
Software development workflow in BM@N: 
tools and features

Joint Institute for Nuclear Research

Nikita Balashov



22

GitLab Service at git.jinr.ru

 All of the most popular technologies for 
software development in one place
 Version control system – Git

 Continuous integration / continuous deployment – GitLab Runners

 Issue tracker

 Role-based access control to projects

 Repository branch protection



3

Getting an Account

 If you have an email address in jinr.ru domain, 
you can register manually. Then ask the 
project coordinator to add you to the project.

 If you are an “external” user, request account 
from the coordinator. The account will be 
created for you.

 Use the Standard tab to login

 Additionally, if you have a JINR SSO account, 
you can link it to your git.jinr.ru profile (Profile 
Settings->Account)



4

Interacting with the Repository

 The project page is at https://git.jinr.ru/nica/bmnroot

 To access the git-repo over https use this link (you’ll need to 
provide the username/password): 
https://git.jinr.ru/nica/bmnroot.git

 Or add a public key to your GitLab profile settings to access 
the repo via ssh: git@git.jinr.ru:nica/bmnroot.git

 This is a standard git repo, so you can use any git tools

 Quick fixes can be done through the GitLab web-interface



5

Branches and Basic Workflow

 There are two protected branches: dev and pro 

 Only maintainers can push to protected branches directly 

 Developers can only merge changes to dev branch from other 
branches

 Branches and merge requests prevent accidental overwrites of 
someone else’s changes



6

Automated Tests

 Two dedicated GitLab runners (Ubuntu and CentOS 7): 4 CPUs, 16 GB RAM 
each

 Runners are cloud virtual machines co-shared with other NICA projects 
(mpdroot, nicafemto)

 All the tests are defined in plain text file .gitlab-ci.yml at the root of the repo

 Failed pipelines prevent your changes from being merged into dev branch

 Tests should run on merge requests only

 If you want to skip the pipeline, add either add one of [skip ci]/[ci skip] to 
the commit message, or pass ci.skip push option



7

Automated Deployment

 Two dedicated GitLab runners (CentOS 7 and SL 6): 4 CPUs, 
16 GB RAM each

 Additional “Deploy” stage in the pipeline for the dev and pro 
branches only

 Defined in .gitlab-ci.yml, same as tests

 Software is stored in cvmfs, mounted on T1/T2 and 
potentially can be mounted on any computer in JINR network

 Sometimes deploy jobs fail due to cvmfs is limited to only one open transaction at 
a time and we run deployment jobs in parallel

 Failed jobs restarted manually



8

Complete Workflow

 Don’t underestimate the issue tracker

 Start an issue

 Create a merge request right from the issue 
page, a corresponding git branch will be 
created also

 Pull the changes to your local repo copy and 
check out your feature branch

 Commit locally and push when you are ready 
to share the changes

 If automated tests fail – fix your code

 Merge the changes, close the issue

 When there’s enough changes to produce a 
new release, the release manager merges 
the dev branch into pro branch and gives it a 
new version tag

Feature_1

prodev

Feature_2

new_tag



9

Future changes

 We could benefit parallel transactions from CVMFS Gateway and Publisher 
technologies (requires significant changes to the CVMFS infrastructure)

 Move tests into docker containers

– Prepare a set of containers with all the required environments

– Recreate and unify the tests runners
 It’s not quite clear how to run deploy jobs in docker

– The deploy container needs to be accessible from Stratum-0 over ssh
 If test and deploy containers work out well on dedicated runners, we may try to 

get use of generic docker runners

 Release docker containers (anybody needs them?)

Thanks!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

