dS vacua and inflation

Timm Wrase

Lecture 5

Recap lecture 4

- The string compactification from above with fluxes for $\left\{\phi^{I}\right\}=\{S, T, U, N\}$ gives after compactification

$$
\begin{aligned}
& K=-3 \log (-i(T-\bar{T}))+N \bar{N} \\
& W=W_{0}+\mathrm{Ae}^{\mathrm{iaT}}+\mu N \equiv W_{K K L T}+\mu N \\
& D_{N} W=\partial_{N} W+W \partial_{N} K=\mu+W \bar{N}=\mu, \\
& D_{T} W=\partial_{T} W+W \partial_{T} K=\partial_{T} W_{K K L T}-\frac{3}{T-\bar{T}} W_{K K L T} \equiv D_{T} W_{K K L T}
\end{aligned}
$$

Recap lecture 4

- The string compactification from above with fluxes for $\left\{\phi^{I}\right\}=\{S, T, U, N\}$ gives after compactification

$$
\begin{aligned}
& K=-3 \log (-i(T-\bar{T}))+N \bar{N} \\
& W=W_{0}+\mathrm{Ae}^{\mathrm{iaT}}+\mu N \equiv W_{K K L T}+\mu N \\
& D_{N} W=\partial_{N} W+W \partial_{N} K=\mu+W \bar{N}=\mu, \\
& D_{T} W=\partial_{T} W+W \partial_{T} K=\partial_{T} W_{K K L T}-\frac{3}{T-\bar{T}} W_{K K L T} \equiv D_{T} W_{K K L T}
\end{aligned}
$$

We see that supersymmetry is now broken since $D_{N} W=\mu \neq 0$

Recap lecture 4

- The string compactification from above with fluxes for $\left\{\phi^{I}\right\}=\{S, T, U, N\}$ gives after compactification

$$
\begin{aligned}
& K=-3 \log (-i(T-\bar{T}))+N \bar{N} \\
& W=W_{0}+\mathrm{Ae}^{\mathrm{iaT}}+\mu N \equiv W_{K K L T}+\mu N \\
& D_{N} W=\partial_{N} W+W \partial_{N} K=\mu+W \bar{N}=\mu, \\
& D_{T} W=\partial_{T} W+W \partial_{T} K=\partial_{T} W_{K K L T}-\frac{3}{T-\bar{T}} W_{K K L T} \equiv D_{T} W_{K K L T} \\
& \quad V=e^{K}\left(K^{T \bar{T}} D_{T} W \overline{D_{T} W}+K^{N \bar{N}} D_{N} W \overline{D_{N} W}-3|W|^{2}\right)
\end{aligned}
$$

Recap lecture 4

- The string compactification from above with fluxes for $\left\{\phi^{I}\right\}=\{S, T, U, N\}$ gives after compactification

$$
\begin{aligned}
& K=-3 \log (-i(T-\bar{T}))+N \bar{N} \\
& W=W_{0}+\mathrm{Ae}^{\mathrm{iaT}}+\mu N \equiv W_{K K L T}+\mu N \\
& D_{N} W=\partial_{N} W+W \partial_{N} K=\mu+W \bar{N}=\mu, \\
& D_{T} W=\partial_{T} W+W \partial_{T} K=\partial_{T} W_{K K L T}-\frac{3}{T-\bar{T}} W_{K K L T} \equiv D_{T} W_{K K L T} \\
& V=e^{K}\left(K^{T \bar{T}} D_{T} W \overline{D_{T} W}+K^{N \bar{N}} D_{N} W \overline{D_{N} W}-3|W|^{2}\right) \\
& =\frac{1}{8 \rho^{3}}\left(K^{T \bar{T}} D_{T} W_{K K L T} \overline{D_{T} W_{K K L T}}+|\mu|^{2}-3\left|W_{K K L T}\right|^{2}\right)
\end{aligned}
$$

