Track Reconstruction in the SRC Experiment

Sergei Merts

on behalf of BM@N collaboration 14/10/2019

Scheme of the SRC setup

BM@N

Four specific regions for tracking:

- Proton arms (2 GEM + 2 ToF)
- Before magnet region (2 MWPC + 3 Silicon planes)
- Inside magnet region (6 GEM planes)
- After magnet region (CSC + ToF + 2 DCH) S. Merts
 IV collaboration meeting 2019

General goal:

Reconstruct global tracks from target to DCH + tracks in arms + PID

Particular tasks:

- Track reconstruction inside magnet
- ② Matching tracks in downstream direction
- ③ Matching tracks in upstream direction
- ④ Track reconstruction in arms
- In the second second

Presented analysis is done on 5 MEvents with Interaction Trigger

Two counters before target give total input charge (Zin) of event Two counters after target give total output charge (Zout) of event

Inside Magnet

Unified approach to reconstruct tracks both for the BM@N setup and for the SRC setup:

- I reconstruct 3D points of detector response (hits)
- ② create cells (two connected hits on a different planes)
- ③ select cells by their slope

Inside magnet

- ④ create track-candidates (cells connection w.r.t slope difference)
- Iselect candidates by number of hits (minimal limit is 4 hits)
- It candidates by Circle approximation
- refit candidates by Kalman Filter in forward and backward directions
- Iselect candidates by shared hits (no common hits)

For special runs without magnetic field:

- Reconstruct straight tracks
- Fit track over its hits by straight line
- Calculate residuals from track to hits for each station (ResX)
- Move all hits on station to ResX/2
- Do again

Iterative algorithm:

- Reconstruct track-candidates
- Set rigidity to 8 GeV/(qc)
- Fit track over its hits by Kalman Filter with fixed rigidity
- Calculate residuals from track to hits for each station (ResX)
- Move all hits on station to ResX/2
- Do again

- Reconstructable tracks (N_{MC}): MC-track with more then 3 points
- Reconstructed tracks (N_{rec}): All reconstructed tracks
- Well tracks (N_{well}): Reconstructed tracks more then 60% of hits corresponded to same MC-track
- Wrong tracks (N_{wrong}): Reconstructed tracks less then 60% of hits corresponded to same MC-track
- Split tracks (N_{split}): Reconstructed tracks corresponded to same MC-track

• Efficiency:
$$\frac{N_{well} - N_{split}}{N_{MC}} \cdot 100\%$$

• Percent of ghosts:
$$\frac{N_{wrong}}{N_{rec}} \cdot 100\%$$

• Percent of clones: $\frac{N_{split}}{N_{rec}} \cdot 100\%$

Special run without target

Momentum resolution on ArPb (Simulated data)

Residuals

Downstream Matching

Step 1. Alignment:

BM@N

- Propagate each track to plane with hits
- Create track-to-hit (all-to-all) connections
- ${ullet}$ Calculate and fit residuals ${\rightarrow}$

 $\mu_{\rm X}, \mu_{\rm Y}, \sigma_{\rm X}, \sigma_{\rm Y}$

• Shift all hits by $\mu_{\rm X}, \mu_{\rm Y}$

Step 2. Matching:

- Propagate each track to plane with hits
- Find the nearest hit in $\pm 3\sigma_{\rm X}$ and $\pm 3\sigma_{\rm Y}$
- Update track parameters by connected hit information:
 - Track length
 - $\,\circ\,$ Last position, $T_x,\,T_y$ at last position, Momentum
 - Covariance matrix
 - χ^2
 - Number of hits, NDF
 - Velocity (β) for TOF-700

BM@N Matching Efficiency

Efficiency (CSC example):

N(GEM+DCH1+TOF700+DCH2) / N(GEM+CSC+DCH1+TOF700+DCH2) Tracks in denominator without CSC update

IV collaboration meeting 2019

Special run without target

Residuals

Particle Identification

Time-of-flight approach

S. Merts

Momentum-Charge approach

Momentum-Charge approach

BM@N

IV collaboration meeting 2019

- Unified tracking is implemented for SRC inside magnet region
- Momentum resolution around 2-8 % achieved
- Matching in downstream direction is done
- Outer detectors give significant improvement for parameters of global track
- First attempt to PID implementation is done