

A production in 4A GeV Carbon-nucleus interactions

A.Zinchenko, Yu.Gornaya, M.Kapishin,

G.Pokatashkin, I.Rufanov, V.Vasendina

for the BM@N collaboration VBLHEP, JINR, Dubna, Russia

Joint Institute for Nuclear Research

SCIENCE BRINGING NATIONS TOGETHER BM@N DAC meeting 18.06.2019

Outline

- Technical run with carbon beam (March 2017)
 ✓ BM@N detector set-up
- 2. Data analysis (C+C, C+Al, C+Cu at 4A GeV)
 - ✓ Selection criteria
 - ✓ Reconstructed signal of Λ (d*N*/dy & d*N*/ p_T spectra)
 - ✓ Data MC agreement: multiplicity, momentum spectra
 - $\checkmark \quad \text{Decomposition of } \Lambda \text{ reconstruction efficiency}$
 - $\checkmark \quad \text{Cross section and yields of } \Lambda$
 - ✓ Systematic errors and extrapolation factors
 - ✓ Reconstructed p_T spectra of Λ and extracted temperature
- 3. Summary

BM@N set-up in carbon run

Barrel Detector

Schematic view and positions of the beam counters, barrel detector and target.

Central tracker in carbon run.

18.06.2019

Event selection criteria

✓ Number of tracks in selected events: pos>=1, neg>=1;

✓ Beam halo, pile-up suppression within the readout time window: number of signals in the start detector: T0=1, number of signals in the beam counter: BC2=1, number of signals in the veto counter around the beam: Veto=0;

✓ Trigger condition in the barrel multiplicity detector: number of signals BD>=2 or BD>=3 (run dependent).

Cut	1	2	3	4
T0==1	+			+
BC2==1		+		+
Veto==0			+	+
С	77.0	82.7	82.1	67.4
Al	82.4	87.5	86.0	74.0
Си	86.0	89.1	87.9	77.9

Table. Number of triggered events, beam fluxes and integrated luminosities collected in the carbon beam of 4A GeV.

Interactions (target thickness)	Number of triggers / 10 ⁶	Integrated beam flux / 10 ⁷	Integrated luminosity / 10 ³⁰ cm ⁻²
<i>C</i> + <i>C</i> (9mm)	4.57	6.99	7.16
<i>C</i> + <i>Al</i> (12mm)	5.35	4.41	3.11
C+Cu (5mm)	5.31	4.57	1.98

Λ hyperon selection criteria

Event topology:

- ✓ **PV** − primary vertex
- \sim V₀ vertex of hyperon decay
- *dca* distance of the closest approach
- / path decay length

Table. Reconstructed signals of Λ in p_T and y bins. The first error presents the statistical uncertainty, the second error is systematical.

 \checkmark Number of hits in 1 Si + 6 GEM per track > 3

✓ Momentum range of positive tracks: p_{pos} < 3.9 GeV/*c*

✓ Momentum range of negative tracks: p_{neg} >0.3 GeV/c

✓ Distance of minimum approach of V0 tracks: dca < 1 cm

 \checkmark Distance between V0 and primary vertex: *path* > 2.5 cm

Target	Y Target		Target			p_T	
Interval	С	Al	Cu	Interval	С	Al	Си
1.2-1.45	103±27±18	265±45±30	591±69±46	0.1-0.3	454±68±46	652±84±56	625±85±58
1.45-1.65	250±43±29	510±59±38	601±60±39	0.3-0.55	296±44±29	717±80±53	797±81±54
1.65-1.85	338±57±38	550±72±48	576±77±52	0.55-0.8	128±31±20	462±65±43	379±61±41
1.85-2.1	253±51±35	443±72±49	371±67±45	0.8-1.05	N/A	96±39±27	133±44±30

Signal of Λ in C+Cu interaction

Fig. $\Lambda \rightarrow p\pi^{-1}$ signal reconstructed in C+Cu interaction in bins of the transverse momentum p_T . The signal is fitted by a Gaussian function, the background is fitted by the 4th degree polynomial.

