
Software development workflow in BM@N: 
tools and features

Joint Institute for Nuclear Research

Nikita Balashov



22

GitLab Service at git.jinr.ru

 All of the most popular technologies for 
software development in one place
 Version control system – Git

 Continuous integration / continuous deployment – GitLab Runners

 Issue tracker

 Role-based access control to projects

 Repository branch protection



3

Getting an Account

 If you have an email address in jinr.ru domain, 
you can register manually. Then ask the 
project coordinator to add you to the project.

 If you are an “external” user, request account 
from the coordinator. The account will be 
created for you.

 Use the Standard tab to login

 Additionally, if you have a JINR SSO account, 
you can link it to your git.jinr.ru profile (Profile 
Settings->Account)



4

Interacting with the Repository

 The project page is at https://git.jinr.ru/nica/bmnroot

 To access the git-repo over https use this link (you’ll need to 
provide the username/password): 
https://git.jinr.ru/nica/bmnroot.git

 Or add a public key to your GitLab profile settings to access 
the repo via ssh: git@git.jinr.ru:nica/bmnroot.git

 This is a standard git repo, so you can use any git tools

 Quick fixes can be done through the GitLab web-interface



5

Branches and Basic Workflow

 There are two protected branches: dev and pro 

 Only maintainers can push to protected branches directly 

 Developers can only merge changes to dev branch from other 
branches

 Branches and merge requests prevent accidental overwrites of 
someone else’s changes



6

Automated Tests

 Two dedicated GitLab runners (Ubuntu and CentOS 7): 4 CPUs, 16 GB RAM 
each

 Runners are cloud virtual machines co-shared with other NICA projects 
(mpdroot, nicafemto)

 All the tests are defined in plain text file .gitlab-ci.yml at the root of the repo

 Failed pipelines prevent your changes from being merged into dev branch

 Tests should run on merge requests only

 If you want to skip the pipeline, add either add one of [skip ci]/[ci skip] to 
the commit message, or pass ci.skip push option



7

Automated Deployment

 Two dedicated GitLab runners (CentOS 7 and SL 6): 4 CPUs, 
16 GB RAM each

 Additional “Deploy” stage in the pipeline for the dev and pro 
branches only

 Defined in .gitlab-ci.yml, same as tests

 Software is stored in cvmfs, mounted on T1/T2 and 
potentially can be mounted on any computer in JINR network

 Sometimes deploy jobs fail due to cvmfs is limited to only one open transaction at 
a time and we run deployment jobs in parallel

 Failed jobs restarted manually



8

Complete Workflow

 Don’t underestimate the issue tracker

 Start an issue

 Create a merge request right from the issue 
page, a corresponding git branch will be 
created also

 Pull the changes to your local repo copy and 
check out your feature branch

 Commit locally and push when you are ready 
to share the changes

 If automated tests fail – fix your code

 Merge the changes, close the issue

 When there’s enough changes to produce a 
new release, the release manager merges 
the dev branch into pro branch and gives it a 
new version tag

Feature_1

prodev

Feature_2

new_tag



9

Future changes

 We could benefit parallel transactions from CVMFS Gateway and Publisher 
technologies (requires significant changes to the CVMFS infrastructure)

 Move tests into docker containers

– Prepare a set of containers with all the required environments

– Recreate and unify the tests runners
 It’s not quite clear how to run deploy jobs in docker

– The deploy container needs to be accessible from Stratum-0 over ssh
 If test and deploy containers work out well on dedicated runners, we may try to 

get use of generic docker runners

 Release docker containers (anybody needs them?)

Thanks!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