Recap lecture 4

- The string compactification from above with fluxes for $\left\{\phi^{I}\right\}=\{S, T, U, N\}$ gives after compactification

$$
\begin{aligned}
& K=-3 \log (-i(T-\bar{T}))+N \bar{N} \\
& \begin{aligned}
W=W_{0} & +\mathrm{Ae}^{\mathrm{iaT}}+\mu N \equiv W_{K K L T}+\mu N
\end{aligned} \\
& \begin{aligned}
D_{N} W & =\partial_{N} W+W \partial_{N} K=\mu+W \bar{N}=\mu, \\
D_{T} W & =\partial_{T} W+W \partial_{T} K=\partial_{T} W_{K K L T}-\frac{3}{T-\bar{T}} W_{K K L T} \equiv D_{T} W_{K K L T} \\
V & =e^{K}\left(K^{T \bar{T}} D_{T} W \overline{D_{T} W}+K^{N \bar{N}} D_{N} W \overline{D_{N} W}-3|W|^{2}\right) \\
& =\frac{1}{8 \rho^{3}}\left(K^{T \bar{T}} D_{T} W_{K K L T} \overline{D_{T} W_{K K L T}}+|\mu|^{2}-3\left|W_{K K L T}\right|^{2}\right) \\
& =V_{K K L T}+\frac{|\mu|^{2}}{8 \rho^{3}} .
\end{aligned}
\end{aligned}
$$

Recap lecture 4

- For an appropriate choice of μ we find $V_{\min }>0$

Recap lecture 4

- For an appropriate choice of μ we find $V_{\text {min }}>0$
- One can in principle fine-tune $V_{\min } \approx 10^{-120}$

Recap lecture 4

- For an appropriate choice of μ we find $V_{\min }>0$
- One can in principle fine-tune $V_{\text {min }} \approx 10^{-120}$
- SUSY breaking scale $D_{N} W=\mu$ independent of $V_{\min }$

The scalar potential

- The string compactification from above with fluxes for $\left\{\phi^{I}\right\}=\{S, T, U, N\}$ gives after compactification
$K=-3 \log (-i(T-\bar{T}))+N \bar{N}$
$W=W_{0}+\mathrm{Ae}^{\mathrm{iaT}}+\mu N \equiv W_{K K L T}+\mu N$
- In the absence of the non-perturbative corrections $b=\operatorname{Re}(T)$ was a flat direction

The scalar potential

- The string compactification from above with fluxes for $\left\{\phi^{I}\right\}=\{S, T, U, N\}$ gives after compactification
$K=-3 \log (-i(T-\bar{T}))+N \bar{N}$
$W=W_{0}+\mathrm{Ae}^{\mathrm{iaT}}+\mu N \equiv W_{K K L T}+\mu N$
- In the absence of the non-perturbative corrections $b=\operatorname{Re}(T)$ was a flat direction

The scalar potential

- The string compactification from above with fluxes for $\left\{\phi^{I}\right\}=\{S, T, U, N\}$ gives after compactification
$K=-3 \log (-i(T-\bar{T}))+N \bar{N}$
$W=W_{0}+\mathrm{Ae}^{\mathrm{iaT}}+\mu N \equiv W_{K K L T}+\mu N$
- In the absence of the non-perturbative corrections $b=\operatorname{Re}(T)$ was a flat direction
- What about Planck suppressed operators that can spoil inflation?

The scalar potential

- The string compactification from above with fluxes for $\left\{\phi^{I}\right\}=\{S, T, U, N\}$ gives after compactification

$$
\begin{aligned}
& K=-3 \log (-i(T-\bar{T}))+N \bar{N}+\delta K(T-\bar{T}) \quad \text { independent of } b=\operatorname{Re}(T) \\
& W=W_{0}+\mathrm{Ae}^{\mathrm{iaT}}+\mu N \equiv W_{K K L T}+\mu N
\end{aligned}
$$

- In the absence of the non-perturbative corrections $b=\operatorname{Re}(T)$ was a flat direction
- What about Planck suppressed operators that can spoil inflation?