A.Zinchenko

Signal of Λ in C+Cu interaction

Fig. $\Lambda \rightarrow p\pi^{-}$ signal reconstructed in C+Cu interaction in bins of the rapidity y. The signal is fitted by a Gaussian function, the background is fitted by the 4th degree polynomial.

A.Zinchenko

Signal of Λ in C+C, C+Al, C+Cu interactions

Fig. $\Lambda \rightarrow p\pi^{-}$ signal reconstructed in interactions of the carbon beam with targets: *C*, *Al*, *Cu*.

A.Zinchenko

BM

Variation of sigma

Fig. Variation of sigma of the experimental Λ and embedded Λ signals reconstructed in bins of p_T in C+C, C+Al, C+Cu interactions. To estimate statistical fluctuations of the experimental Λ signal, the Gaussian fit is performed for the mass distribution shifted at a half of the mass bin (1.25 MeV/ c^2). The difference in sigma is presented as an error band.

Number of reconstructed Λ hyperons

Fig.15. Number of reconstructed Λ hyperons in C+C, C+Al, C+Cu data samples in bins of y.

Fig. Number of reconstructed Λ hyperons in C+C, C+Al, C+Cu data samples in bins of p_T .

Comparison of experimental data and MC

Fig. Comparison of experimental distributions (red lines) and MC (DCM-QGSM) (blue curves) in C+Cu interaction: track multiplicity per event; number of tracks reconstructed in the primary vertex; number of hits per positive particle reconstructed in 1 Si + 6 GEM detectors; number of hits per negative particle.

18.06.2019

Comparison of experimental data and MC

Fig. Comparison of experimental data (red curves) and MC (DCM-QGSM) simulation (blue curves) in C+Cu interaction: transverse momentum of positive particles; transverse momentum of negative particles; total momentum of negative (p/q < 0) and positive particles (p/q > 0).

18.06.2019

9000 r

_0_5

A.Zinchenko

p/q, GeV

1.5 P_{track}, GeV

Decomposition of efficiency

Table. Decomposition of Λ reconstruction efficiency.

Reconstruction efficiency	$\varepsilon_{rec} = \varepsilon_{acc} \cdot \varepsilon_{emb} \cdot \varepsilon_{cuts}$
Λ geometrical acceptance in GEM detectors	$\varepsilon_{acc} = N_{acc} (y, p_T) / N_{gen} (y, p_T)$
Efficiency of reconstruction of embedded Λ	$\varepsilon_{emb} = N_{emb}(y, p_T) / N_{acc}(y, p_T)$
Efficiency of Λ selection: kinematical and spatial cuts	$\varepsilon_{cuts} = N_{rec}(y, p_T) / N_{emb}(y, p_T)$

Efficiency in C+Cu interaction

Fig. A geometrical acceptance (ε_{acc}); efficiency of reconstruction of embedded Λ (ε_{emb}); efficiency of kinematical and spatial cuts applied for Λ reconstruction (ε_{cuts}) as functions of rapidity y (top plots) and p_T (bottom plots). Results are shown for C+Cu interaction.

The cross section σ_A and yield Y_A of A hyperon production in C+C, C+Al, C+Cu interactions are calculated in bins of y and p_T according to the formulae:

 $\sigma_{A}(y,p_{T}) = N_{rec}^{A}(y,p_{T}) / (\varepsilon_{rec}(y,p_{T}) \cdot \varepsilon_{trig} \cdot L); \qquad Y_{A}(y,p_{T}) = \sigma_{A}(y,p_{T}) / \sigma_{inel}$

where *L* is the luminosity, N_{rec}^{Λ} -the number of reconstructed Λ hyperons, ε_{rec} -the combined efficiency of the Λ hyperon reconstruction, ε_{trig} -the trigger efficiency, σ_{inel} - the cross section for minimum bias inelastic *C*+A interactions.

Interaction	C+C	C+Al	C+Cu
Inelastic cross section, mb	830±50	1260±50	1790±50

The cross sections for inelastic C+Al, C+Cu interactions are taken from the predictions of the DCM-QGSM model which are consistent with the results calculated by the formula: $\sigma_{inel} = \pi R_0^2 (A_P^{1/3} + A_T^{1/3})^2$, where $R_0 = 1.2$ fm is an effective nucleon radius, A_P and A_T are atomic numbers of the beam and target nucleus.

