LHC - Why Terascale?

Stabilization of the Higgs mechanism $\rightarrow \Lambda \sim 1$ TeV

Unitarization of EW vector boson and heavy quark amplitudes $\rightarrow \Lambda \sim 1 \text{ TeV}$

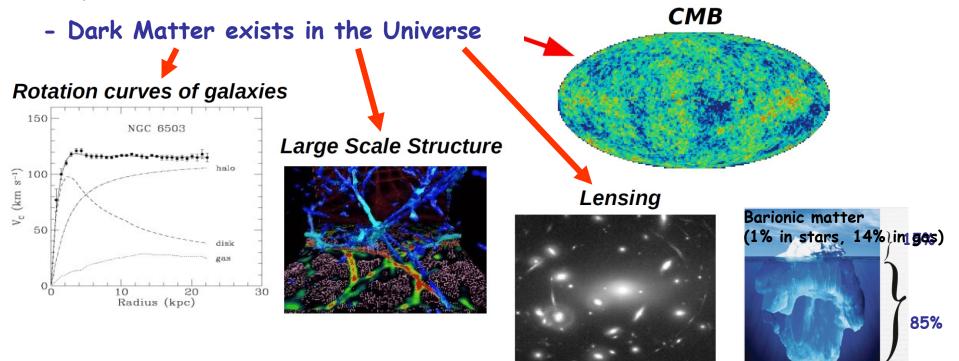
If Mh ~ 1 TeV \rightarrow SM Higgs width ~ 0.5 TeV, strong coupling regime

Dark Matter density: in most popular scenarios masses of DM candidates are less than 1 TeV

$$\Omega_{\text{WIMP}} \sim 0.2 \left(\frac{m_{\chi}}{200 \,\text{GeV}}\right)^2 \left(\frac{0.1}{g^2}\right)^2$$

LHC - Why Terascale? After Higgs discovery Stabilization of the Higgs mechanism $\rightarrow \Lambda \sim 1 \text{ TeV}$ Unitarization of EW vector boson and heavy quark amplitudes $\rightarrow \Lambda \sim 1 \text{ TeV}$ If $Mh \sim 1 \text{ TeV} \rightarrow SM$ Higgs width $\sim 0.5 \text{ TeV}$, strong coupling regime Dark Matter density: in most popular scenarios masses of

$$\Omega_{\text{WIMP}} \sim 0.2 \left(\frac{m_{\chi}}{200 \,\text{GeV}}\right)^2 \left(\frac{0.1}{g^2}\right)^2$$


DM candidates are less than 1 TeV

LHC - Why Terascale? After Higgs discovery Stabilization of the Higgs mechanism $\rightarrow \Lambda \sim 1 \text{ TeV}$ Unitarization of EW vector boson and heavy quark amplitudes $\rightarrow \Lambda \sim 1 \text{ TeV}$ If $Mh \sim 1 \text{ TeV} \rightarrow SM$ Higgs width $\sim 0.5 \text{ TeV}$, strong coupling regime Dark Matter density: in most popular scenarios masses of DM candidates are less than 1 TeV

$$\Omega_{\text{WIMP}} \sim 0.2 \left(\frac{m_{\chi}}{200 \,\text{GeV}}\right)^2 \left(\frac{0.1}{g^2}\right)^2$$

Facts which can not be explained in SM

- EW symmetry is broken - photon is massless, W and Z are massive prticles Fermions have very much different masses (Mtop \approx 172 GeV, Me \approx 0.5 MeV, $\Delta M_V \approx$ 10⁻³ eV)

- (g-2)μ (about 3.5 σ)
- Neutrino masses, mixing, oscillations

Dark unknown matter

- Particle antiparticle asymmetry in the Universe,
- baryon asymmetry: $\frac{n_B n_{\overline{B}}}{n_B + n_{\overline{R}}} \sim 10^{-10}$ CP violation

CKM phase - too small efect

In addition to mentioned problems (naturalness/hierarchy, dark matter content, CP violation) SM does not give answers to many questions

What is a generation? Why there are only 3 generations?

How quarks and leptons related to each other, what is a nature of quark-lepton analogy?

What is responsible for gauge symmetries, why charges are quantize? Are there additional gauge symmetries?

What is responsible for a formation of the Higgs potential?

To which accuracy the CPT symmetry is exact?