The scalar potential

- The string compactification from above with fluxes for $\left\{\phi^{I}\right\}=\{S, T, U, N\}$ gives after compactification

$$
\begin{aligned}
& K=-3 \log (-i(T-\bar{T}))+N \bar{N}+\delta K(T-\bar{T}) \quad \text { independent of } b=\operatorname{Re}(T) \\
& W=W_{0}+\mathrm{Ae}^{\mathrm{iaT}}+\mu N \equiv W_{K K L T}+\mu N+\sum_{n \geq 2} c_{n}\left(\mathrm{Ae}^{\mathrm{iaT}}\right)^{n}
\end{aligned}
$$

- In the absence of the non-perturbative corrections $b=\operatorname{Re}(T)$ was a flat direction
- What about Planck suppressed operators that can spoil inflation?

The scalar potential

- The string compactification from above with fluxes for $\left\{\phi^{I}\right\}=\{S, T, U, N\}$ gives after compactification

$$
\begin{aligned}
& K=-3 \log (-i(T-\bar{T}))+N \bar{N}+\delta K(T-\bar{T}) \quad \text { independent of } b=\operatorname{Re}(T) \\
& W=W_{0}+\mathrm{Ae}^{\mathrm{i} \mathrm{a} T}+\mu N \equiv W_{K K L T}+\mu N+\sum_{n \geq 2} c_{n}\left(\mathrm{Ae}^{\mathrm{i} \mathrm{i} T}\right)^{n} \quad \text { need } a \rho \gg 1
\end{aligned}
$$

- In the absence of the non-perturbative corrections $b=\operatorname{Re}(T)$ was a flat direction
- What about Planck suppressed operators that can spoil inflation?

The scalar potential

- The string compactification from above with fluxes for $\left\{\phi^{I}\right\}=\{S, T, U, N\}$ gives after compactification

$$
\begin{aligned}
& K=-3 \log (-i(T-\bar{T}))+N \bar{N}+\delta K(T-\bar{T}) \quad \text { independent of } b=\operatorname{Re}(T) \\
& W=W_{0}+\mathrm{Ae}^{\mathrm{iaT}}+\mu N \equiv W_{K K L T}+\mu N+\sum_{n \geq 2} c_{n}\left(\mathrm{Ae}^{\mathrm{iaT}}\right)^{n} \quad \text { need } a \rho \gg 1 \\
& V(\rho, b)=\frac{4 a A^{2} \rho e^{-2 a \rho}(a \rho+3)+12 a A \rho W_{0} e^{-a \rho} \cos (a b)+3 \mu^{2}}{24 \rho^{3}} \quad T=b+\mathrm{i} \rho
\end{aligned}
$$

The scalar potential

- The string compactification from above with fluxes for $\left\{\phi^{I}\right\}=\{S, T, U, N\}$ gives after compactification

$$
\begin{aligned}
& K=-3 \log (-i(T-\bar{T}))+N \bar{N}+\delta K(T-\bar{T}) \quad \text { independent of } b=\operatorname{Re}(T) \\
& W=W_{0}+\mathrm{Ae}^{\mathrm{i} a \mathrm{~T}}+\mu N \equiv W_{K K L T}+\mu N+\sum_{n \geq 2} c_{n}\left(\mathrm{Ae}^{\mathrm{i} a T}\right)^{n} \quad \text { need } a \rho \gg 1 \\
& V(\rho, b)=\frac{4 a A^{2} \rho e^{-2 a \rho}(a \rho+3)+12 a A \rho W_{0} e^{-a \rho} \cos (a b)+3 \mu^{2}}{24 \rho^{3}} \quad T=b+\mathrm{i} \rho \\
& V(b)=\lambda_{1}^{4}-\lambda_{2}^{4} \cos (a b)
\end{aligned}
$$