Table. Systematic uncertainty of the embedding efficiency.

Target	у		Target	p_T			
Interval	<i>C</i> , sys%	<i>Al</i> , sys%	<i>Cu</i> , sys%	Interval	<i>C</i> , sys%	<i>Al</i> , sys%	<i>Cu</i> , sys%
1.2-1.45	2.09	4.22	2.93	0.1-0.3	4.94	9.37	6.61
1.45-1.65	1.75	4.11	3.31	0.3-0.55	3.07	0.64	1.30
1.65-1.85	7.96	4.78	4.19	0.55-0.8	4.59	0.34	0.08
1.85-2.1	5.44	1.24	6.09	0.8-1.05	3.03	6.28	2.36

Table. Systematic uncertainty of the total reconstruction efficiency.

Target	у		Target	p_T			
Interval	<i>C</i> , sys%	<i>Al</i> , sys%	<i>Cu</i> , sys%	Interval	<i>C</i> , sys%	<i>Al</i> , sys%	<i>Cu</i> , sys%
1.2-1.45	2.09	4.22	2.93	0.1-0.3	4.94	9.37	6.61
1.45-1.65	1.75	4.11	3.31	0.3-0.55	3.07	0.64	1.30
1.65-1.85	7.96	4.78	4.19	0.55-0.8	4.59	0.34	0.08
1.85-2.1	5.44	1.24	6.09	0.8-1.05	3.03	6.28	2.36

Table. Total systematic uncertainty.

Target	у		Target	p _T			
Interval	<i>C</i> , sys%	<i>Al</i> , sys%	<i>Cu</i> , sys%	Interval	<i>C</i> , sys%	<i>Al</i> , sys%	<i>Cu</i> , sys%
1.2-1.45	19.0	14.8	10.5	0.1-0.3	14.2	15.1	12.7
1.45-1.65	14.1	10.6	8.0	0.3-0.55	10.7	9.6	8.6
1.65-1.85	16.5	12.5	10.8	0.55-0.8	19.8	14.0	11.3
1.85-2.1	16.6	13.3	14.4	0.8-1.05	N/A	29.7	22.7
Normalization	6.0	4.0	2.8	Normalization	6.0	4.0	2.8

Ratio of impact parameter distributions

Fig. Ratio of impact parameter distributions for events with reconstructed Λ to events with generated Λ presented for C+C, C+Al, C+Cuinteractions. Linear fit of the distributions is superimposed.

Reconstructed yields of Λ hyperons

Fig. Reconstructed yields of Λ hyperons in minimum bias C+C, C+Al, C+Cu interactions vs rapidity y and transverse momentum $p_{T_{-}}$

Reconstructed p_T spectra of Λ and extracted T_0

Fig. Thermal fit results with the inverse slope parameter T_0 : data and predictions of models.

p_T spectra of Λ : MC predictions

Fig. Fit of the DCM-QGSM and URQMD spectra. The inverse slope parameter T_0 is shown, extracted from the fit.

18.06.2019

BM@N

Table. Extrapolation factors to the full kinematic range, yields and cross sections.

	С	Al	Си	
DCM-QGSM	6571/0171	10520/2/12	15017/25/5	
URQMD extrapolation	0374/2474	10559/5415	5500/1260	
factors	1627/039	5240/1030	5509/1500	
Yields in the measured				
kin range 0.1< <i>p</i> _{<i>T</i>} <1.05		0 0421±0 0024±0 0025	$0.0561\pm0.0020\pm0.0047$	
GeV/c, 1.2< <i>y</i> _{<i>lab</i>} <2.1	$0.0214\pm0.0023\pm0.0024$	$0.0431\pm0.0034\pm0.0033$	0.0301±0.0039±0.0047	
Yields in the full				
kinematic range	$0.0589 \pm 0.0063 \pm 0.0065$	$0.133 \pm 0.010 \pm 0.011$	$0.239 \pm 0.017 \pm 0.020$	
N part DCM-QGSM	9	13.4	23	
Λ cross section in min.	$180 \pm 52 \pm 51$	$167 \pm 13 \pm 13$	427 + 30 + 20	
bias interactions, mb	$40.7 \pm 3.2 \pm 3.1$	$107 \pm 13 \pm 13$	$427 \pm 30 \pm 29$	