........

Why gravity is so weak comparing to other interactions?

Main options beyond SM

SUSY Compositeness Extra Dimensions

- 1. Fundamental Higgs:
- Supersymmetric models (MSSM, NMSSM...)
- 2. Composite Higgs:
- Models with new strong dynamics

(Chiral Lagrangians from holography, latest technicolor variants, Little Higgs models, Twin Higgs models...)

3. Mixed cases:

- -Models with extra space dimensions
- -Partially composite models...

4. Many more (hidden valleys, landscape)

BSM searches

Collision energy > particle production threshold

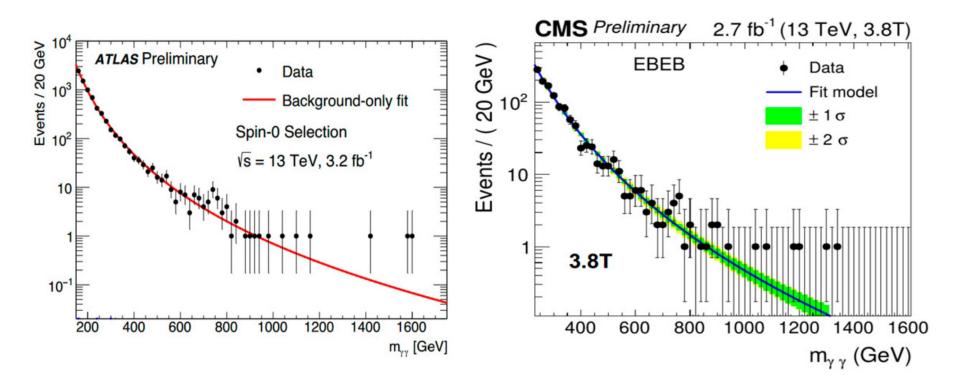
-Searches for new particles

strongly interacting new particles with large cross sections (squarks, gluinos...)

top partners motivated by naturalness (stop, sbottom, vector like quarks, t* ...)

new resonances predicted by many BSM extensions (Z', W', $\pi_T,\ \rho_T$, KK states, _)

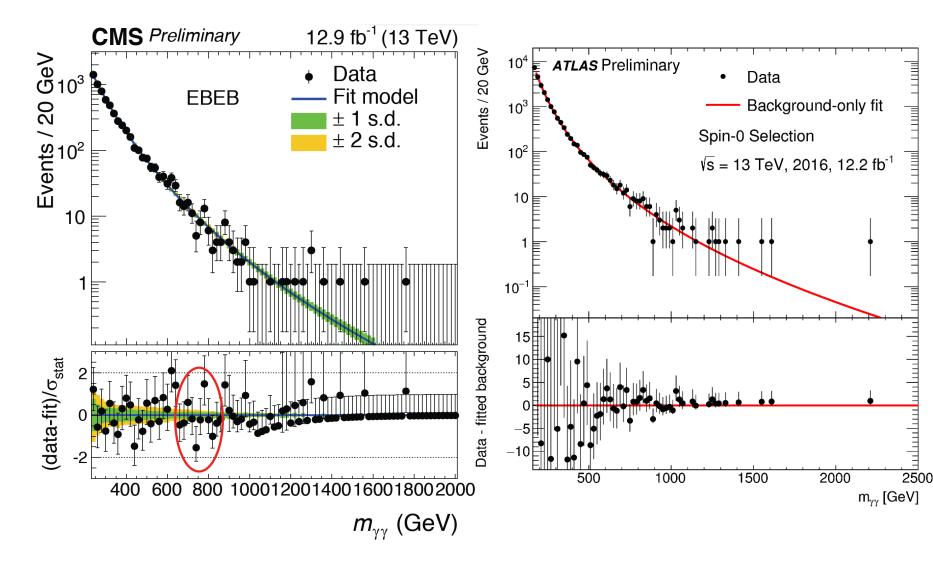
extended Higgs sector (new neutral Higgses, charged Higgs)


Collision energy < particle production threshold

-Anomalous/new interactions of SM particles (EFT) (anom. gauge boson couplings, anom. Wtb couplings, FCNC ...) -New particle contributions via quantum loops

More Higgses, more scalars practically in all BSM models

The 750 GeV diphoton excess presented by CMS and ATLAS experiments in Dec. 2015


Local significance = $3,9 \sigma$ Global significance = 2σ

Local significance = 3.4σ Global significance = 1.6σ

- Lot of proposals but no generally accepted explanations of the 750 GeV diphoton excess (> 550 submissions to arXiv)
- Composite Pseudo-Nambu-Goldstone boson, Dilaton, Radion, KK graviton, Quarkonium-
- like bound state, Sgoldstino, Heavy axion (axizilla), ...
- Important to rule out the scenarios, which cannot explain the excess

No signal with new much larger data set

Statistical fluctuation !