The scalar potential

- The string compactification from above with fluxes for $\left\{\phi^{I}\right\}=\{S, T, U, N\}$ gives after compactification

$$
\begin{aligned}
& K=-3 \log (-i(T-\bar{T}))+N \bar{N}+\delta K(T-\bar{T}) \quad \text { independent of } b=\operatorname{Re}(T) \\
& W=W_{0}+\mathrm{Ae}^{\mathrm{iaT}}+\mu N \equiv W_{K K L T}+\mu N+\sum_{n \geq 2} c_{n}\left(\mathrm{Ae}^{\mathrm{iaT}}\right)^{n} \quad \text { need } a \rho \gg 1 \\
& V(\rho, b)=\frac{4 a A^{2} \rho e^{-2 a \rho}(a \rho+3)+12 a A \rho W_{0} e^{-a \rho} \cos (a b)+3 \mu^{2}}{24 \rho^{3}} \\
& V(b)=\lambda_{1}^{4}-\lambda_{2}^{4} \cos (a b) \quad T=b+\mathrm{i} \rho \\
& \text { Looks like a good candidate }
\end{aligned}
$$

Planck 2015

Natural inflation

$$
V(b)=\lambda^{4}\left(1+\cos \left(\frac{b}{f}\right)\right)
$$

- In order to match onto observations we need $f>M_{P}=$ 1 but not by that much so $f \approx 10 M_{P}=10$ or a little bit larger would be sufficient
- However, in controlled regimes of string theory the axion decay constant f seems to be always smaller than $M_{P}=1$

The scalar potential

- The string compactification from above with fluxes for $\left\{\phi^{I}\right\}=\{S, T, U, N\}$ gives after compactification
$K=-3 \log (-i(T-\bar{T}))+N \bar{N}+\delta K(T-\bar{T}) \quad$ independent of $b=\operatorname{Re}(T)$
$W=W_{0}+\mathrm{Ae}^{\mathrm{iaT}}+\mu N \equiv W_{K K L T}+\mu N+\sum_{n \geq 2} c_{n}\left(\mathrm{Ae}^{\mathrm{i} 2 T}\right)^{n} \quad$ need $a \rho \gg 1$
$V(b)=\lambda_{1}^{4}-\lambda_{2}^{4} \cos (a b)$

The scalar potential

- The string compactification from above with fluxes for $\left\{\phi^{I}\right\}=\{S, T, U, N\}$ gives after compactification
$K=-3 \log (-i(T-\bar{T}))+N \bar{N}+\delta K(T-\bar{T}) \quad$ independent of $b=\operatorname{Re}(T)$
$W=W_{0}+\mathrm{Ae}^{\mathrm{iaT}}+\mu N \equiv W_{K K L T}+\mu N+\sum_{n \geq 2} c_{n}\left(\mathrm{Ae}^{\mathrm{i} 2 T}\right)^{n} \quad$ need $a \rho \gg 1$
$V(b)=\lambda_{1}^{4}-\lambda_{2}^{4} \cos (a b)$
$\mathcal{L}_{\text {kin }}=-K_{T \bar{T}}\left(\partial_{\mu} b \partial^{\mu} b+\partial_{\mu} \rho \partial^{\mu} \rho\right)=-\frac{3}{4 \rho^{2}}\left(\partial_{\mu} b \partial^{\mu} b+\partial_{\mu} \rho \partial^{\mu} \rho\right)$

The scalar potential

- The string compactification from above with fluxes for $\left\{\phi^{I}\right\}=\{S, T, U, N\}$ gives after compactification

$$
K=-3 \log (-i(T-\bar{T}))+N \bar{N}+\delta K(T-\bar{T}) \quad \text { independent of } b=\operatorname{Re}(T)
$$

$$
W=W_{0}+\mathrm{Ae}^{\mathrm{iaT}}+\mu N \equiv W_{K K L T}+\mu N+\sum_{n \geq 2} c_{n}\left(\mathrm{Ae}^{\mathrm{i} 2 T}\right)^{n} \quad \text { need } a \rho \gg 1
$$

