*$ <0.93 | $0.0214 \pm 0.0023 \pm 0.0024$   | $0.0431 \pm 0.0034 \pm 0.0035$      | $0.0561 \pm 0.0039 \pm 0.0047$ |
| Λ yield in the full<br>kinematic range, $M_{\Lambda}^{(1)}$<br>N part DCM-QGSM             | $0.0589 \pm 0.0063 \pm 0.0065$ 9 | $0.133 \pm 0.010 \pm 0.011$<br>13.4 | $0.239 \pm 0.017 \pm 0.020$ 23 |
| Λ min bias cross<br>section $σ_Λ^{2)}$ [mb]                                                | $48.9 \pm 5.2 \pm 5.1$           | $167 \pm 13 \pm 13$                 | $427 \pm 30 \pm 29$            |

- 1) Used averaged extrapolation factor from DCM-QGSM and UrQMD models
- 2)  $\sigma_{\Lambda} = M_{\Lambda} \cdot \sigma_{\text{inel}}$

![](_page_23_Figure_0.jpeg)

 $\rightarrow$  add results for 3.5 and 4.5 AGeV Carbon beam data

## Forward Si, STS and GEM detectors

![](_page_24_Picture_1.jpeg)

![](_page_24_Figure_2.jpeg)

2 times better momentum resolution

For heavy ion beam intensities few  $10^6$  Hz  $\rightarrow$  keep 4 STS + 7 GEM

2371.8

1459.2

 $\rightarrow$  fast FEE and readout electronics

![](_page_25_Picture_0.jpeg)

## Beam parameters and setup at different stages of BM@N experiment

BM@N

| Year                         | 2016                 | 2017<br>spring       | 2018<br>spring                                   | fall 2020-<br>2021                             | 2022<br>and later                                             |
|------------------------------|----------------------|----------------------|--------------------------------------------------|------------------------------------------------|---------------------------------------------------------------|
| Beam                         | d( <b>↑</b> )        | С                    | Ar,Kr,<br>C(SRC)                                 | C,Kr,Xe                                        | up to Au                                                      |
| Max.inten<br>sity, Hz        | 0.5M                 | 0.5M                 | 0.5M                                             | 0.5M                                           | 2M                                                            |
| Trigger rate,<br>Hz          | 5k                   | 5k                   | 10k                                              | 10k                                            | 20k→50k                                                       |
| Central<br>tracker<br>status | 6 GEM half<br>planes | 6 GEM half<br>planes | 6 GEM half<br>planes +<br>3 forward Si<br>planes | 7 GEM full<br>planes +<br>forward Si<br>planes | 7 GEM full<br>planes +<br>forward Si +<br>large STS<br>planes |
| Experiment<br>al status      | technical<br>run     | technical<br>run     | technical<br>run+physics                         | stage1<br>physics                              | stage2<br>physics                                             |

![](_page_26_Picture_0.jpeg)

## **BM@N present status and next plans**

![](_page_26_Picture_2.jpeg)

- BM@N scientific program comprises studies of nuclear matter in intermediate range between SIS-18 and NICA/FAIR
- BM@N technical runs performed with carbon beam of T<sub>0</sub> = 3.5 4.5 AGeV, Ar beam of 3.2 AGeV and Kr beam of 2.4 (2.9) AGeV on fixed targets
- Measurement of Short Range Correlations performed with inverse kinematics: C beam + H<sub>2</sub> target
- First physics results obtained on Λ yields in C + C, AI, Cu interactions
- Reconstruction and analysis of interactions of Ar, Kr beams with targets and SRC data are progressing
- BM@N is on the way for heavy ion high intensity runs in 2020 and later:
- Extend central tracker with large aperture STS silicon detectors in front of GEM setup (in collaboration with CBM)

# Thank you for attention!

**M.Kapishin** 

![](_page_28_Picture_0.jpeg)

### Study of EoS: Collective flow of identified particles

Azimuthal angle distribution:  $dN/d\phi \propto (1 + 2v_1 \cos \phi + 2v_2 \cos 2\phi)$ 

~3

-5

Nuclear incompressibility:  $K = 9\rho^2 \delta^2(E/A)/\delta\rho^2$ 

![](_page_28_Figure_4.jpeg)

Pmax/po:

![](_page_28_Figure_5.jpeg)

P. Danielewicz, R. Lacey, W.G. Lynch, Science 298 (2002) 1592

![](_page_28_Figure_7.jpeg)

#### **M.Kapishin**

 $\rho_{max}/\rho_0$ :

![](_page_29_Picture_0.jpeg)

## GEM tracker: acceptance / momentum resolution / detection efficiency

![](_page_29_Picture_2.jpeg)

#### Momentum resolution / detection efficiency

BM@N

## Upgrade of central tracker with CBM STS BM@N

#### STS-1

![](_page_30_Figure_2.jpeg)

Team: LHEP JINR, MSU, GSI, Tübingen University

STS-2

![](_page_30_Figure_5.jpeg)

**M.Kapishin** 

Total: 292 modules, ~600k channels

![](_page_30_Figure_9.jpeg)

![](_page_31_Figure_0.jpeg)

measured kinematic range  $0.1 < p_T < 1.05 \text{ GeV/c}, 0.03 < y^* < 0.93$ 

- Yield of  $\Lambda$  in C+C, C+AI, C+ Cu minimum bias interactions in dependence on transverse momentum  $p_T$
- Data compared with predictions of DCM-QGSM and UrQMD models
- ► shapes of p<sub>T</sub> spectra are compatible with models

![](_page_32_Figure_0.jpeg)

- Focus on tests and commissioning of central tracker inside analyzing magnet  $\rightarrow$  5 GEM detectors 66 x 41cm<sup>2</sup> + 2 GEM detectors 163 x 45 cm<sup>2</sup> and 1 plane of Si detector for tracking
- Test / calibrate ToF, T0+Trigger barrel detector, full ZDC, part of ECAL

#### **Program:**

- Trace beam through detectors, align detectors, measure beam momentum in mag. field of 0.3 0.85 T
- Measure inelastic reactions C + target  $\rightarrow$  X with 3.5 4.5 AGeV carbon beam on targets C, AI, Cu, Pb