

BM@N

for the BM@N Collaboration

NICA Heavy Ion Complex

BM@N: heavy ion energy 1 - 4.5 GeV/n, beams: p to Au, Intensity ~few 10⁶ /s (Au)

Heavy Ion Collision Experiments

I. In A+A collisions at Nuclotron energies:

Opening thresholds for strange and multistrange hyperon production

10-3

10-5

 10^{-6} -0.4

<Apart> 10-4

Σ¥

EC+C Ni+Ni, FOPI

-0.2

□ 0 K*

ŏ

Ъ

0 0

VS-VSth (GeV)

from

0.2

strangeness at threshold

Need more precise data for strange mesons and hyperons, multi-variable distributions, unexplored energy range

 \blacktriangleright Collective flows v₁, v₂

II. In p+p, p+n, p+A collisions:

Adron production in elementary reactions and ,cold' nuclear matter as ,reference' to pin down nuclear effects

BM@N experiment

BM@N

Heavy-ions A+A: Study of the EoS with strangeness

***** The nuclear dynamics is defined by the **EoS** (via density dependent NN-interaction)

Observables sensitive to EoS: collective flow $(v_1, v_2, ...)$ particle ratios

Direct information – proton v_1, v_2 **Alternative information – via strangeness**

Experience from SIS and AGS : ratio of K⁺ yield Au+Au/C+C at SIS energies and proton v_1, v_2 favor a soft EoS (somewhat sensitive to the details of models)

Density dependence of the EoS can be studied in BM@N by a beam energy scan

Explore high density baryonic matter

Baryonic densities in central Au+Au collisions

I.C. Arsene at al., Phys. Rev. C75 (2007) 34902.

Heavy-ions A+A: Hypernuclei production

In heavy-ion reactions: production of hypernuclei through coalescence of Λ with light fragments enhanced at high baryon densities

D Maximal yield predicted for $\sqrt{s}=4-5A$ GeV (stat. model) (interplay of Λ and light nuclei excitation function)

BM@N energy range is **suited** for search of hyper-nuclei

V.Plotnikov

BM@N experiment

BM@N

Configuration of BM@N detector for heavy ion program (without beampipe)

- Central tracker inside analyzing magnet \rightarrow 6 GEM detectors 163 x 45 cm² and forward Si strip detectors for tracking
- ToF system, trigger detectors, hadron and EM calorimeters, outer tracker

→ Partial coverage of BM@N design configuration

- **Program:**
- Measure inelastic reactions Ar (Kr) + target \rightarrow X on targets Al, Cu, Sn, Pb
- \rightarrow Hyperon production measured in central tracker (Si + GEM)
- \rightarrow Charged particles and nuclear fragments identified with ToF
- $\rightarrow\,$ Gamma and multi-gamma states identified in ECAL

+ analyze data from previous technical run with Carbon beam of 3.5 - 4.5 GeV/n V.Plotnikov BM@N experiment

BM@N Status of TOF-400 particle identification

First expected results:

•Ratio of K⁺/ π^+ in Ar - nucleus interactions at beam kinetic energy of 3.2 AGeV

•Ratio of K⁺/ π^+ in Kr - nucleus interactions at beam kinetic energy of 2.4 AGeV

 $\Lambda \to p \pi^{\rm -}$ decay reconstruction in Si+GEM tracker in C+C interaction

Event topology:

- ✓ **PV** primary vertex
- \checkmark V₀ vertex of hyperon decay
- ✓ dca distance of the closest approace
- ✓ *path* decay length

