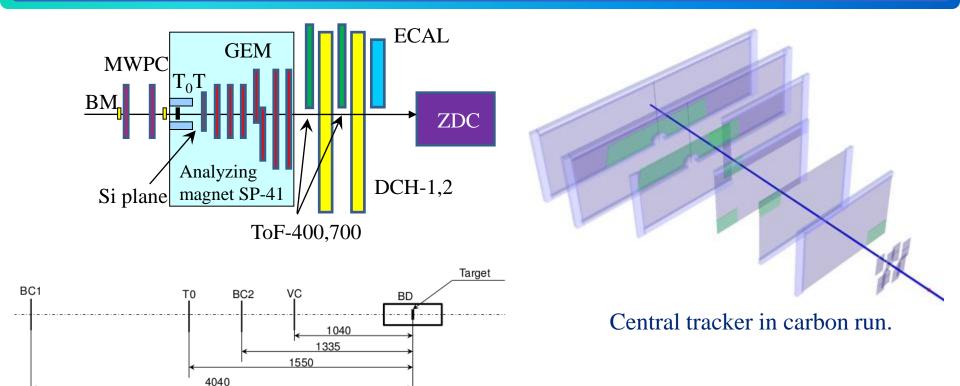


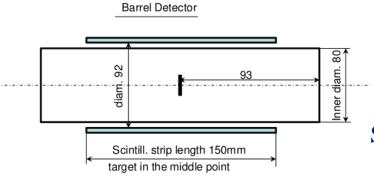
Production of Λ hyperons in interactions of the 4A GeV carbon beam with *C, Al, Cu* targets

A.Zinchenko, Yu.Gornaya, M.Kapishin, G.Pokatashkin, I.Rufanov, V.Vasendina

for the BM@N collaboration VBLHEP, JINR, Dubna, Russia

BM@N collaboration analysis meeting 30.05.2019


Outline



- 1. Technical run with carbon beam (March 2017)
 - ✓ BM@N detector set-up
- 2. Data analysis (C+C, C+Al, C+Cu at 4A GeV)
 - ✓ Selection criteria
 - \checkmark Reconstructed signal of Λ (d*N*/d*Y* & d*N*/ p_T spectra)
 - ✓ Data MC agreement: multiplicity, momentum spectra
 - \checkmark Decomposition of Λ reconstruction efficiency
 - ✓ Trigger and mean impact parameters
 - \checkmark Cross section and yields of Λ
 - \checkmark Reconstructed p_T spectra of Λ and extracted temperature
 - ✓ Systematic errors and extrapolation factors
- 3. Summary and plans

BM@N set-up in carbon run

Schematic view and positions of the beam counters, barrel detector and target.

Event selection criteria

✓ Number of tracks in selected events: pos>=1, neg>=1;

✓ Beam halo, pile-up suppression within the readout time window: number of signals in the start detector: T0=1, number of signals in the beam counter: BC2=1, number of signals in the veto counter around the beam: Veto=0;

✓ Trigger condition in the barrel multiplicity detector: number of signals BD>=2 or BD>=3 (run dependent).

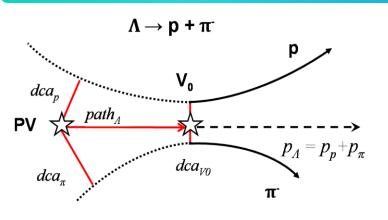

Cut	1	2	3	4
T0 == 1	+			+
BC2 == 1		+		+
VET0 == 0			+	+
\overline{C}	77.0	82.7	82.1	67.4
Al	82.4	87.5	86.0	74.0
Cu	86.0	89.1	87.9	77.9
Ph	95 O	80.6	89.2	70.0

Table 1. Number of triggered events, beam fluxes and integrated luminosities collected in the carbon beam of 4A GeV.

Interactions (target thickness)	Number of triggers / 10 ⁶		Integrated luminosity / 10 ³⁰ cm ⁻²
C+C (9mm)	4.57	6.99	7.16
C+Al (12mm)	5.35	4.41	3.11
<i>C</i> + <i>Cu</i> (5mm)	5.31	4.57	1.98

A hyperon selection criteria

Event topology:

- ✓ PV primary vertex
- \checkmark V_0 vertex of hyperon decay
- \checkmark dca distance of the closest approach
- ✓ *path* decay length

