Progress in simulation of the BM@N detectors

Baranov Dmitriy

JINR October, 2019

Tracking system of the BM@N experiment

Detectors of the tracking system in BM@N:

- **GEM** (Gas Electron Multiplier)
- SILICON (Semi-conductor detector)
- **CSC** (Cathode Strip Chamber)
- **DCH** (Drift Chamber)

Simulation of BM@N detectors

Detector simulation stages:

Scheme of the main stages of the simulation

Simulation for GEM detector

GEM (Gas Electron Multiplier) is one the main detectors of the tracking system in BM@N

Because GEM chambers are placed inside the magnet we have to take into account the magnetic field influence

We find hits as intersections of active strips. Some of them are fakes.

Simulation for SILICON detector

The main purpose of using SILICON detector in the BM@N experiment is to improve the efficiency of primary vertex reconstruction.

Due to a small sensitive thickness of detector (about 300 microns) we did not apply Garfield++ for detailed simulation. Instead of that we use a simplified method based on Gaussian smearing.

SILICON detector consists of three planes

MAGNET MAGNET SILICON SILICON SILICON configuration for RUN-7 SILICON configuration for SRC (spring 2018) (spring 2018) **SILICON** configuration RUN-7 SRC **Geometry file** SI_RunSpring2018.root SI_RunSRCSpring2018.root Parameter file SI_RunSRCSpring2018.xml SI RunSpring2018.xml Pitch ~100 mµ Stereo angle 2.5 degrees **Chamber thickness**

The silicon detector as well as GEM has micro-strip readout. So the hit reconstruction procedure is almost the same.

~300 mµ

Each plane comprises SI-modules

Simulation for CSC detector

CSC (Cathode Strip Chamber) is one more detector included in the tracking system of the BM@N setup.

In the recent run of the BM@N experiment we have one plane of the CSC detector. This plane consists of two independent modules: upper and lower.

Upper module Lower module

At the moment for this detector we have only the simplified simulation based on Gaussian smearing. Later we are going to use Garfield++ to get more realistic simulation. CSC chamber position in the BM@N setup: RUN-7 and SRC

	SILICON configuration			
	RUN-7	SRC		
Geometry file	CSC_RunSpring2018.root	CSC_RunSRCSpring2018.root		
Parameter file	CSC_RunSpring2018.xml	CSC_RunSRCSpring2018.xml		
Pitch	2.5 mm			
Stereo angle	15 degrees			
Chamber thickness	7.6 mm			

Simulation for DCH detector

DCH (Drift Chamber) detector comprises two independent drift chambers with a multi-wire structure. Each chamber has 8 wire-planes oriented to each other at the angle of 45 degrees.

Inner structure of one drift chamber

CSC chamber position in the BM@N setup: RUN-7 and SRC

	DCH configuration			
	RUN-7	SRC		
Geometry file	DCH_RunSpring2018.root	DCH_RunSRCSpring2018.root		
Parameter file	DCH_RunSpring2018.xml	DCH_RunSRCSpring2018.xml		
Pitch	1.0 cm			
Stereo angle	45 degrees			
Chamber thickness	23.2 cm			

Program implementation of processing procedures

Scheme of program implementation for simulation and reconstruction procedures. Such program structure allows us to make some changes in any part with minimal modifications in other parts.

Conclusion

Brief overview: features of data processing for simulated detectors

	GEM	SILICON	CSC	DCH
Detector type	gaseous	semi-conductor	gaseous	gaseous
Readout type	micro-strips	micro-strips	micro-strips	multi-wires
Geometry format	ROOT	ROOT	ROOT	ROOT
Parameters description	XML file	XML file	XML file	constants embedded in code
Simulation	realistic based on Garfield+	simplified based on Gaussian smearing	simplified based on Gaussian smearing	simplified based on Gaussian smearing with distance dependence
Hit reconstruction	strip intersections	strip intersections	strip intersections	track segments

Thank you for your attention...