$$
V(b)=\lambda_{1}^{4}-\lambda_{2}^{4} \cos (a b)
$$

$$
\mathcal{L}_{k i n}=-K_{T \bar{T}}\left(\partial_{\mu} b \partial^{\mu} b+\partial_{\mu} \rho \partial^{\mu} \rho\right)=-\frac{3}{4 \rho^{2}}\left(\partial_{\mu} b \partial^{\mu} b+\partial_{\mu} \rho \partial^{\mu} \rho\right)
$$

$$
\mathcal{L}_{\text {kin }}=-\frac{1}{2} \partial_{\mu} \varphi \partial^{\mu} \varphi
$$

$$
\varphi=\sqrt{3 / 2} b / \rho_{\min }
$$

The scalar potential

- The string compactification from above with fluxes for $\left\{\phi^{I}\right\}=\{S, T, U, N\}$ gives after compactification

$$
\begin{aligned}
& K=-3 \log (-i(T-\bar{T}))+N \bar{N}+\delta K(T-\bar{T}) \quad \text { independent of } b=\operatorname{Re}(T) \\
& W=W_{0}+\mathrm{Ae}^{\mathrm{i} \mathrm{i} T}+\mu N \equiv W_{K K L T}+\mu N+\sum_{n \geq 2} c_{n}\left(\mathrm{Ae}^{\mathrm{i} \mathrm{i} T}\right)^{n} \quad \text { need } a \rho \gg 1
\end{aligned}
$$

$V(b)=\lambda_{1}^{4}-\lambda_{2}^{4} \cos (a b)$

$$
\varphi=\sqrt{3 / 2} b / \rho_{\min }
$$

The scalar potential

- The string compactification from above with fluxes for $\left\{\phi^{I}\right\}=\{S, T, U, N\}$ gives after compactification

$$
K=-3 \log (-i(T-\bar{T}))+N \bar{N}+\delta K(T-\bar{T}) \quad \text { independent of } b=\operatorname{Re}(T)
$$

$$
W=W_{0}+\mathrm{Ae}^{\mathrm{iaT}}+\mu N \equiv W_{K K L T}+\mu N+\sum_{n \geq 2} c_{n}\left(\mathrm{Ae}^{\mathrm{i} 2 T}\right)^{n} \quad \text { need } a \rho \gg 1
$$

$V(b)=\lambda_{1}^{4}-\lambda_{2}^{4} \cos (a b)$
$V(\varphi)=\lambda_{1}^{4}-\lambda_{2}^{4} \cos \left(\sqrt{\frac{2}{3}} \rho_{\text {min }} a \varphi\right) \equiv \lambda_{1}^{4}-\lambda_{2}^{4} \cos \left(\frac{\varphi}{f}\right)$

The scalar potential

- The string compactification from above with fluxes for $\left\{\phi^{I}\right\}=\{S, T, U, N\}$ gives after compactification

$$
K=-3 \log (-i(T-\bar{T}))+N \bar{N}+\delta K(T-\bar{T}) \quad \text { independent of } b=\operatorname{Re}(T)
$$

$$
W=W_{0}+\mathrm{Ae}^{\mathrm{iaT}}+\mu N \equiv W_{K K L T}+\mu N+\sum_{n \geq 2} c_{n}\left(\mathrm{Ae}^{\mathrm{i} 2 T}\right)^{n} \quad \text { need } a \rho \gg 1
$$

$V(b)=\lambda_{1}^{4}-\lambda_{2}^{4} \cos (a b)$
$V(\varphi)=\lambda_{1}^{4}-\lambda_{2}^{4} \cos \left(\sqrt{\frac{2}{3}} \rho_{\text {min }} a \varphi\right) \equiv \lambda_{1}^{4}-\lambda_{2}^{4} \cos \left(\frac{\varphi}{f}\right)$
$f=\sqrt{\frac{3}{2}} \frac{1}{\rho_{\text {min }} a} \gtrsim 1$
$\varphi=\sqrt{3 / 2} b / \rho_{\text {min }}$