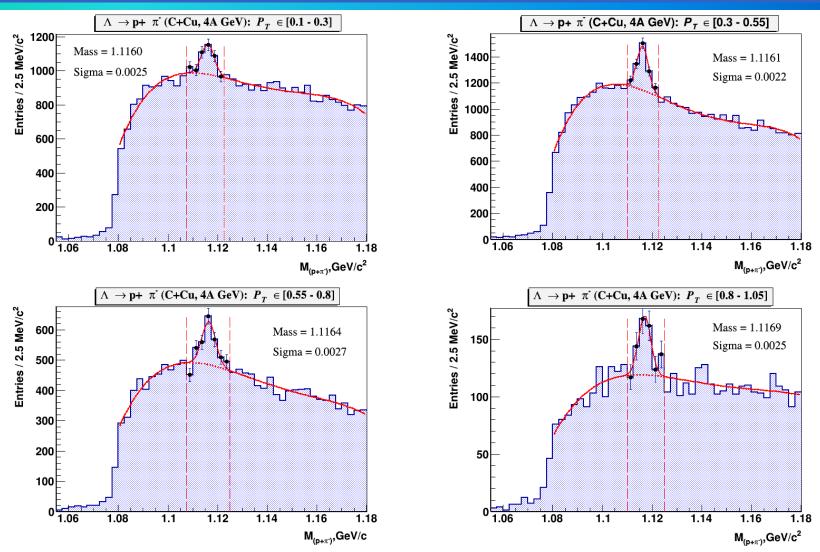

- ✓ Number of hits in 1 Si + 6 GEM per track > 3
- ✓ Momentum range of positive tracks: $0.5 < p_{pos} < 3.9 \text{ GeV/c}$
- ✓ Momentum range of negative tracks: $0.3 < p_{neg} < 1.8 \text{ GeV/c}$
- ✓ Distance of minimum approach of *V0* tracks: *dca*< 1 cm
- ✓ Distance between *V0* and primary vertex: path > 2.5 cm

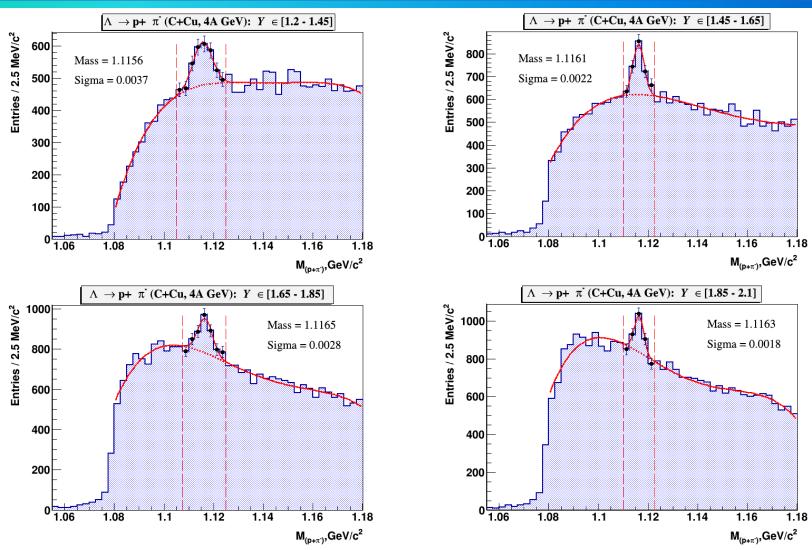
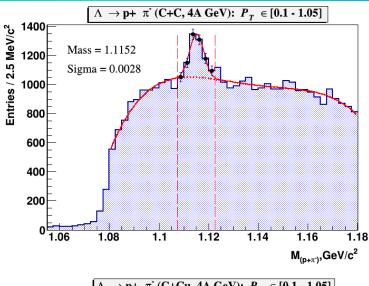
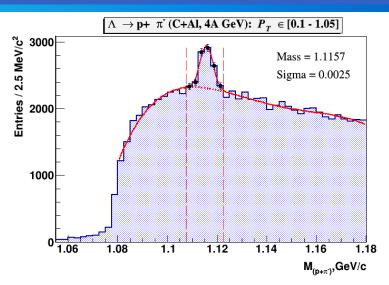
Table2. Reconstructed signals of Λ in p_T and y bins.

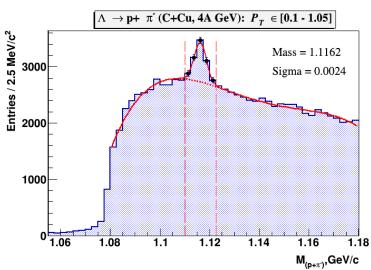
Target	Y intervals			Target		p_T intervals	
Interval	C	Al	Cu	Interval	C	Al	Cu
1.2-1.45	103±32	265±54	591±83	0.1-0.3	454±82	652±101	625±103
1.45-1.65	250±52	510±70	601±72	0.3-0.55	296±53	717±96	797±97
1.65-1.85	338±69	550±87	576±93	0.55-0.8	128±37	462±78	379±74
1.85-2.1	253±61	443±87	371±81	0.8-1.05	no	96±47	133±53

Signal of Λ in C+Cu interaction

Fig. 4. $\Lambda \rightarrow p\pi^-$ signal reconstructed in C+Cu interaction in bins of the transverse momentum p_T . The signal is fitted by a Gaussian function, the background is fitted by the 4th degree polynomial.