2HDM

Why the only one Higgs doublet? - No fundamental reasons

Simple extension - two Higgs doublets (2HDM)

MSSM prototype, strong CP and axion, CP violation and baryogenesis

$$\langle \Phi_1 \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_1 \end{pmatrix}, \quad \langle \Phi_2 \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_2 \end{pmatrix} \quad v^2 \equiv v_1^2 + v_2^2 \quad \tan \beta \equiv \frac{v_2}{v_1}$$

2 complex scalar doublets => 8 degrees of freedom

$$\Phi_a = \begin{pmatrix} \phi_a^+ \\ (v_a + \rho_a + i\eta_a) / \sqrt{2} \end{pmatrix}, \quad a = 1, 2$$

As in the SM 3 Goldstone bosons are absorbed ("eaten") by W^{\pm} and Z

5 physics degrees of freedom

h, H - CP even scalars, A - CP odd scalar, H[±] - sharged scalars

Generic Higgs potential is not that simple

Mostly studied cases with Z_2 symmetry

$$\Phi_1 \to +\Phi_1 \ \Phi_2 \to -\Phi_2 \twoheadrightarrow \lambda_6, \lambda_7 = 0$$

Physics states - the states with definite masses

$$\begin{pmatrix} m_H^2 & 0 \\ 0 & m_h^2 \end{pmatrix} = \begin{pmatrix} c_\alpha & s_\alpha \\ -s_\alpha & c_\alpha \end{pmatrix} \begin{pmatrix} \mathcal{M}_{11}^2 & \mathcal{M}_{12}^2 \\ \mathcal{M}_{12}^2 & \mathcal{M}_{22}^2 \end{pmatrix} \begin{pmatrix} c_\alpha & -s_\alpha \\ s_\alpha & c_\alpha \end{pmatrix}$$

$$H = (\sqrt{2} \operatorname{Re} \Phi_1^0 - v_1) c_{\alpha} + (\sqrt{2} \operatorname{Re} \Phi_2^0 - v_2) s_{\alpha},$$

$$h = -(\sqrt{2} \operatorname{Re} \Phi_1^0 - v_1) s_{\alpha} + (\sqrt{2} \operatorname{Re} \Phi_2^0 - v_2) c_{\alpha}$$

Notations:
$$\cos a = c_{\alpha}$$
, $\sin a = s_{\alpha}$, $\cos \beta = c_{\beta}$, $\sin \beta = s_{\beta}$,
 $\cos(\beta - \alpha) = c_{\beta - \alpha}$, $\sin(\beta - \alpha) = s_{\beta - \alpha}$

Several types of 2HDM depending on Yukawa arrangement

Glashow, Weinberg, Paschos condition '77

Avoid FCNC: if all fermions with the same quantum numbers couple to the same Higgs multiplet, then FCNC are absent

Branco, Ferreira, Lavoura, Rebelo, Sher, Silva '11,12

Model	u_R^i	d_R^i	e_R^i	
Type I	Φ_2	Φ_2	Φ_2	
Type II	Φ_2	Φ_1	Φ_1	MSSM like
Lepton-specific	Φ_2	Φ_2	Φ_1	Type III
Flipped	Φ_2	Φ_1	Φ_2	Type IV