The scalar potential

- The string compactification from above with fluxes for $\left\{\phi^{I}\right\}=\{S, T, U, N\}$ gives after compactification

$$
K=-3 \log (-i(T-\bar{T}))+N \bar{N}+\delta K(T-\bar{T}) \quad \text { independent of } b=\operatorname{Re}(T)
$$

$$
W=W_{0}+\mathrm{Ae}^{\mathrm{iaT}}+\mu N \equiv W_{K K L T}+\mu N+\sum_{n \geq 2} c_{n}\left(\mathrm{Ae}^{\mathrm{i} 2 T}\right)^{n} \quad \text { need } a \rho \gg 1
$$

$V(b)=\lambda_{1}^{4}-\lambda_{2}^{4} \cos (a b)$
$V(\varphi)=\lambda_{1}^{4}-\lambda_{2}^{4} \cos \left(\sqrt{\frac{2}{3}} \rho_{\text {min }} a \varphi\right) \equiv \lambda_{1}^{4}-\lambda_{2}^{4} \cos \left(\frac{\varphi}{f}\right)$
$f=\sqrt{\frac{3}{2}} \frac{1}{\rho_{\min } a} \gtrsim 1 \quad \Leftrightarrow \quad 1 \gtrsim \rho_{\min } a \quad \varphi=\sqrt{3 / 2} b / \rho_{\text {min }}$

The scalar potential

- The string compactification from above with fluxes for $\left\{\phi^{I}\right\}=\{S, T, U, N\}$ gives after compactification

$$
K=-3 \log (-i(T-\bar{T}))+N \bar{N}+\delta K(T-\bar{T}) \quad \text { independent of } b=\operatorname{Re}(T)
$$

$$
W=W_{0}+\mathrm{Ae}^{\mathrm{iaT}}+\mu N \equiv W_{K K L T}+\mu N+\sum_{n \geq 2} c_{n}\left(\mathrm{Ae}^{\mathrm{iaT}}\right)^{n} \quad \text { need } a \rho \gg 1
$$

$V(b)=\lambda_{1}^{4}-\lambda_{2}^{4} \cos (a b)$
$V(\varphi)=\lambda_{1}^{4}-\lambda_{2}^{4} \cos \left(\sqrt{\frac{2}{3}} \rho_{\text {min }} a \varphi\right) \equiv \lambda_{1}^{4}-\lambda_{2}^{4} \cos \left(\frac{\varphi}{f}\right)$
$f=\sqrt{\frac{3}{2}} \frac{1}{\rho_{\text {min }} a} \gtrsim 1 \quad \Leftrightarrow \quad 1 \gtrsim \rho_{\min } a \quad \varphi=\sqrt{3 / 2} b / \rho_{\text {min }}$

Natural inflation from string theory?

N-inflation

- Another proposal to extend the axion decay constant requires a large number $N \gg 1$ of scalars

Liddle, Mazumdar, Schunck astroph/9804177
Dimopoulos, Kachru, McGreevy, Wacker hep-th/0507205

Natural inflation from string theory?

N-inflation

- Another proposal to extend the axion decay constant requires a large number $N \gg 1$ of scalars

Liddle, Mazumdar, Schunck astroph/9804177
Dimopoulos, Kachru, McGreevy, Wacker hep-th/0507205

- String theory compactifications can certainly have many scalars with $N \approx O(100-1000)$
- The idea is essentially "Pythagoras theorem":

Natural inflation from string theory?

N -inflation

- The idea is essentially "Pythagoras theorem"
- If we displace N identical scalars by the same amount we get an enhancement by \sqrt{N}

Natural inflation from string theory?

N -inflation

- The idea is essentially
"Pythagoras theorem"
- If we displace N identical scalars by the same amount we get an enhancement by \sqrt{N}
- We usually expect f to be not that much smaller than M_{p} so that we can have $\sqrt{N} f \approx 10 M_{P}$

Natural inflation from string theory?

