Analysis of K^+/π^+ at BM@N for argon run

ß

d ∕d √0.14

0.12

0.1

0.08

0.06

0.04

0.5

1.5

by proton's band, ∆t=84 ps

Vs_{NN} (GeV)

 10^{2}

Vasilii Plotnikov (BM@N Experiment, JINR, Dubna, Russia) vplotnikov@jinr.ru

450

400

Heavy-Ion Collision

Time of Flight method

Charged particle identification was performed using the Time of Flight method.

$$m = p \sqrt{\frac{1}{\beta^2} - 1}, \beta = \frac{L}{ct},$$

m – mass of the particle, p – momentum of the particle, L – length of particle track, c - speed of light, t - time of flight.

2500

Ar beam , 3.2 AGeV , Ar + C,Al,Sn,Cu \rightarrow X

zone exceed the saturation density by the factor of 3-4.

- At these densities, nucleons start to overlap and form a fireball.
- Hadrons with strangeness are early produced in the collision and not presented in the initial state of two colliding nuclei.
- The K⁺/ π ⁺ ratio shows a rapid rise at energy increasing with a maximum ("horn") at incident \sqrt{s} energy of ~ 8 GeV and a saturation at SPS energies.
- The "horn" has been interpreted as a possible indication for the observation of deconfinement in the fireball.
- Confirmation of peak-like structure in the K^+/π^+ ratio by an $\sqrt{s_{NN}}$ (GeV) independent experiment would certainly stir up the debate on a possible signature for the deconfinement phase transition.

Experimental Setup

We focus on:

- Gas Electron Multiplier (GEM) system: To measure momenta of a charged particle and reconstruct the interaction point. Time of Flight (TOF400) system – time of flight of a charged particle. Cathode Strip Chamber (CSC): filter fake tracks.
- Data were taken in March 2018.

Full detector setup for year 2021

(K⁺)/{π

0.2

0.1

• On full Ar data, β vs p/q plot bands for π^+ , K⁺, p, He³, d/He⁴, t are clearly visible. • We used m² vs p distribution to determine momentum resolution in our experiment.

> $\left(\frac{dp}{p}\right)^{2} + \left(\frac{2}{1-\beta^{2}}\right)^{2} \left(\frac{dt}{t}\right)^{2} + \left(\frac{2}{1-\beta^{2}}\right)^{2}$ $= \frac{1}{m^2} = \frac{1}{m^2}$ • For the low momentum, m² uncertainty is determined by the particle momentum uncertainty, and for the high momentum, it is determined by the time of flight due to Lorentz factor. 2 2.5 3 3.5

• The relative uncertainty of the track length is few times less than the relative uncertainty of the time so we can neglect it.

p, GeV/c

 dm^2

- He³ can be separated from the background with Z=1 using cluster amplitudes in GEMs.
- The same technique can be used to separate He⁴ from d.

Matching GEM-CSC-TOF400

GEM features

• Pitch of GEM strips is 800 µm for vertical strips and strips tilted by 15°.

• The GEM plane thickness is 9 mm. With one drift gap, two acceleration gaps and one induction gap. • We need to take into account Lorenz shift (variates) from 0.9 to 1.5 mm from plane to plane) to reconstruct hits in GEM planes due to the magnet field ~0.5 T. CSC features

500

• Aligned by using straight GEM tracks with only X, Y, Z shifts (without rotation).

Entrie 1000

-2 -1.5 -1 -0.5 0 0.5

CSC Mean = 0.052Sigma = 0.45

1 1.5 2

X residual, cm

Efficiencies of GEM, CSC, TOF400

• Efficiencies for GEMs and TOF400 from all Ar data (~600 runs) are stable enough. • Efficiency for CSC from 10 "good" runs.

K^+/π^+

• m² distribution is used to extract the number of K⁺ and π^+ .

• Two sources of background are taken into account while extracting the number of K⁺: from π^+ (gaus fit) and from misidentified tracks (p0 fit).

- Two zones which are electrically separated to get less fake hits.
- Pitch of CSC strips equal 2.5 mm for vertical strips and strips tilted by 15°.

• TOF400 aligned by using straight GEM tracks with CSC hit with X, Y, Z shifts. • Vertical strips pitch of 1.25 cm, Y-coordinate determined by left-right signal difference.

• About $2 \cdot 10^3$ K⁺ and $10^5 \pi^+$ were identified in full Ar data.

Summary & Outlook

- CSC test outer tracker plane shows its good usability. Technique of CSC assembly is set up. CSC detector description is implemented into the reconstruction chain of the BM@N experiment.
- Matching of GEM central tracker, CSC outer tracker and TOF400 was successfully performed.
- During the analysis process, the TOF400 calibration was improved and high time resolution was achieved.
- As a result, good quality of charged particles identification was obtained and despite its smallness, K⁺ were splitted from π^+ .
- Such good CSC performance is a reason to use more planes in the next run.
- In the nearest future, we plan to include ZDC data to the present analysis to have the opportunity to choose events by centrality.