Yukawa couplings to the Higgs bosons normalized to SM Higgs

	Type I	Type II	Lepton-specific	Flipped	
ξ_h^u	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$ –	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$	
ξ_h^d	$\cos \alpha / \sin \beta$	$\sin \alpha / \cos \beta$	$\cos \alpha / \sin \beta$	$-\sin \alpha / \cos \beta$	• $s_{(\beta-\alpha)} + c_{(\beta-\alpha)}/t_{\beta}$
ξ_h^ℓ	$\cos \alpha / \sin \beta$	$-\sin \alpha / \cos \beta$	$-\sin \alpha / \cos \beta$	$\cos \alpha / \sin \beta$	
ξ^u_H	$\sin lpha / \sin eta$	$\sin lpha / \sin eta$	$\sin \alpha / \sin \beta$	$\sin \alpha / \sin \beta$	
ξ^d_H	$\sin \alpha / \sin \beta$	$\cos \alpha / \cos \beta$	$\sin \alpha / \sin \beta$	$\cos \alpha / \cos \beta$	• $s_{(\beta-\alpha)} - t_{\beta} + c_{(\beta-\alpha)}$
ξ^ℓ_H	$\sin \alpha / \sin \beta$	$\cos \alpha / \cos \beta$	$\cos \alpha / \cos \beta$	$\sin \alpha / \sin \beta$	
ξ^u_A	\coteta	\coteta	\coteta	\coteta	
ξ^d_A	$-\cot\beta$	$\tan\beta$	$-\cot\beta$	$\tan eta$	
ξ^ℓ_A	$-\cot\beta$	aneta	aneta	$-\cot\beta$	

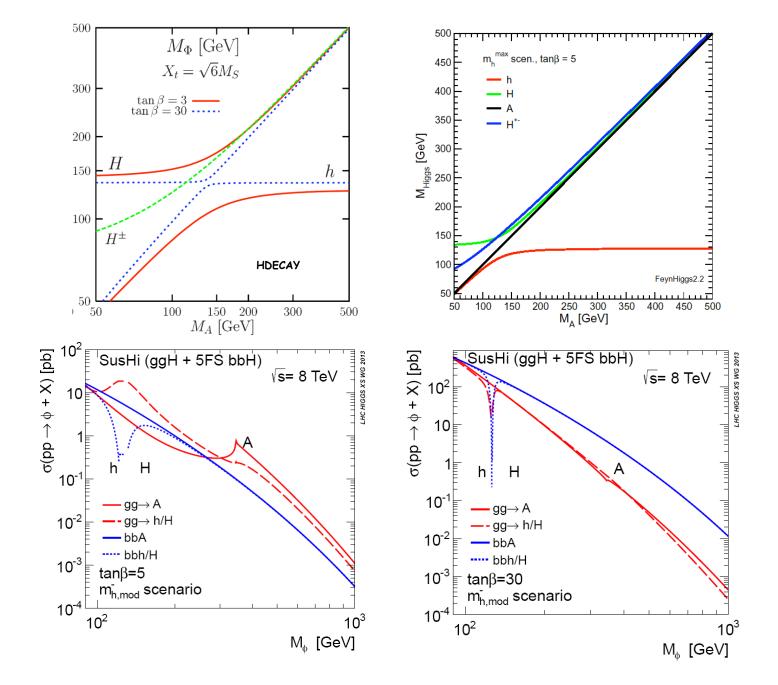
MSSM

MSSM potential after supersymmetry breaking

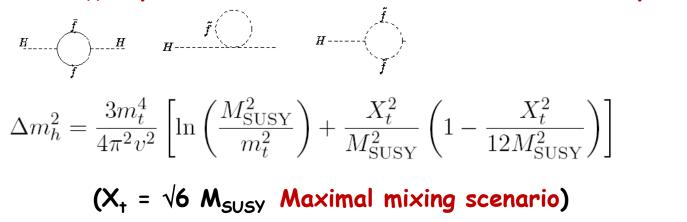
 $V(H_1, H_2) = m_1^2 H_1^{\dagger} H_1 + m_2^2 H_2^{\dagger} H_2 + m_3^2 (H_1^T i \tau_2 H_2 + h.c.) + \frac{\lambda_1}{2} \left(H_1^{\dagger} H_1 \right)^2 + \frac{\lambda_2}{2} \left(H_2^{\dagger} H_2 \right)^2 + \lambda_3 \left(H_1^{\dagger} H_1 \right) \left(H_2^{\dagger} H_2 \right) + \lambda_4 \left| \left(H_1^T i \tau_2 H_2 \right) \right|^2$

2HDM type II with quartic couplings fixed due to the gauge nature

$$\lambda_1 = \lambda_2 = \frac{g_1^2 + g_2^2}{4}, \qquad \lambda_3 = \frac{g_2^2 - g_1^2}{4}, \qquad \lambda_4 = -\frac{g_2^2}{2}$$


