

TECHNISCHE

UNIVERSITÄT

DARMSTADT

Status of the SRC Analysis

4th Collaboration Meeting of the BM@N Experiment at the NICA Facility 14-15 October 2019

Julian Kahlbow (TAU) for the SRC Collaboration

Short-Range Correlations (SRC) in Nuclei

SRC pair: 2N in close proximity

In momentum space:

- small center-of-mass motion
- large relative momentum

(compared to Fermi momentum k_F)

What is known about SRCs?

- (mainly) electron-scattering experiments at Jefferson Lab
- "hard" break-up reaction and reconstruction of initial state p_{miss} (Q²≥ 2GeV², x_B ≥ 1.0)

E. Cohen et al., PRL 121 (2018) 092501

What is known about SRCs?

- study neutron-rich nuclei
- measure knocked-out neutron directly A(e,e'n)
- #n = #p in high-momentum tail
- fraction of minority protons grows
- do deeply-bound protons form pairs?
- excitation of the (A-2)-system?

\rightarrow study the fragments in inverse kinematics at JINR

First Fully Exclusive SRC Measurement in Inverse Kinematics at JINR

- ¹²C beam at 4GeV/c/u on LH₂ target (hadronic probe)
- measure incoming beam and all reaction fragments at BM@N setup
- reactions of interest e.g.: ${}^{12}C(p, 2pn){}^{10}B, {}^{12}C(p, 2px)X, {}^{12}C(p, 2p){}^{11}B$

First Fully Exclusive SRC Measurement in Inverse Kinematics at JINR

- ¹²C beam at 4GeV/c/u on LH₂ target (hadronic probe)
- measure incoming beam and all reaction fragments at BM@N setup
- reactions of interest e.g.: ${}^{12}C(p, 2pn){}^{10}B, {}^{12}C(p, 2px)X, {}^{12}C(p, 2p){}^{11}B$

Experimental Setup

Courtesy of Efrain Segarra

Analysis Groups

In-Beam Tracking

Maria Patsyuk Vasilisa Lenivenko Vladimir Palichik (JINR)

Efrain Segarra (MIT)

Calibration Status – In-Beam Tracking

- MWPC tracking improved
- silicon strip detectors have better resolution but problem in y coordinate (Si2)
- combined MWPC+Si tracking in progress
- tracking efficiency (#track==1):
 95% for MWPC
 - 65.2% for combined MWPC+Si tracks (to be improved)

Courtesy of Vasilisa Lenivenko

Analysis Groups

Proton-Arm Analysis

Efrain Segarra (MIT) Mikhail Rumyantsev (JINR)

Calibration Status – Proton Arms

ToF Alignment for (p,2p)

- internal alignment with gammas from Pb target
- results from iterated time and position calibration:

Courtesy of Efrain Segarra

Calibration Status – Proton Arms

 proton correlation and p_{miss}

Courtesy of Efrain Segarra

Analysis Groups

Fragment Analysis

Sergei Merts Nikolay Voytishin Timur Atovullaev (JINR)

Valerii Panin (CEA Saclay) Göran Johansson (TAU) Yuri Pethukov Vladimir Palichik

Calibration Status – Fragment Tracking

- Kalman filter applied for fitting
- attempts towards global tracking:
 include CSC, DCHs, ToF700 in downstream tracking
 - updated path length, ToF for momentum and ID

 \rightarrow resolution improves to 6.2%

Courtesy of Sergei Merts

Calibration Status – Fragment Tracking

- alignment of DCH and ToF700 done
- improved tracking efficiency
- ε_{DCH1} ≈ 98%, ε_{DCH2} ≈ 95% (rel. to GEM & DCH#)

momentum = .3*Int(BL)/[sin(alphaX_out)+C]

Courtesy of Vladimir Palichik & Nikolay Voytishin

Primary Analysis Goals

Quasi-elastic scattering ¹²C(*p*,2*p*)¹¹B at 4GeV/c/u

Previous measurement at R³B/LAND Setup at GSI at 0.95GeV/c/u in inverse kinematics

(V. Panin et al., Phys. Lett. B 752 (2016) 204)

V. Panin et al., Phys. Lett. B 752 (2016) 204

Primary Analysis Goals

Quasi-elastic scattering ¹²C(*p*,2*p*)¹¹B at 4GeV/c/u

- hard scattering with large momentum transfer
- pp cross section scales ~S⁻¹⁰
- nucleon momenta in same direction (small c.m. energies) are strongly favored

signature in asymmetry of momentum distributions

Primary Analysis Goals II

Study of break-up reactions of the heavy charged residual nucleus

- identify the abundance of produced fragments, $^{12}C + p \rightarrow X$

Courtesy of Göran Johansson

Primary Analysis Goals II

QE tagging: ${}^{12}C(p,2p){}^{11}B$ selection

Analysis Plans

Next Analysis Steps – combine the work from sub-groups:

