

$\boldsymbol{\theta}$ Correction and PID performance of ECal in the Simulation

- Reconstruction of π^0 with the Correction of heta
- Particle Identification for the Barrel Ecal
- Particle Identification for the End Cap ECal

Yan Huang, Boyana Dabrowska, Igor Tyapkin and Yi Wang

Correction of $\boldsymbol{\theta}$ (from Boyana)

- Box Gen
- Single γ
- Energy 500 Mev

 θ reconstructed has a bias with the true θ when the generating z position is shifted from z = 0cm.

Bias of the true θ and θ reconstructed by ECal as a function of pseudorapidity.

Reconstruction of π^0 with θ correction for Z = 50 cm

$$Z = 50 \ cm$$

 $\theta_{True} = \theta_{recz} + \text{function}(\theta_{recz})$

Fit function of θ for z = 50 cm (from Boyana).

Reconstructed invariant mass of π^0 with θ correction from fit function.

θ correction for wide Z and energy distribution events

- Box Gen Single γ
- EvtNum 1000k
- Energy: 0-2GeV
- $\bullet \quad 0^\circ < \theta < 180^\circ \quad 0^\circ < \phi < 360^\circ$
- Z = 20cm $D_Z = 50cm$

Number of hits reconstructed per event

Distribution of the Z position generated

$$\Delta \theta = \theta_{recZ} - \theta_{Mc}$$

 θ_{recZ} is the θ angle of RecPnt with (0,0,Z) where γ is

generated, not with the (0,0,0) original point.

hEMcBias

The distribution of $\Delta \theta$ with the energy of γ .

The distribution of $\Delta \theta$ with Z position where γ is generated.

Correction of $\boldsymbol{\theta}$ reconstructed by ECal

The distribution of $\Delta \theta$ with the reconstruted θ from where γ is generated.

The profile along X axis of $\Delta \theta$ with θ_{recz} .

Reconstructed invariant mass of π^0 without any correction of θ .

Reconstruction of π^0 with corrected heta

Reconstructed invariant mass of π^0 with θ correction from fit function.

9

Time information of the Barrel Ecal

- Urqmd Gen
- EvtNum 1000
- $Au + Au \quad \sqrt{s} = 11 GeV$ central
- Time cut: 15ns; Energy cut: 100MeV

$$Dt = t_{point} - \frac{L}{c}$$

L: distance from the point to the vertex point generated c: velocity of light

Distribution of momentum for different kind of particles.

Distribution of Dt for different kind of particles.

Electronic Time Resolution for the Barrel ECal

 $\delta_t = 150 ps$ for charged particles

 $\delta_t = 80 ps$ for neutral particles with energy larger than 700MeV $N_{ph.e} = 7761.0 \times E(GeV)$

Distribution of Dt after δ_t applied 11

PID for the Barrel Ecal

PID Efficiency for the Barrel ECal

Efficiency of separation pions from kaons and proton

 π can be separated from K and p for P < 1.9 Gev/c with efficiency higher than 90%

Efficiency of separation kaons from pions and proton

K can be separated from π and p for P < 1.1 Gev/cwith efficiency higher than 90%

Time information of the EndCap Ecal

- Z: ±310*cm*
- Thickness: 5cm
- Outer radius: 172cm Inner radius: 50cm
- Material: Csl

Distribution of momentum for different kind of particles.

Distribution of Dt for different kind of particles.

Electronic Time Resolution for the End Cap ECal

Distribution of the time resolution

Distribution of Dt after δ_t applied

The produced position of photons hit on the Barrel (a) and end cap (b) ECal.

	Number of All γ s	Number of direct γ	Number of secondary γ	Percent of secondary γ
Barrel	143905	130140	13765	9.6%
End Cap	7476	5721	1755	23.5%
Barrel (Dt>0.7)	2105(1.5%)	1527	578 <mark>(4.2%)</mark>	27.5%
End(Dt>0.7)	2074(27.7%)	1461	613 (35%)	30%

$$R = \sqrt{x^2 + y^2}$$

- There are more secondary gammas in the end cap(23.5%) than the barrel(9.6%) Ecal.
- And there are more slow gammas (dt>0.7) in the end cap(35%) than the barrel(4.2%) Ecal.

$High \ velocity \ \pi s$

The profile along X of the distribution of P with Dt.

Evt:200

Dt distribution with P > 0.6 GeV/c for the end cap Ecal.

	$P > 0.6 \ GeV/c$		
Barrel ECal	17.4%		
End Cap ECal	37.8%		

There are more high momentum pions in the end cap Ecal than the barrel Ecal.

PID of the EndCap Ecal

hMassPAll

hTimeP

PID Efficiency for the End Cap ECal

Efficiency of separation pions from kaons and proton

 π can be separated from K and p for P < 2.3 Gev/cwith efficiency higher than 90%

Efficiency of separation kaons from pions and proton

K can be separated from π and p for P < 1.4 Gev/cwith efficiency higher than 90%

Summary

Reconstruction of π^0 with θ correction

- ✓ There is a bias between the real θ and reconstructed θ , the bias increases when the generated z position is farther from $z = 0 \ cm$.
- ✓ This theta bias can be corrected by a function fit of Δ_{θ} .
- ✓ Reconstruction of π^0 is affected by this theta bias, and can be improved with the correction of θ . The mean and sigma of the reconstructed invariant mass become smaller after correction.

Time and PID for the barrel and end cap ECal

- \checkmark The occupancy can be reduced by applying a cut on the time difference *Dt* for the barrel Ecal.
- ✓ Difference of *Dt* for different particles is small for the End cap Ecal, which can be explained by the small difference between the distance of particles and more secondary γ s.
- ✓ π can be separated well from *K* and *p* for *P* < 1.9*Gev*/*c* for the barrel and *P* < 2.3*Gev*/*c* for the End cap ECal.
- ✓ *K* can be separated well from π and *p* for *P* < 1.1*Gev*/*c* for the barrel and *P* < 1.4*Gev*/*c* for the End cap Ecal.

Thanks for your attention!

BackUp

Geometry

EndCap

Forward particles has higher momentum and velocity.

Pion hBetaEta 2500 2000 0.95 1500 0.9 0.85 1000 hBetaEta 0.8 2262505 Entries Mean x 0.001125 500 Mean y 0.9385 0.75 RMS x RMS y 2.552 0.06296 -2 -5 _4 0 2 -1

hBetaEta

- 1. The speed of particle flying to EndCap is larger than to Barrel
- 2. The numbers of particle to barrel decreases with Mass increase

Energy distribution

Energy distribution of π^0 generated and γ decayed from π^0 for all energy events(0-2GeV MultiZVert).

Urqmd central

Time for the Barrel ECal

Eloss and Mc energy

High Pt need more statistics

Acceptance applied: green

PID efficiency for the barrel ECal

Momentum distribution K mass: 497Mev