Analysis without PID

A hyperon signals in 4A GeV Carbonnucleus interactions $\frac{1400}{1200} \int (A \rightarrow p + \pi^{-}(C+C, 4A \text{ GeV})) \\ m = 1.1152 \text{ GeV/c}^{2} \\ m = 2.8 \text{ MeV/c}^{2} \\ m = 1.1157 \text{ GeV/c}^{2} \\ \sigma = 2.8 \text{ MeV/c}^{2} \\ m = 1.1157 \text{ GeV/c}^{2} \\ \sigma = 2.5 \text{ MeV/c}^{2} \\ m = 1.1157 \text{ GeV/c}^{2} \\ \sigma = 2.5 \text{ MeV/c}^{2} \\ m = 1.1157 \text{ GeV/c}^{2} \\ \sigma = 2.5 \text{ MeV/c}^{2} \\ m = 1.1157 \text{ GeV/c}^{2} \\ \sigma = 2.5 \text{ MeV/c}^{2} \\ m = 1.1157 \text{ GeV/c}^{2} \\ \sigma = 2.5 \text{ MeV/c}^{2} \\ m = 1.1157 \text{ GeV/c}^{2} \\ \sigma = 2.5 \text{ MeV/c}^{2} \\ m = 1.1157 \text{ GeV/c}^{2} \\ \sigma = 2.5 \text{ MeV/c}^{2} \\ m = 1.1157 \text{ GeV/c}^{2} \\ \sigma = 2.5 \text{ MeV/c}^{2} \\ m = 1.1157 \text{ GeV/c}^{2} \\ \sigma = 2.5 \text{ MeV/c}^{2} \\ m = 1.1157 \text{ GeV/c}^{2} \\ \sigma = 2.5 \text{ MeV/c}^{2} \\ m = 1.1157 \text{ GeV/c}^{2} \\ \sigma = 2.5 \text{ MeV/c}^{2} \\ m = 1.1157 \text{ GeV/c}^{2} \\ \sigma = 2.5 \text{ MeV/c}^{2} \\ m = 1.1157 \text{ GeV/c}^{2} \\ \sigma = 2.5 \text{ MeV/c}^{2} \\ m = 1.1157 \text{ GeV/c}^{2} \\ \sigma = 2.5 \text{ MeV/c}^{2} \\ m = 1.1157 \text{ GeV/c}^{2} \\ \sigma = 2.5 \text{ MeV/c}^{2} \\ m = 1.1157 \text{ GeV/c}^{2} \\ \sigma = 2.5 \text{ MeV/c}^{2} \\ m = 1.1157 \text{ GeV/c}^{2} \\ \sigma = 2.5 \text{ MeV/c}^{2} \\ \sigma = 2.5 \text{ MeV/c}^{2} \\ m = 1.1157 \text{ GeV/c}^{2} \\ \sigma = 2.5 \text{ MeV/c}^{2} \\ m = 1.1157 \text{ GeV/c}^{2} \\ \sigma = 2.5 \text{ MeV/c}^{2} \\ m = 1.1157 \text{ GeV/c}^{2} \\ \sigma = 2.5 \text{ MeV/c}^{2} \\ m = 1.1157 \text{ GeV/c}^{2} \\ \sigma = 2.5 \text{ MeV/c}^{2} \\ m = 1.1157 \text{ GeV/c}^{2} \\ \sigma = 2.5 \text{ MeV/c}^{2} \\ m = 1.1157 \text{ GeV/c}^{2} \\ \sigma = 2.5 \text{ MeV/c}^{2} \\ m = 1.1157 \text{ GeV/c}^{2} \\ \sigma = 2.5 \text{ MeV/c}^{2} \\ m = 1.1157 \text{ GeV/c}^{2} \\ \sigma = 2.5 \text{ MeV/c}^{2} \\ m = 1.1157 \text{ GeV/c}^{2} \\ \sigma = 2.5 \text{ MeV/c}^{2} \\ \sigma =$

 $\label{eq:cbeam 4 AGeV} \begin{array}{l} C \mbox{ beam 4 AGeV} \\ C \mbox{ + C,AI,Cu } \rightarrow \mbox{ } \Lambda \mbox{ + X minimum bias} \\ \mbox{ } \Lambda \mbox{ signal width 2.4 - 3 MeV} \end{array}$

C+C: 4.6M triggers C+AI: 5.3M triggers C+Cu: 5.3M triggers

```
2.5 days of data taking
ent
```


measured kinematic range $0.1 < p_T < 1.05 \text{ GeV/c}$, $0.03 < y^* < 0.93$

data are corrected for acceptance and reconstruction efficiency

- Yield of Λ in C+C, C+AI, C+ Cu minimum bias interactions in dependence on rapidity y* in c.m.s. y* = y_{lab} -1.17
- ► y* spectrum becomes softer with increase of target atomic weight
- Data compared with predictions of DCM-QGSM and UrQMD models
- DCM-QGSM overestimates data in C+C interactions, but more compatible with data measured with heavier targets (C+Cu)
- UrQMD predictions are below data for heavier targets, but in better agreement for C+C

V.Plotnikov

A hyperon invariant p_T spectra in 4A GeV BM@N Preliminary Carbon-nucleus interactions

 Fit of invariant p_T spectra of Λ yields in C+C, C+AI, C+Cu minimum bias interactions by function:

 $1/p_{\tau} \cdot d^2 N/dp_{\tau} dy = A \cdot exp(-(m_{\tau} - m_{\Lambda})/T), \quad m_{\tau} = \sqrt{(m_{\Lambda}^2 + p_{\tau}^2)}$

Inv slope T in comparison with predictions of DCM-QGSM and UrQMD models

	<i>T</i> [MeV] <i>C</i> + <i>C</i>	T [MeV] C+Al	<i>T</i> [MeV] <i>C</i> + <i>Cu</i>
BM@N Preliminary	98 ± 24 ± 25	157 ± 24 ± 12	$160 \pm 27 \pm 21$
DCM-QGSM	122	129	131
UrQMD	107	127	132

V.Plotnikov

Energy dependence of Λ hyperon yields BM@N in minimum bias C+C interactions

BM@N yield extrapolated to full kinematic range Next plans:

- → add results for semi-central C+A interactions
- $\rightarrow\,$ add results for 3.5 and 4.5 AGeV Carbon beam data