8-3=5 physics states

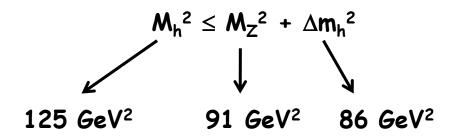
h, H – CP even scalars, A – CP odd scalar, H[±] – charged scalars


Φ	$g_{\Phi ar{u} u}$	$g_{\Phi ar{d} d}$	$g_{\Phi VV}$	$g_{\Phi AZ}/g_{\Phi H^+W^-}$
h	$\cos lpha / \sin eta$	$-\sin lpha / \cos eta$	$\sin(\beta - \alpha)$	$\propto \cos(\beta - \alpha)$
H	$\sin lpha / \sin eta$	$\cos lpha / \cos eta$	$\cos(\beta - \alpha)$	$\propto \sin(\beta - \alpha)$
A	$\mathrm{cot}eta$	aneta	0	$\propto 0/1$

Couplings are shared between the Higgses:

$$\sum_{i} g_{H_iVV}^2 = \left(g_{HVV}^{\rm SM}\right)^2$$

 M_{H} is protected due to cancellation of Λ^2 dependence!



$$M_{\rm SUSY} \equiv \sqrt{m_{\tilde{t}_1} m_{\tilde{t}_2}}$$
$$X_t = A_t - \mu \cot \beta$$

Only two parameters at tree level

$$aneta\equiv rac{v_2}{v_1}$$
 , $\mathbf{M}_{\mathbf{A}}$

But large loop correction

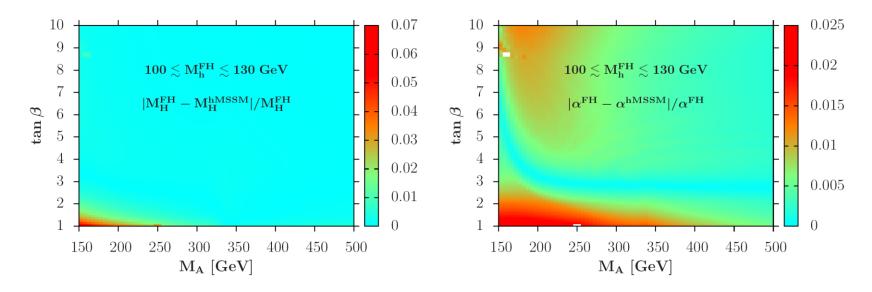
Available parameter range after all constrains ?

Carena, Heinemeyer, Stal, Wagner, Weiglein'13

Parameter	m_h^{\max}	$m_h^{\rm mod+}$	$m_h^{ m mod-}$	light stop	$light\ stau$	au-phobic	$low-M_H$
m_t	173.2	173.2	173.2	173.2	173.2	173.2	173.2
M_A	varied	varied	varied	varied	varied	varied	110
aneta	varied	varied	varied	varied	varied	varied	varied
M _{SUSY}	1000	1000	1000	500	1000	1500	1500
$M_{\tilde{l}_3}$	1000	1000	1000	1000	245 (250)	500	1000
$X_t^{\rm OS}/M_{\rm SUSY}$	2.0	1.5	-1.9	2.0	1.6	2.45	2.45
$X_t^{\overline{\mathrm{MS}}}/M_{\mathrm{SUSY}}$	$\sqrt{6}$	1.6	-2.2	2.2	1.7	2.9	2.9
A_t			Give	en by $A_t = X_t$	$t + \mu \cot \beta$		
A_b	$= A_t$	$= A_t$	$= A_t$	$= A_t$	$= A_t$	$= A_t$	$= A_t$
$A_{ au}$	$= A_t$	$= A_t$	$= A_t$	$= A_t$	0	0	$= A_t$
μ	200	200	200	350	500 (450)	2000	varied
M_1			Fixed	by GUT rela	tion to M_2		
M_2	200	200	200	350	200 (400)	200	200
$m_{ ilde{g}}$	1500	1500	1500	1500	1500	1500	1500
$M_{ ilde{q}_{1,2}}$	1500	1500	1500	1500	1500	1500	1500
$M_{\tilde{l}_{1,2}}$	500	500	500	500	500	500	500
$A_{f \neq t, b, \tau}$	0	0	0	0	0	0	0