Signal of Λ in C+Cu interaction


Fig. 7. $\Lambda \rightarrow p\pi^-$ signal reconstructed in C+Cu interaction in bins of the rapidity y. The signal is fitted by a Gaussian function, the background is fitted by the 4th degree polynomial.

Signal of Λ in C+C, C+Al, C+Cu interactions

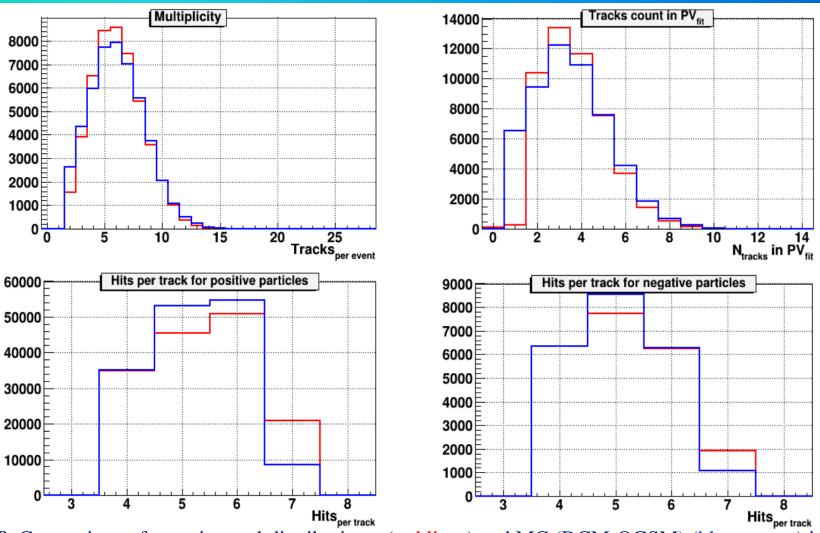
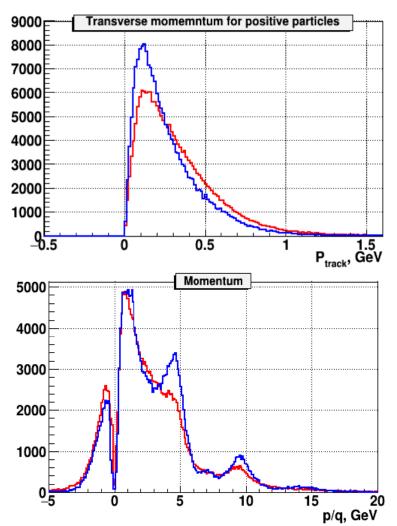


Fig. 8. $\Lambda \rightarrow p\pi$ signal reconstructed in interactions of the carbon beam with targets: C, Al, Cu.

Comparison of experimental data and MC



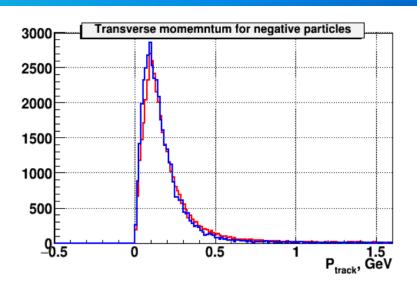
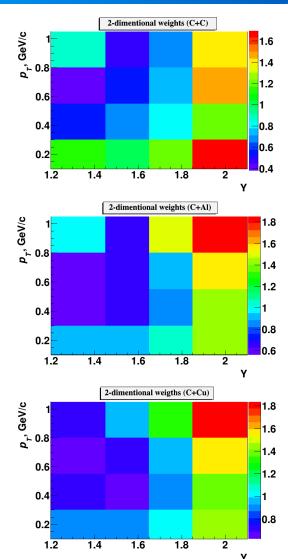


Fig.9. Comparison of experimental distributions (red lines) and MC (DCM-QGSM) (blue curves) in C+Cu interaction: track multiplicity per event; number of tracks reconstructed in the primary vertex; number of hits per positive particle reconstructed in 1 Si + 6 GEM detectors; number of hits per negative particle.

Comparison of experimental data and MC

Fig. 10. Comparison of experimental data (red curves) and MC (DCM-QGSM) simulation (blue curves) in C+Cu interaction: transverse momentum of positive particles; transverse momentum of negative particles; total momentum of negative (p/q<0) and positive particles (p/q>0).

Decomposition of efficiency


Table 3. Decomposition of Λ reconstruction efficiency.

