

Status of the BM@N experiment

M.Kapishin

M.Kapishin

First BM@N Preliminary result: Λ hyperon production in 4 AGeV Carbonnucleus interactions

 $\Lambda \rightarrow p\pi^{-}$ decay reconstruction in Si+GEM tracker in C+C interaction

Analysis team: Gleb Pokatashkin + Alexander Zinchenko, Yulia Gornaya (MEPhl) Veronika Vasendina, Igor Roufanov, MK

Event topology:

- ✓ **PV** primary vertex
- \checkmark V₀ -vertex of hyperon decay
- \checkmark *dca* distance of the closest approach
- ✓ *path* decay length

Analysis without PID

Λ hyperon signals in 4 AGeV Carbonnucleus interactions

BM@N

C beam 4 AGeV C + C,AI,Cu $\rightarrow \Lambda$ + X minimum bias Λ signal width 2.4 – 2.8 MeV

> C+C: 4.6M triggers C+AI: 5.3M triggers C+Cu: 5.3M triggers

2.5 days of data taking

- Yield of Λ in C+C, C+AI, C+ Cu minimum bias interactions in dependence on rapidity y* in c.m.s. $y^* = y_{lab}$ -1.17
- Data compared with predictions of DCM-QGSM and UrQMD models

Λ hyperon invariant p_T spectra in 4A GeV BM@N Carbon-nucleus interactions

 Fit of invariant p_T spectra of Λ yields in C+C, C+AI, C+Cu minimum bias interactions by function:

$$1/p_T \cdot d^2 N/dp_T dy = A \cdot exp(-(m_T - m_\Lambda)/T), \quad m_T = \sqrt{(m_\Lambda^2 + p_T^2)}$$

• Inv slope *T* in comparison with predictions of DCM-QGSM and UrQMD models

	<i>T</i> [MeV] <i>C</i> + <i>C</i>	<i>T</i> [MeV] <i>C</i> + <i>Al</i>	<i>T</i> [MeV] <i>C</i> + <i>Cu</i>
BM@N Preliminary	$98 \pm 24 \pm 25$	$157\pm24\pm12$	$160 \pm 27 \pm 21$
DCM-QGSM	122	129	131
UrQMD	107	127	132

M.Kapishin

Energy dependence of Λ hyperon yields BM@N in minimum bias C+C interactions

Next plans:

- → add results for 3.5 and 4.5 AGeV Carbon beam data talk of Gleb Pokatashkin
- → add results for semi-central C+A interactions using ZDC data status talk of Sergey Morozov (INR RAS)

M.Kapishin

Status of TOF-400 identification and analysis **BM@N**

Ar beam , 3.2 AGeV , Ar + C,Al,Sn,Cu \rightarrow X

etukhov

Status of TOF-700 identification

Ar beam, 3.2 AGeV, Ar + Al,Cu \rightarrow X

Analysis team: Yuri Petukhov, Layo Kovachev

Aim:

4.5

 $(m/q)^2$, $(GeV/qc^2)^2$

Yields of p, t, d/He⁴ in Ar nucleus interactions (in combination with ToF-400 data)

BM@N BMN & SRC program

First SRC @ BMN run in March 2018

to study SRC with exclusive inverse kinematic reactions

+ SRC trigger

12C

11C

First expected results:

- Study quasi-elastic (p,2p) with 4 GeV/c/nucleon beam
- Study A-2 residual system after SRC knockout

→ SRC status report by Julian Kahlbow

M.Kapishin

Beam parameters and setup at different stages of BM@N experiment

BM@N

Year	2016	2017 spring	2018 spring	2021	2022 and later
Beam	d(↑)	С	Ar,Kr, C(SRC)	Kr,Xe	up to Au
Max.inten sity, Hz	0.5M	0.5M	0.5M	0.5M	2-5M
Trigger rate, Hz	5k	5k	10k	10k	20k→50k
Central tracker status	6 GEM half planes	6 GEM half planes	6 GEM half planes + 3 forward Si planes	7 GEM full planes + forward Si planes	7 GEM full planes + forward Si + large STS planes
Experiment al status	technical run	technical run	technical run+physics	stage1 physics	stage2 physics

Configuration of BM@N detector for heavy ion program (without beampipe)

BM@N

M.Kapishin

BM@N beam profile

M.Kapishin

Nuclotron - BM@N beam line

► Upgrade of Nuclotron - BM@N transport channel for heavy ion program:

 \rightarrow replace air intervals / foils with vacuum beam pipe along 160 m of BM@N transport line to get minimum dead material

- \rightarrow implement non-destructive beam position monitoring on movable vacuum inserts
- \rightarrow implement vacuum beam pipe inside BM@N from target to end
- Replacement of transformers, power supplies and cables to power magnetic elements of the transport channel (need a new building to place transformers)
- To use heavy ion beams from Booster-Nuclotron need construction of a new powerful cryogenic station \rightarrow do not expect heavy ion beams before fall of

Beam Si and trigger detectors

M.Kapishin

Hybrid central tracker: Forward Si + CBM STS + GEM BM@N

Startup 2021 -

2022 -

After 2022 (high intensity beam)

