

Status of the BM@N detector upgrade

A.Maksymchuk

BM@N Experimental Setup

Beam pipe before the target, target station

Target station:

Three different target types with d = 30mm and 1 empty target are foreseen for data taking and background evaluation;

Operational in vacuum and magnetic field.

See talk of S.SEDYKH

Production of the beam pipe: Belgorod University

Upgrade of the forward Si tracking detectors

Half-plane design

Design of the Si-planes on the BM@N beam-channel

Si-plane #

Si-trigge Target

Station#	Number of	DSSD station	Number of
	DSSD modules	square	Readout
			channels
Station1	10	720 cm ²	12800
Station2	14	1008 cm ²	17920
Station3	18	1296 cm ²	23040
Total	42	~0.3 m ²	53760

Upgrade of the forward Si tracking detectors

First FEE based on VATAGP7.1 are ready for testing

Plans: 02.2020 – integration of the Si forward tracking detectors into BM@N setup

Status of the BM@N STS

STS group

Device for the Ladder assembly

Module Assembly

- Assembling of BM@N STS modules has been started in 2019. First modules were assembled.
- Quality assurance system was developed for the tests of the bonding quality during the assembly. It was tested and implemented in the assembly process and DB.
- Full assembling procedure including technological line, DB, QA, endurance and long-term stability tests should be finalized till the end of 2019

Ladder Assembly

- All components of the ladder assembly device are in the sight
- Complete device should be delivered in the end of June
- Commissioning, staff training and start of ladder assembly supposed at August – September 2019

Status of the BM@N STS

STS group

100 mm

New FEB8 designed by R. Kapell

Data processing boards during beam time

Readout electronics

- New design of the Front-end Board for BM@N STS is under developing. Will be optimized for the new version of ASIC and LDOs, requirements on the cooling and integration. Will be produced in the Oct. 2019
- Firmware for the Data Processing boards with GBT interface was developed and tested during the beam-time at Linac-200
- The following institutes are participating: GSI (Coordination), WUT (Firmware), MSU(FEB design)

Cooling

- Thermal simulations of the BM@N STS are now undergoing
- Thermal mockup of the FEB box will be assembled and tested in June 2019
- Thermal mockup of the quarter station will be assembled and tested in Oct 2019
- 2* 14 kW chillers are already in the site
- Thermal simulations will be performed together with a group from WUT and MSU

BM@N STS TDR will be finalized in the fall of 2019

GEM central tracking system

1632x450 mm² GEM chambers at BM@N experimental setup

1632x390 mm² GEM chamber assembly process

- Seven GEM 1632x450 mm² chambers produced at CERN workshop were integrated into BM@N experimental setup. One was defected, to be repaired at CERN.

- Three GEM 1632x390 mm² chambers were assembled, delivered to JINR and tested.

Scheme of the GEM full planes configuration inside the magnet

09.2019 – development of the mechanics design for GEM planes precise installation inside the magnet.

End of the 2019 – mechanics production.

Upgrade plans:

- 12.2019 year production of 4 GEM chambers of size 1632 mm × 390 mm to cover full vertical acceptance of analyzing magnet
- 03.2020 integration of the full GEM planes into the experimental setup (electronics based on the VA-163 chips, ~90000 readout channels)
- Development and tests of FEE based on VMM3 /STSXYTER/TIGER ASICs.

TIGER (Turin Integrated Gem Electronics for Readout)

https://doi.org/10.1016/j.nima.2018.09.010

- If known the drift velocity, time information can be used to assign to each fired strip a 2D point

- Particle track is reconstructed from these coordinates

- The spatial resolution can be improved in magnetic field, especially for angled tracks

TIGER v1 - 64-channel readout ASIC was tested at BESIII Experiment (New Inner Tracker based on **Cylindrical Gas Electron Multiplier**)

TIGER V2. Programmable gain: range 50-300 fC Input Sustained event rate > 100 kHz/ch Measured performance of the TIGER ASIC: Input charge 5-55 fC TDC resolution 30 ps RMS Time-walk (5-55 fC range) 12 ns Average gain 10.75 mV/fC Nonlinearity (5-55 fC range) 0.5% RMS gain dispersion 3.5%Noise floor (ENC) 1500 e^- Noise slope 10 e^- /pF Maximum power consumption 12 mW/ch

First tests with BM@N GEMs are planed 10.2019 at CERN

Hybrid central tracker for heavy ion runs: BM@N STS vs STS +GEM

Hybrid STS + GEM tracker:
2 times increase in number of reconstructed tracks and Λ hyperons
2 times better momentum resolution

Forward Si+ STS +Gem configuration

Four configurations of the tracking detectors are foreseen:

- Forward Si + 7 GEMs: beam intensity few 10^{5} Hz , 2020 2021
- Forward Si + "pilot" STS station + 7 GEMs: beam intensity few 10^5 Hz , 2021
- Forward Si + 4 STS stations + 7 GEMs: beam intensity few 10^5 Hz, 2022
- 4 STS stations + 7 GEMs (fast FEE): high beam intensity few 10^6 Hz, 2022-

2021: Forward Si + "Pilot STS" + 7 GEMs

2022: Forward Si + STS + 7 GEMs _{S.Piyadin}

2022-:STS + 7 GEMs

S.Piyadin

Beam pipe inside the SP-41 magnet

S. Piyadin, V. Spaskov

Two possible candidates to perform the carbon beam pipe production: Prague Technical University (Czech Republic) or DD "Arkhipov" (Moscow, Russia)

1065x1065 mm² CSC chamber

C, Ar and Kr runs in March 2018: CSC chamber is installed in front of ToF-400 to check its performance as outer tracker for heavy ions

Residual (CSC_hit – GEM) < 2cm

Two CSC $1065 \times 1065 \text{ mm}^2$ are produced. One was tested at Nuclotron beam.