Alignment

- It is possible to get a super Planckian f, if one considers a model with two scalars that both have sub-Planckian f^{\prime} 's

Kim, Niles, Peloso hep-ph/0409138

$$
\begin{gathered}
V=\lambda_{1}^{4}\left[1+\cos \left(\frac{b_{1}}{f_{1}}+\frac{b_{2}}{f_{2}}\right)\right]+\lambda_{2}^{4}\left[1+\cos \left(\frac{b_{1}}{g_{1}}+\frac{b_{2}}{g_{2}}\right)\right] \\
f_{1}, f_{2}, g_{1}, g_{2}<M_{P}
\end{gathered}
$$

Natural inflation from string theory?

Alignment

$$
V=\lambda_{1}^{4}\left[1+\cos \left(\frac{b_{1}}{f_{1}}+\frac{b_{2}}{f_{2}}\right)\right]+\lambda_{2}^{4}\left[1+\cos \left(\frac{b_{1}}{g_{1}}+\frac{b_{2}}{g_{2}}\right)\right]
$$

If $\frac{f_{1}}{f_{2}}=\frac{g_{1}}{g_{2}}$, then we can define $b=b_{1}+\frac{f_{1}}{f_{2}} b_{2}=b_{1}+\frac{g_{1}}{g_{2}} b_{2}$

Natural inflation from string theory?

Alignment

$$
V=\lambda_{1}^{4}\left[1+\cos \left(\frac{b_{1}}{f_{1}}+\frac{b_{2}}{f_{2}}\right)\right]+\lambda_{2}^{4}\left[1+\cos \left(\frac{b_{1}}{g_{1}}+\frac{b_{2}}{g_{2}}\right)\right]
$$

If $\frac{f_{1}}{f_{2}}=\frac{g_{1}}{g_{2}}$, then we can define $b=b_{1}+\frac{f_{1}}{f_{2}} b_{2}=b_{1}+\frac{g_{1}}{g_{2}} b_{2}$

$$
\begin{aligned}
V= & \lambda_{1}^{4}\left[1+\cos \left(\frac{b}{f_{1}}\right)\right] \\
& +\lambda_{2}^{4}\left[1+\cos \left(\frac{b}{g_{1}}\right)\right]
\end{aligned}
$$

Natural inflation from string theory?

Alignment

$$
V=\lambda_{1}^{4}\left[1+\cos \left(\frac{b_{1}}{f_{1}}+\frac{b_{2}}{f_{2}}\right)\right]+\lambda_{2}^{4}\left[1+\cos \left(\frac{b_{1}}{g_{1}}+\frac{b_{2}}{g_{2}}\right)\right]
$$

If $\frac{f_{1}}{f_{2}}=\frac{g_{1}}{g_{2}}$, then we can define $b=b_{1}+\frac{f_{1}}{f_{2}} b_{2}=b_{1}+\frac{g_{1}}{g_{2}} b_{2}$
flat direction
$V=\lambda_{1}^{4}\left[1+\cos \left(\frac{b}{f_{1}}\right)\right]$

$$
+\lambda_{2}^{4}\left[1+\cos \left(\frac{b}{g_{1}}\right)\right]
$$

Natural inflation from string theory?

Alignment

$$
V=\lambda_{1}^{4}\left[1+\cos \left(\frac{b_{1}}{f_{1}}+\frac{b_{2}}{f_{2}}\right)\right]+\lambda_{2}^{4}\left[1+\cos \left(\frac{b_{1}}{g_{1}}+\frac{b_{2}}{g_{2}}\right)\right]
$$

If $\frac{f_{1}}{f_{2}}=\frac{g_{1}}{g_{2}}$, then we can define $b=b_{1}+\frac{f_{1}}{f_{2}} b_{2}=b_{1}+\frac{g_{1}}{g_{2}} b_{2}$
flat direction
$V=\lambda_{1}^{4}\left[1+\cos \left(\frac{b}{f_{1}}\right)\right]$

$$
+\lambda_{2}^{4}\left[1+\cos \left(\frac{b}{g_{1}}\right)\right]
$$

Natural inflation from string theory?