Reconstruction efficiency	$arepsilon_{rec} = arepsilon_{acc} \cdot arepsilon_{emb} \cdot arepsilon_{cuts}$
A geometrical acceptance in GEM detectors	$\varepsilon_{acc} = N_{acc} (y, p_T) / N_{gen} (y, p_T)$
Efficiency of reconstruction of embedded Λ	$\varepsilon_{emb} = N_{emb}(y, p_T) / N_{acc}(y, p_T)$
Efficiency of Λ selection: kinematical and spatial cuts	$\varepsilon_{cuts} = N_{rec}(y, p_T) / N_{emb}(y, p_T)$

2-dimentional $(p_T y)$ distributions of reconstructed Λ decay candidates in data and Monte Carlo do not perfectly agree in the shape. To adjust the Monte Carlo to the data, weights were calculated as a ratio of the normalized spectra of experimental data to the normalized spectra of simulated events: $w(y,p_T) = N_{data}(y,p_T)/N_{rec}(y,p_T)$.

The 2-dimentional weights are shown in Fig.14. These weights were used to obtain 1-dimentional efficiencies according to the formula:

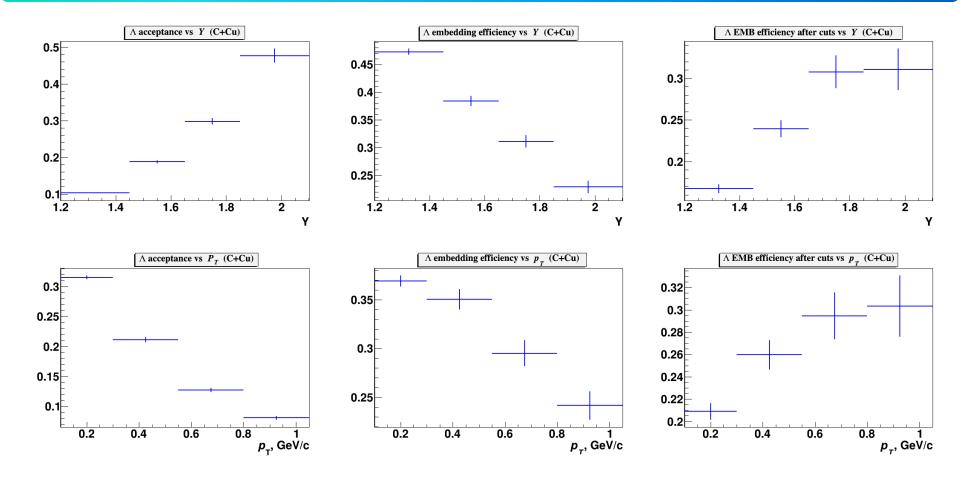

$$\begin{split} & \varepsilon_{rec} \left(p_T \right) = \Sigma_y (N_{rec} \left(y, p_T \right) \cdot w(y, p_T)) \ / \ \Sigma_y (N_{gen} \left(y, p_T \right) \cdot w(y, p_T)) \\ & \varepsilon_{rec} \left(y \right) = \Sigma_{pT} (N_{rec} \left(y, p_T \right) \cdot w(y, p_T)) \ / \ \Sigma_{pT} (N_{gen} \left(y, p_T \right) \cdot w(y, p_T)) \end{split}$$

Fig.14. 2-dimentional weights $w(y,p_T)$.

Efficiency in C+Cu interaction

Fig.18. A geometrical acceptance (ε_{acc}); efficiency of reconstruction of embedded Λ (ε_{emb}); efficiency of kinematical and spatial cuts applied for Λ reconstruction (ε_{cuts}) as functions of rapidity y (top plots) and p_T (bottom plots). Results are shown for C+Cu interaction.

Triggers and impact parameters

Table 4. Trigger efficiency evaluated for events with reconstructed Λ hyperons in interactions of the carbon beam with C, Al, Cu targets. The systematic errors take into account the uncertainty due to the delta electron background. The last row shows the trigger efficiency averaged over the data samples with trigger conditions BD>=2 and BD>=3.

Trigger / Target	C	Al	Си
$\varepsilon_{\text{trig}} \text{ (BD>=2)}$	0.906±0.010	0.955±0.010	0.904±0.01
$\varepsilon_{\text{trig}} \text{ (BD>=3)}$		0.923±0.020	0.883±0.02
$\epsilon_{ m trig}$ averaged		0.940±0.015	0.893±0.015

Table 5. Mean impact parameters of min. bias C+C, C+Al, C+Cu interactions.

MC	<i>b</i> , fm (<i>C</i> + <i>C</i>)	b, fm (C + Al)	b, fm $(C+Cu)$
All min bias events	3.76	4.36	5.13
Events with gen. 1	2.80	3.08	3.58
Events with rec. Λ	2.71	3.18	3.88

The Λ yields and production cross section

Table 11.