For heavy ion beam intensities of few 10⁶ Hz

 \rightarrow keep 4 STS + 7 GEM

 \rightarrow fast FEE and readout electronics

 \rightarrow talk of Anna Maksymchuk

BM@N working group activities

Detector board meetings Technical coordinator Anna Maksymchuk Data analysis meetings (Mikhail Kapishin, one per month)

Regular meetings of Physics and Analysis working groups (PAWG) and Technical working groups (TWG)

Hyperon reconstruction, simulation and analysis (PAWG) Convener: Alexander Zinchenko

Particle identification and analysis (TWG+PAWG) Convener: Mikhail Rumyantsev

Event reconstruction and simulation (TWG) Convener: Sergey Merts

Software development and data quality analysis (TWG) Conveners: Konstantin Gertsenberger, Pavel Batyuk

SRC data analysis and simulation (PAWG) Conveners: Or Hen, Maria Patsyuk

ZDC centrality and ECAL data analysis and simulation (TWG) Conveners: Sergey Morozov, Sergey Afanasiev, Alexey Stavinskiy

Present contributions of participating Institutions

Institution	Detector development	Analysis	Software development
MEPhI, Moscow	GEM, GEM+STS TDR		
NPI CAS, Rez	Carbon beam pipe		
INR RAS, Troitsk	New FHCAL	Centrality with ZDC in C+A data	
MIPT, Moscow			Visualization and web-services
ITEP, Moscow		Centrality with ZDC in Ar+A data, ECAL	
SINP, Moscow Tubingen University	STS development	STS simulation	
Tev Aviv University MIT Cambridge, MA SEA, Saclay		SRC analysis	
Plovdiv University		Particle identification	
LIT JINR		DCM QGSM model, DCH reconstruction	Software for data processing, computing

+ JINR LHEP major contributions

BM@N present status and next plans

- ► First preliminary result obtained on A yields in interactions of 4 AGeV Carbon beam with C, AI, Cu targets
- \rightarrow plan to add results for 3.5 and 4.5 AGeV Carbon beam data
- Analyses of interactions of Ar, Kr beams with targets and SRC data are in progress:
- **•** K⁺ / π^+ yields in Ar nucleus interactions at beam energy of 3.2 AGeV
- Study A-2 residual system after SRC knockout
- BM@N is on the way for heavy ion high intensity runs in 2021 and later:
- Extend central tracker with large aperture STS silicon detectors in front of GEM setup (in collaboration with CBM)
- Extend forward Si tracking detectors
- Extend GEM central tracker and CSC outer tracker to full configuration
- Install MPD / CBM type of hadron FHCAL calorimeter, implement vacuum beam pipe through BM@N setup

► One year delay of heavy ion program with an uncertainty due to upgrade of infrastructure for Nuclotron and extracted beams: new cryogenic station, new power station for beam transport channels, new vacuum beam line

M.Kapishin

Thank you for attention!

M.Kapishin

- Central tracker inside analyzing magnet \rightarrow 6 GEM detectors 163 x 45 cm² and forward Si strip detectors for tracking
- ToF system, trigger detectors, hadron and EM calorimeters, outer tracker Program:
- Measure inelastic reactions Ar (Kr) + target \rightarrow X on targets C,AI,Cu,Sn,Pb
- \rightarrow Hyperon production measured in central tracker (Si + GEM)
- \rightarrow Charged particles and nuclear fragments identified with ToF
- \rightarrow Gamma and multi-gamma states identified in ECAL

+ analyze data from previous technical run with Carbon beam of 3.5 - 4.5 GeV/n

Central tracker in Ar / Kr runs

3 forward silicon strip planes and 6 GEM detectors

M.Kapishin

Ar-target interaction reconstructed in central tracker

MPD / CBM hadron ZDC calorimeter

resolve central /

CBM modules MPD modules

- Modern technics;
- Light yield ~x10 higher;
- **Detection of low energies;**
- Stable operation at high count rates;
- **Experience in operation for later MPD/CBM** experiments CBM module in BM@N
- **Motivated team**

MPD FHCAL modules

ToF-400 and ToF-700 based on mRPC

ToF-700 wall

BM@N A proposal for BM@N experiment

to study SRC with hard inverse kinematic reactions

M.Kapishin

JINR (Dubna): BM@N **Israel:** Tel Aviv University Germany: TUD and GSI USA: MIT FRANCE: CEA

np SRC

Objectives:

- identify 2N-SRC events with inverse kinematics
- study isospin decomposition of 2N-SRC

 $^{12}C + p \rightarrow 2p + {}^{10}_{4}Be + p$ pp SRC

study A-2 spectator nuclear system

A-2

Beam

Upgrade of central tracker with CBM STS BM@N

STS-1

Team: LHEP JINR, MSU, GSI, Tübingen University

→Talks on detector status and simulation

STS-2

M.Kapishin

Total: 292 modules, ~600k channels

Towards centrality measurement with ZDC in Carbon / Argon runs

Team: F.Guber, A.Ivashkin, S.Morozov, M.Golubeva Team: A.Stavinskiy, P.Alexeev, N.Zhigareva

SRC run, C beam, 3.14 AGeV, March 2018 \rightarrow ZDC calibration for Ar run

 \rightarrow talks of Sergey Morozov and Petr Alekseev

ZDC resolution ~2.5 spectators