V.Plotnikov

Forward Si, STS and GEM detectors

For heavy ion beam intensities few 10⁶ Hz

2371.8

 \rightarrow keep 4 STS + 7 GEM

▶ 2 times better momentum resolution

 \rightarrow fast FEE and readout electronics

1459.2

BM@N present status and next plans

- BM@N scientific program comprises studies of nuclear matter in intermediate range between SIS-18 and NICA/FAIR
- BM@N technical runs performed with carbon beam of T₀ = 3.5 4.5 AGeV, Ar beam of 3.2 AGeV and Kr beam of 2.4 (2.9) AGeV on fixed targets
- First physics results obtained on Λ yields in C + C, Al, Cu interactions
- Reconstruction and analysis of interactions of Ar, Kr beams with targets are progressing
- BM@N is on the way for heavy ion high intensity runs in 2020 and later:
- Extend central tracker with large aperture STS silicon detectors in front of GEM setup (in collaboration with CBM)

Thank you for attention!

V.Plotnikov

carried out in Dubna in 2018 and April 2019

Next BM@N meeting in October 2019

BM@N Collaboration: 21 Institutions from 11 countries, 230 participants

V.Plotnikov

BM@N set-up in Ar, Kr run, March 2018

CSC chamber

ToF-400 installation

BM@N

New detector components: 6 big GEMs, trigger detectors, 3 Si detectors, CSC chamber, full set of ToF detectors

V.Plotnikov

BM@N setup behind magnet, 2018

Silicon + GEM central tracker in Ar, Kr runs

3 Forward Si detectors and 6 GEM detectors

Ar+Cu interaction reconstructed in central tracker

V.Plotnikov

GEM tracker: acceptance / momentum resolution / detection efficiency

V.Plotnikov

BM@N experiment

BM@N

ToF-400 and ToF-700 based on mRPC

ToF-700 wall

Upgrade of central tracker with CBM STS BM@N

STS-1

Team: LHEP JINR, MSU, GSI, Tübingen University

STS-2

V.Plotnikov

Total: 292 modules, ~600k channels

measured kinematic range 0.1<*p*_{*T*}<1.05 GeV/c, 0.03<*y*^{*}< 0.93

- Yield of $\Lambda\,$ in C+C, C+Al, C+ Cu minimum bias interactions in dependence on transverse momentum p_{τ}
- Data compared with predictions of DCM-QGSM and UrQMD models
- \blacktriangleright shapes of p_T spectra are compatible with models

- Focus on tests and commissioning of central tracker inside analyzing magnet \rightarrow 5 GEM detectors 66 x 41cm² + 2 GEM detectors 163 x 45 cm² and 1 plane of Si detector for tracking
- Test / calibrate ToF, T0+Trigger barrel detector, full ZDC, part of ECAL

Program:

- Trace beam through detectors, align detectors, measure beam momentum in mag. field of 0.3 0.85 T
- Measure inelastic reactions C + target \rightarrow X with 3.5 4.5 AGeV carbon beam on targets C, AI, Cu, Pb

Λ hyperon yield and cross section in 4 AGeV Carbon-nucleus interactions

	C+C	C+Al	C+Cu
Λ yield in the measured kinematic range $0.1 < p_T < 1.05$ GeV/c, $0.03 < y^* < 0.93$	$0.0214 \pm 0.0023 \pm 0.0024$	$0.0431 \pm 0.0034 \pm 0.0035$	$0.0561 \pm 0.0039 \pm 0.0047$
Λ yield in the full kinematic range, N _Λ ¹⁾ N part DCM-QGSM	0.0589 ± 0.0063 ± 0.0065 9	0.133 ± 0.010 ± 0.011 13.4	0.239 ± 0.017 ± 0.020 23
Λ min bias cross section $σ_{\Lambda}^{(2)}$ [mb]	48.9 ± 5.2 ± 5.1	$167 \pm 13 \pm 13$	427 ± 30 ± 29

1) Used averaged extrapolation factor from DCM-QGSM and UrQMD models 2) $\sigma_{\Lambda} = N_{\Lambda} \cdot \sigma_{inel}$

Beam parameters and setup at different stages of BM@N experiment

Year	2016	2017 spring	2018 spring	fall 2020- 2021	2022 and later
Beam	d(↑)	С	Ar,Kr, C(SRC)	C,Kr,Xe	up to Au
Max.inten sity, Hz	0.5M	0.5M	0.5M	0.5M	2 M
Trigger rate, Hz	5k	5k	10k	10k	$20k \rightarrow 50k$
Central tracker status	6 GEM half planes	6 GEM half planes	6 GEM half planes + 3 forward Si planes	7 GEM full planes + forward Si planes	7 GEM full planes + forward Si + large STS planes
Experimenta l status	technical run	technical run	technical run+physics	stage1 physics	stage2 physics

BM@N