Interacting nucleus / reference	Beam momentum, kinetic energy (T_{θ})	△ cross section, mb	1 yield, ⋅10-2
He_4+Li_6	4.5 GeV/c (3.66A GeV)	5.9± 1.5	1.85 ± 0.5
C+C	4.2 GeV/c (3.36AGeV)	24 ± 4	
C+C, propane chamber	4.2 GeV/c (3.36A GeV)		2.8 ± 0.3
p+p	4.95 GeV/c (4.1 GeV)		2.3 ± 0.4
C+C, HADES	2A GeV	8.7±1.1± ^{3.2} _{1.6}	0.92±0.12±0.34 _{0.17}
Ar+KCl, HADES	1.76AGeV		3.93±0.14±0.15
Ar+KCl, FOPI	1.93A GeV		3.9±0.14±0.08
<i>Ni+Ni</i> , FOPI, central 390 mb from 3.1 <i>b</i>	1.93A GeV		$0.137 \pm 0.005 \pm 0.009_{0.025}$
Ni+Cu, EOS, full b<8.9 fm / central b<2.4 fm	2A GeV	112±24 / 20±3	
Ar+KCl, central b<2.4 fm	1.8A GeV	7.6±2.2	

Cross section and yields of Λ hyperon

The cross section σ_{Λ} and yield Y_{Λ} of Λ hyperon production in C+C, C+Al, C+Cu interactions are calculated in bins of y and p_T according to the formulae:

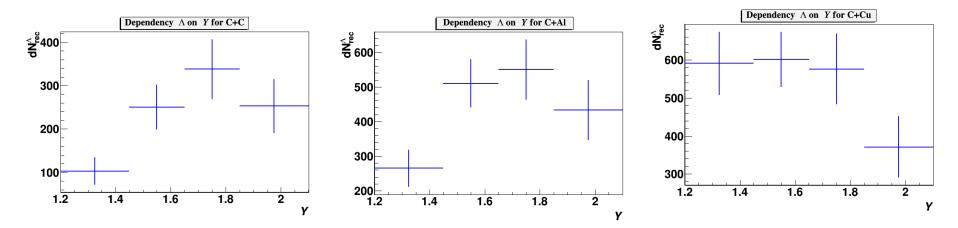
$$\sigma_{\Lambda}(y,p_T) = N_{rec}^{\Lambda}(y,p_T) / (\varepsilon_{rec}(y,p_T) \cdot \varepsilon_{trig} \cdot L); \qquad Y_{\Lambda}(y,p_T) = \sigma_{\Lambda}(y,p_T) / \sigma_{inel}$$

where *L* is the luminosity,

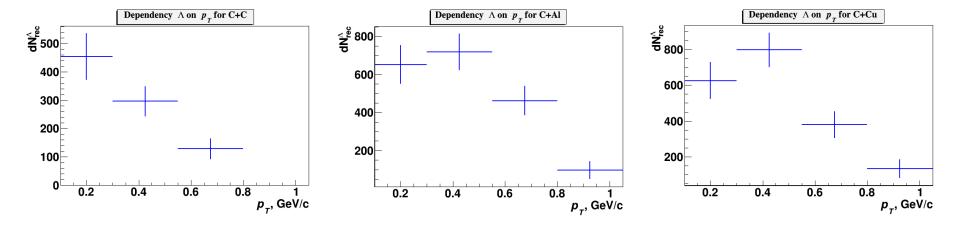
 N_{rec}^{Λ} —the number of reconstructed Λ hyperons,

 ε_{rec} —the combined efficiency of the \varLambda hyperon reconstruction,

 ε_{trig} —the trigger efficiency,


 σ_{inel} the cross section for minimum bias inelastic C+A interactions.

Interaction	C+C	C+Al	C+Cu
Inelastic cross section, mb	830±50	1260±50	1790±50


The cross sections for inelastic C+Al, C+Cu interactions are taken from the predictions of the DCM-QGSM model which are consistent with the results calculated by the formula: $\sigma_{inel} = \pi R_0^2 (A_P^{1/3} + A_T^{1/3})^2$, where $R_0 = 1.2$ fm is an effective nucleon radius, A_P and A_T are atomic numbers of the beam and target nucleus.