Interacting nucleus / reference	Beam momentum, kinetic energy (T_{θ})	Λ cross section, mb	∧ yield, ·10 ⁻²
$He_4 + Li_6$	4.5 GeV/c (3.66A GeV)	5.9±1.5	1.85 ± 0.5
C+C	4.2 GeV/c (3.36AGeV)	24 ± 4	
C+C, propane chamber	4.2 GeV/c (3.36A GeV)		2.8 ± 0.3
<i>p</i> + <i>p</i>	4.95 GeV/c (4.1 GeV)		2.3 ± 0.4
C+C, HADES	2A GeV	$8.7 \pm 1.1 \pm 3.2_{1.6}$	$0.92 \pm 0.12 \pm 0.34_{0.17}$
Ar+KCl, HADES	1.76AGeV		3.93±0.14±0.15
Ar+KCl, FOPI	1.93A GeV		3.9±0.14±0.08
<i>Ni</i> + <i>Ni</i> , FOPI, central 390 mb from 3.1 <i>b</i>	1.93A GeV		$0.137 \pm 0.005 \pm 0.009_{0.025}$
Ni+Cu, EOS, full $b < 8.9$ fm / central $b < 2.4$ fm	2A GeV	112±24 / 20±3	
Ar+KCl, central $b<2.4$ fm	1.8A GeV	7.6±2.2	

Energy dependence of Λ yields

Fig. Energy dependence of Λ yields measured in different experiments. BM@N result is compared with data [*S.Arakelian et al., P1-83-354, JINR, Dubna; D.Armutlijsky et al., P1-85-220, JINR, Dubna; Kalliopi Kanaki, PhD "Study of \Lambda hyperon production"*]. The predictions of the DCM-QGSM and UrQMD models are shown.

- 1. Production of Λ hyperons in interactions of the 4A GeV kinetic energy carbon beam with *C*, *Al*, *Cu* targets was studied with the BM@N detector at the Nuclotron.
- 2. The analysis procedure has been presented and described.
- 3. Results on Λ hyperon yields have been obtained and compared with model predictions and data available.

Thank you for attention!

18.06.2019

A.Zinchenko

26

Triggers and impact parameters

BM@N

Table. Trigger efficiency evaluated for events with reconstructed Λ hyperons in interactions of the carbon beam with *C*, *Al*, *Cu* targets. The systematic errors take into account the uncertainty due to the delta electron background. The last row shows the trigger efficiency averaged over the data samples with trigger conditions BD>=2 and BD>=3.

Trigger / Target	С	Al	Си
$\epsilon_{trig} (BD >= 2)$	0.906±0.010	0.955±0.010	0.904 ± 0.01
ϵ_{trig} (BD>=3)		0.923±0.020	0.883±0.02
ε_{trig} averaged		0.940±0.015	0.893±0.015

Table. Mean impact parameters of min. bias C+C, C+Al, C+Cu interactions.

MC	<i>b</i> , fm (<i>C</i> + <i>C</i>)	<i>b</i> , fm (<i>C</i> + <i>Al</i>)	b, fm (C + Cu)
All min bias events	3.76	4.36	5.13
Events with gen. Λ	2.80	3.08	3.58
Events with rec. Λ	2.71	3.18	3.88

Residual distributions of GEM hits

Fig. 12. Residual distributions of GEM hits with respect to reconstructed tracks: left) experimental data, right) reconstructed tracks of embedded Λ decay products.

DCA and PV position

Fig. 12b. Distance of the closest approach of V0 decay tracks (DCA) and Z,X,Y distributions of the primary vertex. 29

A.Zinchenko

Path and momentum distribution

Fig. Path, momentum distributions of positive, negative tracks from VO decays. Experimental data are compared with distributions for embedded Λ hyperons.

The invariant mass spectrum

Fig. 13. The invariant mass spectrum of (p,π) pairs reconstructed in the experimental events of C+Cu interactions with embedded Λ hyperon decay products (left); The invariant mass spectrum of (p,π) pairs reconstructed in C+Cu interactions (right).

A.Zinchenko