- global tracking (track eff.)
- reaction-channel identification: compare different approaches to improve resolution and efficiency
- proton-arm vertex reconstruction and identification

 \rightarrow momentum analysis: incoming beam, protons, fragments

- include in BMNRoot repository
- regular analysis meetings at JINR (~2months), coordination Maria Patsyuk
- 5 PhD students
 - Efrain (MIT)
 - Göran (TAU)
 - Vasilisa, Ksenia, Timur (JINR)
- 1st publication and thesis expected on QE scattering
- preliminary results to be presented at next Nuclotron User's Meeting

Preparations + Improvements for SRC run early 2021: ¹²C (4GeV/c/u) + LH₂

Preparations + Improvements for SRC run early 2021: ¹²C (4GeV/c/u) + LH₂

New Beam Counters

(charge identification)

Preparations + Improvements for SRC run early 2021: ¹²C (4GeV/c/u) + LH₂

Additional ToF RPCs (increase angular coverage)

Additional plastic-scintillator hodoscope

(improved ToF and pion discrimination)

Preparations + Improvements for SRC run early 2021: ¹²C (4GeV/c/u) + LH₂

Preparations + Improvements for SRC run early 2021: ¹²C (4GeV/c/u) + LH₂

Thank You for Your Attention.

Many Thanks to the Collaborators

Appendix

What is known about SRCs?

- fraction of minority protons grows
- do deeply-bound protons form pairs?
- excitation of the (A-2)-system?

- study neutron-rich nuclei
- measure knocked-out neutron directly A(e,e'n)
- #n = #p in high-momentum tail

\rightarrow study the fragments in inverse kinematics at JINR

$$\vec{p}_{\text{c.m.}} = \vec{p}_{\text{miss}} + \vec{p}_{\text{recoil}} = \vec{p}_p - \vec{q} + \vec{p}_{\text{recoil}},$$
$$\vec{p}_{\text{rel}} = \frac{1}{2} (\vec{p}_{\text{miss}} - \vec{p}_{\text{recoil}}).$$

FIG. 2. The number of A(e, e'pp) events plotted versus the components of $\vec{p}_{c.m.}$ perpendicular to \vec{p}_{miss} . The red and blue histograms show the \hat{x} and \hat{y} directions, respectively. The data are shown before corrections for the CLAS detector acceptance. The dashed lines show the results of Gaussian fits to the data. The widths in parentheses with uncertainties are corrected for the CLAS acceptance as discussed in the text.

measured (corrected)

Calibration Status – Proton Arms

2p tracking and vertex reconstruction using GEM+ToF400

Calibration Status – Fragment Tracking

- alignment of DCH and ToF700 done
- improved tracking efficiency
- ε_{DCH1} ≈ 98%, ε_{DCH2} ≈ 95% (rel. to GEM & DCH#)

Courtesy of Vladimir Palichik & Nikolay Voytishin

14

momentum = $.3^{Int(BL)/[sin(alphaX out)+C]}$

Quantities	Cuts
$\theta_{1,2}$ of P_1, P_2	$25^{\circ} \leq \theta_{1,2} \leq 38^{\circ}$
φ_1	$ \varphi_1 < 7.5^o$
φ_2	$ \varphi_2 - 180.0^o < 7.5^o$
s,t,u	$\geq 2 (\text{GeV/c})^2$

Quantities	Cuts	Counts
$\theta_{1,2}$	$25^{\circ} \le \theta_{1,2} \le 38^{\circ}$	
φ_1	$ \varphi_1 < 7.5^o$	8976
φ_2	$ \varphi_2 - 180.0^o < 7.5^o$	
TOF _{1,2}	17.4 nsec <tof<sub>1,2<18.7 nsec</tof<sub>	517
s,t,u	$\geq 2 (\text{GeV/c})^2$	
P _{miss}	0.25 (GeV/c)≤	401
	$P_{miss} \leq 1.0 (\text{GeV/c})$	
$\theta_{1,2}$	2D-cut at (θ_{2}, θ_{1})	216
$\theta_{1,2}$ vs $P_{1,2}$	2D-cut at $(P_{1,2}, \theta_{1,2})$	96
P ₁ +P ₂	5.4 GeV/c < p ₁ + p ₂ < 5.65 GeV/c	20

Table 8: A summary of the cuts (columns 1,2) and the background events, per 10⁸ proton-Carbon interactions, to the p(¹²C,2p)X reaction that survive after each cut (column 3).

Figure 27 Time of flight spectra of π^{\pm} and protons (black), π^{\pm} alone (red), and protons alone (blue).

Figure 31 The sum of the momenta p_1+p_2 of the two leading protons for SRC events in the ¹²C nucleus rest frame (black distribution). The background events are shown in red.

Figure 30 The correlation of the polar angle with momentum for one of the leading protons in the laboratory protons for the SRC signal together with a graphical cut (red line) that accepts the majority frame for the SRC signal events. Also shown is the graphical cut (red line) that accepts the of the SRC events.

majority of the SRC events.