Number of reconstructed Λ hyperons

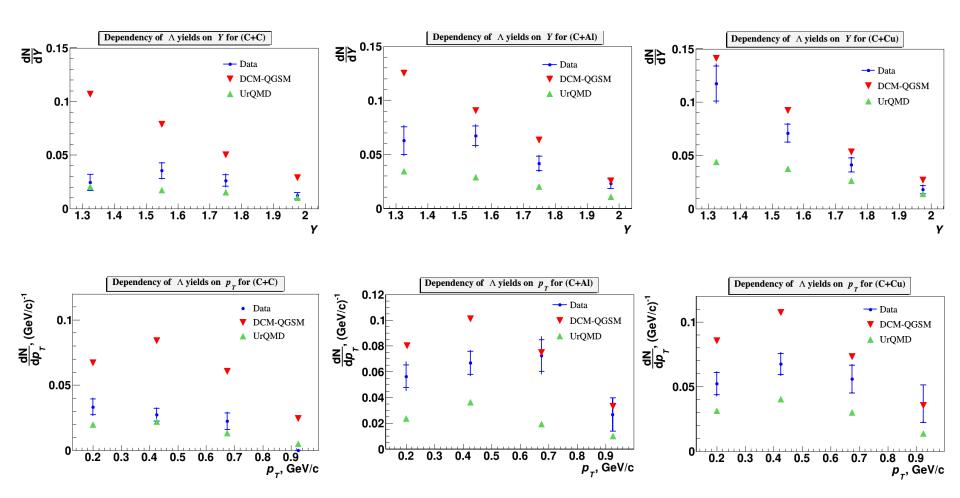
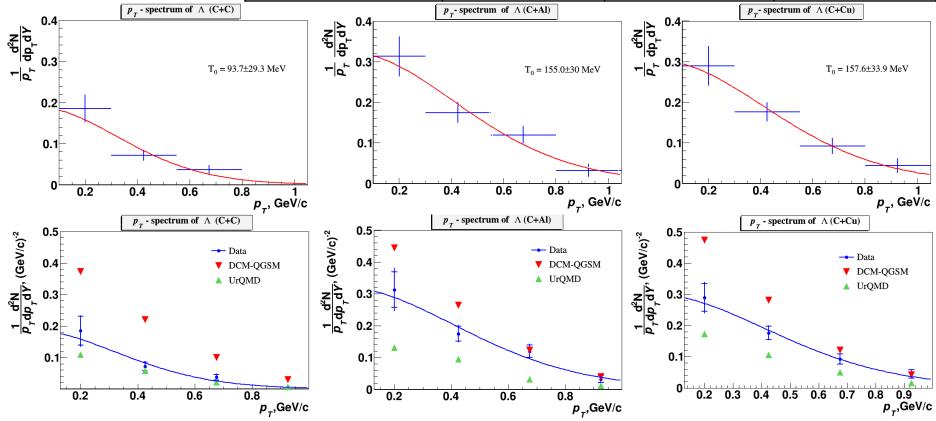

Fig.15. Number of reconstructed Λ hyperons in C+C, C+Al, C+Cu data samples in bins of y.

Fig.15. Number of reconstructed Λ hyperons in C+C, C+Al, C+Cu data samples in bins of p_T .

Reconstructed yields of A hyperons


Fig. 20-22. Reconstructed yields of Λ hyperons in minimum bias C+C, C+Al, C+Cu interactions vs rapidity y and transverse momentum p_T (blue crosses). Predictions of the DCM-QGSM and UrQMD models are shown as red and green crosses.

Reconstructed p_T spectra of Λ and extracted T_0

Table 6. Temperature parameter extracted from the fit of the p_T spectra.

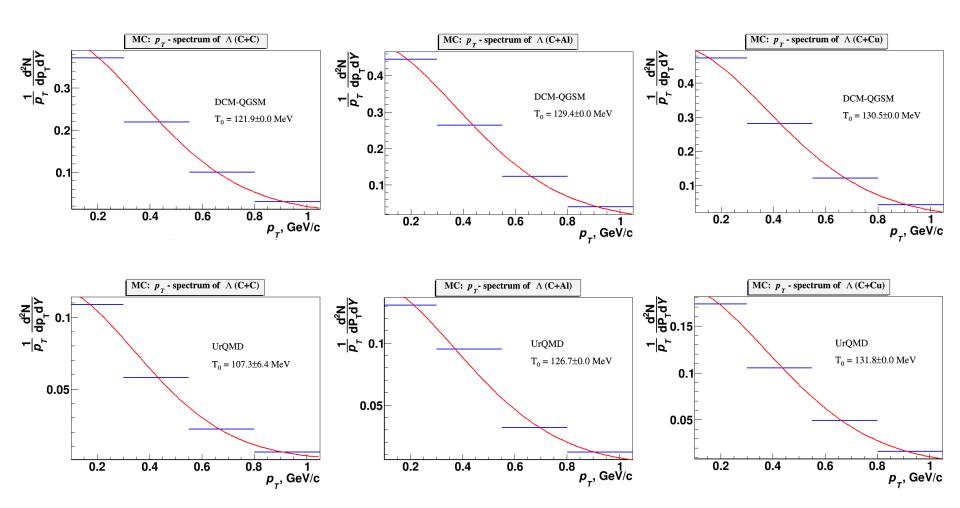

	T_{θ} , MeV (C+C)	T_{θ} , MeV (C+Al)	T_{0} , MeV ($C+Cu$)
Experiment	93.7±29.3±12.7	155.0±30.0±19.4	157.6±33.9±9.5
χ^2 /ndf	2.38/1	2.05/2	0.43/2
DCM-QGSM	121.9	129.4	130.5
UrQMD	107.3	126.7	131.8

Fig. 23. Thermal fit results with the inverse slope parameter T_0 : data and predictions of models.

p_T spectra of Λ : MC predictions

Fig. 24. Fit of the DCM-QGSM and URQMD spectra. The inverse slope parameter T_0 is shown, extracted from the fit.