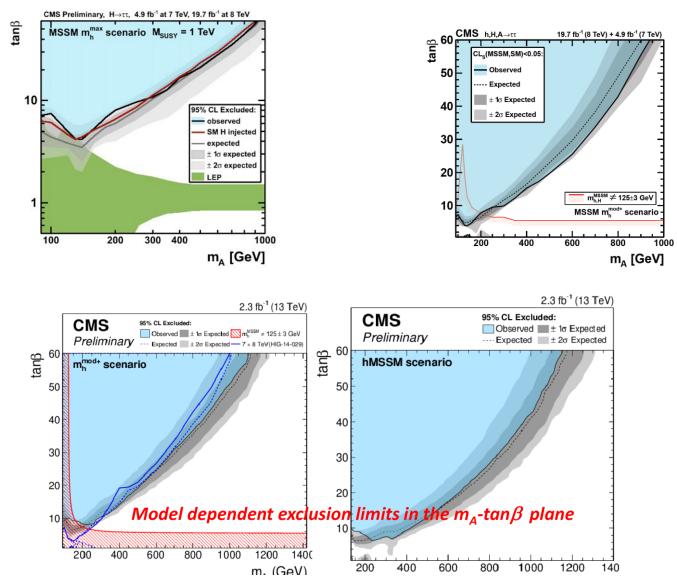
Intensively used in experimental analyses

hMSSM

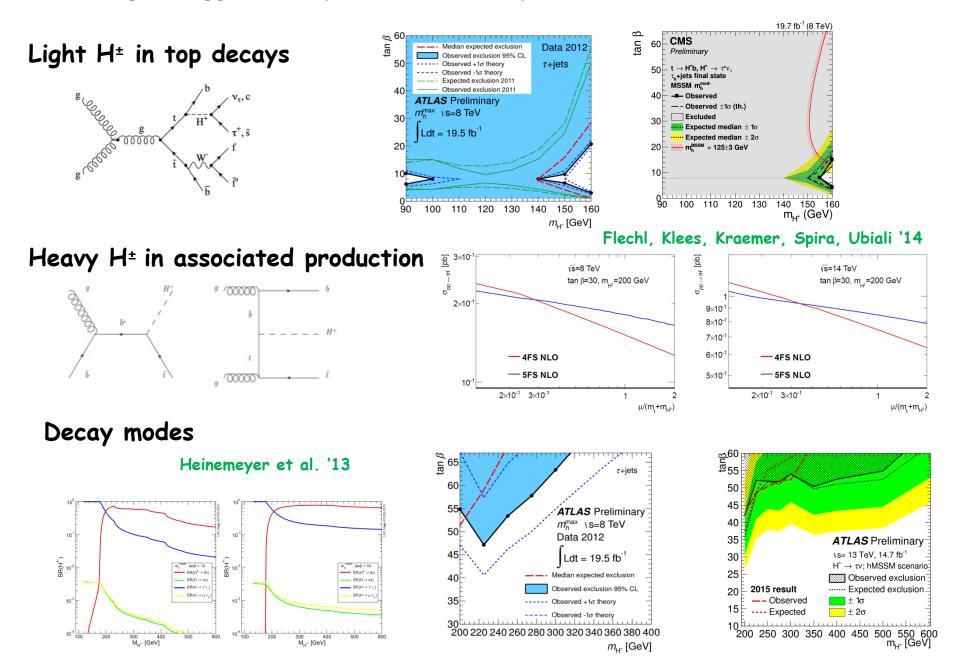

M_h is fixed to be 125 GeV

With few simplified assumptions one gets (including leading loops)

$$M_{H}^{2} = \frac{(M_{A}^{2} + M_{Z}^{2} - M_{h}^{2})(M_{Z}^{2}\cos^{2}\beta + M_{A}^{2}\sin^{2}\beta) - M_{A}^{2}M_{Z}^{2}\cos^{2}2\beta}{M_{Z}^{2}\cos^{2}\beta + M_{A}^{2}\sin^{2}\beta - M_{h}^{2}}$$
$$\alpha = -\arctan\left(\frac{(M_{Z}^{2} + M_{A}^{2})\cos\beta\sin\beta}{M_{Z}^{2}\cos^{2}\beta + M_{A}^{2}\sin^{2}\beta - M_{h}^{2}}\right)$$