Plans for 2019:

- assembly of the two1065x1065 \mbox{mm}^2 chambers

- assembled chambers are to be tested with r/a source and at cosmic stand

CSC group

2190x1453 mm² CSC chamber

Two cathode planes with strips inclined at 0° and 15° Each cathode plane consists of 8 printed circuit boards. Each pcb is divided on hot and cold zones.

Two 2190x1453 mm² CSC chambers are to be installed before and after ToF-700

Design and assembly – JINR LHEP

Production plans:

- 08.2019 design of the cathode planes for
- $2190x1453 \text{ mm}^2 \text{CSC}$ chambers
- 10.2019 production of the cathode planes for
- $2190x1453 \text{ mm}^2 \text{CSC chambers}$
- 02.2020 Assembly of the first 2190x1453 \mbox{mm}^2 CSC
- 05.2020 Assembly of the second 2190x1453 $\ensuremath{\mathsf{mm}}^2\,\ensuremath{\mathsf{CSC}}$
- 12.2020 All chambers are integrated into the BM@N experimental setup

CSC group

Status ToF-400

Preliminary result of identification, GEM+CSC track extrapolated to ToF-400

Proton $Mass^2 = 0,894 + -0,081 \text{ GeV}^2/c^4$, Pion $Mass^2 = 0,021 + -0,016 \text{ GeV}^2/c^4$

Status ToF-400

Examples of the efficiency distributions for the ToF – 400 planes located downstream CSC GEM+CSC tracks extrapolated/ Residual < 3cm/Average efficiency~90%

Examples of the efficiency distributions for the ToF – 400 planes (right arm, CSC is not installed) GEM tracks extrapolated/ Residual < 3cm/Average efficiency~80%

Status ToF-700

Yu.Petukhov, L.Kovachev

Efficiency estimated for pair of chambers located one for another is $\sim 96\%$

ToF time calibration procedure was developed. Final tests of the algorithm are being performed.

ECal Design

ECAL group

Location of Ecal in the magnet SP-41

220 plates (Pb +Sc) 504 cells with MPPC (SiPM) (multipixel photon counter)

 $\frac{(2.98\pm0.05)\%}{\sqrt{E}} \oplus (2.94\pm0.04)\%$

The selection of electromagnetic shower using time analysis of signals

The result of the time analysis two photons event selection

ZDC Status

group of INR RAS Troitsk

To be replaced

35 FHCAL MPD modules 16 BM@N+19 MPD

54 modules Yellow - CBM modules - 20x20 cm, 10 sections - 20 modules - 10 T Blue - MPD modules - 15x15 cm, 7 sections - 34 modules - 6.8 T

05.2019 - Transportation of CBM modules (20 pcs), FHCAL BM@N modules (16 pcs) and FHCal MPD modules (19 pcs) from INR at JINR was performed.

At the moment assembly of FHCAL at JINR is performed

15 cm

Biological Protection Calculation for Au+Au interactions

Additional protection to be built before heavy ion beams are delivered to the BM@N experimental setup

MDC(Mobile data storage and DAQ center) was installed at 205 bld.

Summary:

Detector Subsystem	Status	Upgrade Status
Beam pipe before the target, target station		end of 2019
Beam pipe downstream the target, in SP-41 magnet		06.2020
Forward Si detectors	3 small planes	3 full-size planes (02.2020)
STS BM@N		42 modules (2021) 292 modules (2022)
GEM	7 top half-planes + 3 bottom half-plane	7 full planes (2019)
CSC	2 chamber 1065x1065 mm²	4 chambers 1065x1065 mm²(2019) 2 chambers 2190x1453 mm²(2020-21)
ECAL	one arm	two arms (2019)
ToF-400	full configuration	
ТоҒ-700	full configuration	
ZDC	ZDC Pb+Sci sandwitch	ZDC (MPD/CBM type) (2019)

Charged particle densities in the four STS stations

Anna Senger (GSI)

Charged particles in GEM stations at z = 2 m

Anna Senger (GSI)

<u>BM@N beam with $\sigma = 1 \text{ cm} (2 \times 10^6 \text{ Au ions/s}):</u>$ Delta electron rate: 200 kHz/cm²</u>

Electron rate on one strip (inner zone): 200 kHz/cm²·1.2 cm² = 240 kHz Channels busy: 240 kHz·2 μ s = **48 %**

Electron rate on one strip (outer zone): 200 kHz/cm²·2.4 cm² = 480 kHz Channels busy: 480 kHz·2 μ s = **96 %**

<u>BM@N beam with σ = 0.35 cm (2x10⁶ Au ions/s)</u>: Delta electron rate: 2 kHz/cm²

Electron rate on one strip (inner zone): 2 kHz/cm²·1.2 cm² = 2.4 kHz Channels busy: 2.4 kHz·2 μ s = **0.48 %**

Electron rate on one strip (inner zone): 2 kHz/cm²·2.4 cm² = 4.8 kHz Channels busy: 4.8 kHz·2 μ s = **0.96 %**