Alignment

$$
V=\lambda_{1}^{4}\left[1+\cos \left(\frac{b_{1}}{f_{1}}+\frac{b_{2}}{f_{2}}\right)\right]+\lambda_{2}^{4}\left[1+\cos \left(\frac{b_{1}}{g_{1}}+\frac{b_{2}}{g_{2}}\right)\right]
$$

If $\frac{f_{1}}{f_{2}} \approx \frac{g_{1}}{g_{2}}$, then we can define $b=b_{1}+\frac{f_{1}}{f_{2}} b_{2}=b_{1}+\frac{g_{1}}{g_{2}} b_{2}$
almost flat direction
The direction orthogonal to a is the inflaton and can have arbitrarily large f

$$
=\text { large } f
$$

Axion monodromy inflation

Axion monodromy inflation

Example:

flux quanta (can be chosen)

$$
V \sim M_{p l}^{4} \frac{g_{s}^{4}}{L^{12}}\left(\frac{Q_{1}^{2}}{u^{3}}+\frac{Q_{2}^{2}}{L^{4}} u b^{4}\right)
$$

one extra scalar field
axion $=$ inflaton

Axion monodromy inflation

Example:

$$
V \sim M_{p l}^{4} \frac{g_{s}^{4}}{L^{12}}\left(\frac{Q_{1}^{2}}{u^{3}}+\frac{Q_{2}^{2}}{L^{4}} u b^{4}\right)
$$

two term stabilization of u

Axion monodromy inflation

Example:

$$
\begin{array}{r}
V \sim M_{p l}^{4} \frac{g_{s}^{4}}{L^{12}}\left(\frac{Q_{1}^{2}}{u^{3}}+\frac{Q_{2}^{2}}{L^{4}} u b^{4}\right) \\
\partial_{u} V=0 \Rightarrow u=\frac{3^{1 / 4} L}{b} \sqrt{\frac{Q_{1}}{Q_{2}}} \propto \frac{1}{b}
\end{array}
$$

Axion monodromy inflation

Example:

$$
\begin{array}{r}
V \sim M_{p l}^{4} \frac{g_{s}^{4}}{L^{12}}\left(\frac{Q_{1}^{2}}{u^{3}}+\frac{Q_{2}^{2}}{L^{4}} u b^{4}\right) \\
\partial_{u} V=0 \Rightarrow u=\frac{3^{1 / 4} L}{b} \sqrt{\frac{Q_{1}}{Q_{2}}} \propto \frac{1}{b}
\end{array}
$$

Flattening: $\quad V \propto b^{4} \quad \rightarrow \quad V \propto b^{3}$

Axion monodromy inflation

Generic feature in these models:

- One or more fields adjust their value during inflation and thereby flatten the scalar potential
$V\left(b, \phi^{I}\right)=\sum_{n=0}^{p_{0}} c_{n}\left(\phi^{I}\right) b^{n} \xrightarrow{\phi^{I}=\phi_{\min }^{I}, b \gg 1} \tilde{c}\left(\phi_{\min }^{I}\right) b^{p}, p \leq p_{0}$

Axion monodromy inflation

Generic feature in these models:

- One or more fields adjust their value during inflation and thereby flatten the scalar potential
$V\left(b, \phi^{I}\right)=\sum_{n=0}^{p_{0}} c_{n}\left(\phi^{I}\right) b^{n} \xrightarrow{\phi^{I}=\phi_{\text {min }}^{I}, b \gg 1} \tilde{c}\left(\phi_{\min }^{I}\right) b^{p}, p \leq p_{0}$
- There is some freedom in choosing fluxes to control the flattening
- We find $p=3,2, \frac{4}{3}, 1, \frac{2}{3}$ in some string models

Axion monodromy inflation