Systematic errors

The systematic error of the Λ yield in every p_T and y bin is calculated via a quadratic sum of uncertainties coming from the following sources: Systematic errors of the embedding efficiency estimated by embedding the Λ decay products into data samples collected in different run periods;

Table 7. Systematic uncertainty of the embedding efficiency.

Target	Y			Target	p_T		
Interval	C, sys%	Al, sys%	Cu, sys%	Interval	C, sys%	Al, sys%	Cu, sys%
1.2-1.45	2.09	-4.22	-2.93	0.1-0.3	-4.94	-9.37	-6.61
1.45-1.65	1.75	-4.11	3.31	0.3-0.55	-3.07	0.64	-1.30
1.65-1.85	-7.96	-4.78	-4.19	0.55-0.8	-4.59	0.34	0.078
1.85-2.1	-5.44	-1.24	-6.09	0.8-1.05	3.03	-6.28	-2.36

Systematic errors estimated by two methods of reweighting the Monte Carlo (y, p_T) distribution to adjust it to the measured (y, p_T) distribution: 1) using 2-dimentional weight $w(y, p_T)$ in the measured (y, p_T) bin; 2) using product of 1-dimentional weights calculated as $w(p_T) \cdot w(y)$.

Table 8. Systematic uncertainty of the total reconstruction efficiency.

Target	Y			Target		p_T	
Interval	C, sys%	Al, sys%	Cu, sys%	Interval	C, sys%	Al, sys%	Cu, sys%
1.2-1.45	7.39	8.50	6.57	0.1-0.3	8.70	8.20	5.85
1.45-1.65	7.80	6.39	3.40	0.3-0.55	7.14	6.05	5.21
1.65-1.85	9.08	7.60	4.26	0.55-0.8	11.23	10.48	3.19
1.85-2.1	7.34	7.35	5.01	0.8-1.05	2.06	7.16	2.32

Systematic errors

Table 9. Total systematic uncertainty.

Target	Y		Target	p_T			
Interval	<i>C</i> ,	Al,	Cu, sys%	Interval	<i>C</i> ,	Al,	Cu, sys%
	sys%	sys%			sys%	sys%	
1.2-1.45	±7.68	±9.48	±7.19	0.1-0.3	±10.00	±12.45	±8.82
1.45-1.65	±7.99	±7.60	±4.74	0.3-0.55	±7.77	±6.08	±5.36
1.65-1.85	±12.07	±8.97	±5.97	0.55-0.8	±12.13	±10.48	±3.19
1.85-2.1	±9.14	±7.45	±7.88	0.8-1.05	±3.66	±9.52	±3.31
Normalization	±6.0	±4.0	±2.8	Normalization	±6.0	±4.0	±2.8

Extrapolation factors

Table 10. Extrapolation factors to the full kinematic range, yields and cross sections.

	\boldsymbol{C}	Al	Cu
DCM-QGSM URQMD extrapolation	6574/2474 1827/639	10539/3413 3248/1056	15817/3545 5509/1360
factors	10277039	3210/1030	3307/1300
Yields in the measured			
kinematic range	0.0190±0.0022±0.0036	0.0528±0.0045±0.0098	0.0503±0.0042±0.0062
$0.1 < p_T < 1.05 \text{ GeV/c},$			
1.2< <i>y</i> _{lab} <2.1			
Yields in the full	0.0524±0.0062±0.0100	0.163±0.014±0.030	0.214±0.018±0.026
kinematic range			
Λ cross section in min. bias interactions, mb	41.9±4.9±7.7	205.0±17.6±37.4	383.2±31.5±49.2

Summary

- 1. Production of Λ hyperons in interactions of the 4A GeV kinetic energy carbon beam with C, Al, Cu targets was studied with the BM@N detector at the Nuclotron.
- 2. The analysis procedure has been presented and described.
- 3. Results on Λ hyperon yields have been obtained and compared with model predictions and data available.
- 4. Request for BM@N preliminary.

Thank you for attention!

Backup

Residual distributions of GEM hits

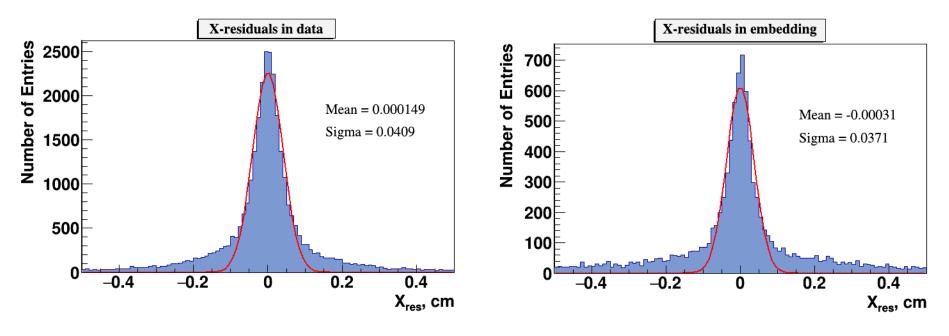
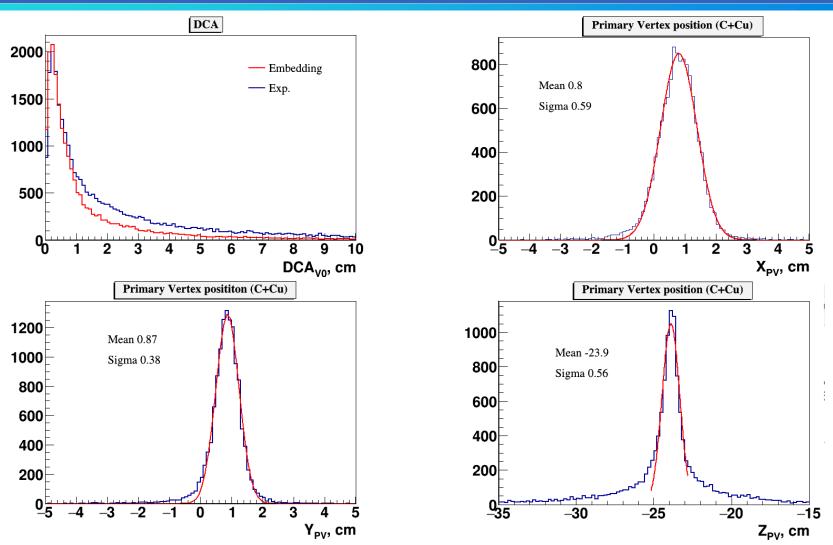



Fig. 12. Residual distributions of GEM hits with respect to reconstructed tracks: left) experimental data, right) reconstructed tracks of embedded Λ decay products.

DCA and PV position

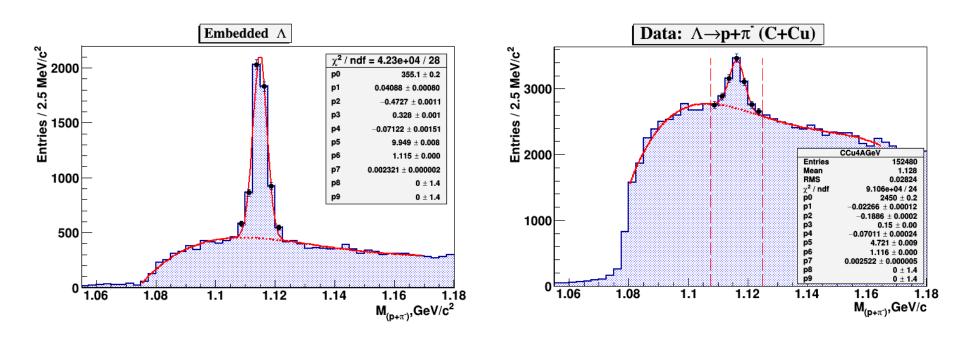


Fig. 12b. Distance of the closest approach of *V0* decay tracks (*DCA*) and *Z,X,Y* distributions of the primary vertex.

The invariant mass spectrum

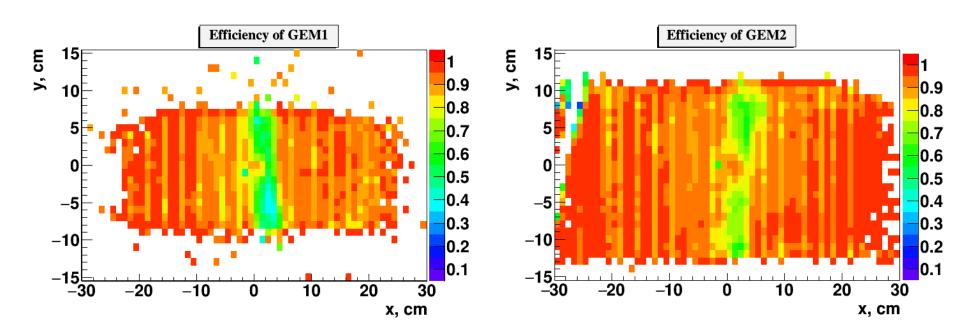


Fig. 13. The invariant mass spectrum of (p,π^-) pairs reconstructed in the experimental events of C+Cu interactions with embedded Λ hyperon decay products (left); The invariant mass spectrum of (p,π^-) pairs reconstructed in C+Cu interactions (right).

Efficiency distributions in GEMs

Fig. 11. Two-dimensional X/Y efficiency distributions in 6 GEM stations measured with experimental tracks and implemented into Monte Carlo simulation.