Djouadi, Maiani, Moreau, Polosa, Quevillon, Riquer (1502.05653)

Validation with FeynHiggs



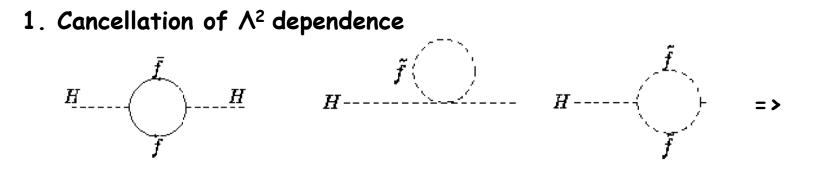
CMS searches as an example

1408.3316

Charged Higgses are predicted in many BSM (2HDM, MSSM, NMSSM...)

Supersymmetry is one of the most favorite BSM ideas, relating spin $\frac{1}{2}$ fermions with spin 0,1 bosons

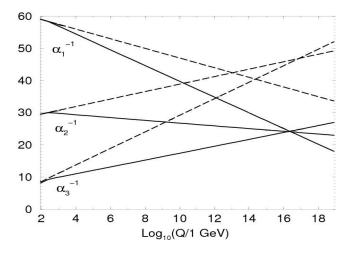
 $Q|\text{Boson}\rangle = |\text{Fermion}\rangle \qquad Q^{\dagger}|\text{Boson}\rangle = |\text{Fermion}\rangle$

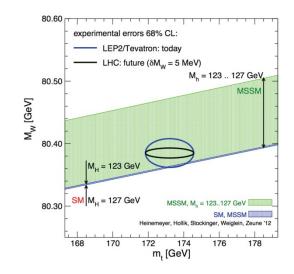

Fermion degrees of freedom $\leftarrow \rightarrow$ boson degrees of freedom

Minimal particle content

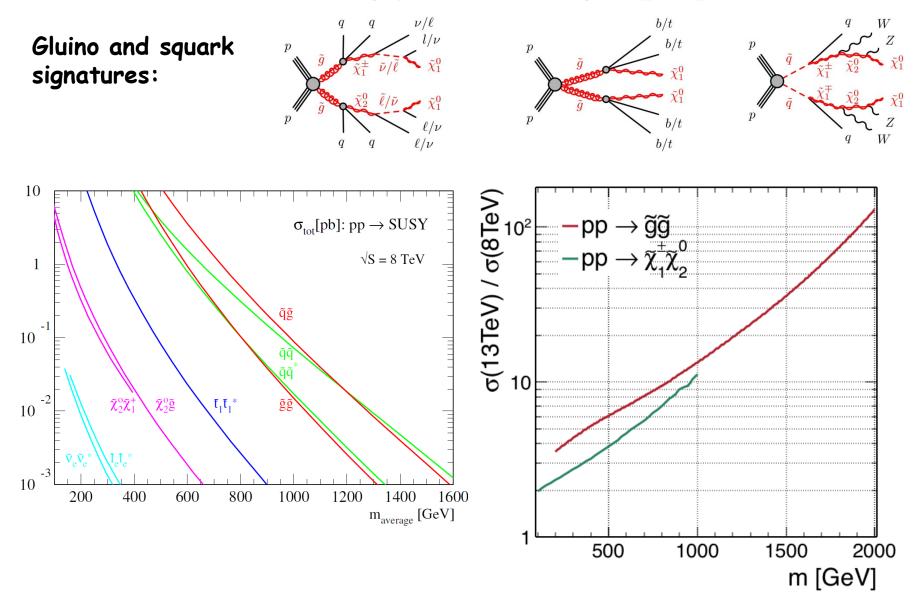
Gauge / Gaugino Sector

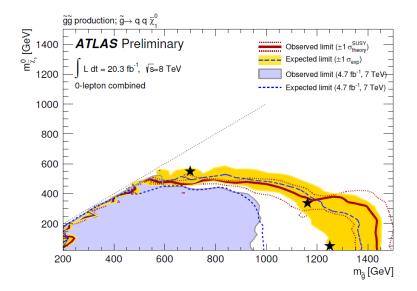
Standard Bosons	Supersymmetric Partners	Particle / Sp	Particle / Sparticle Sector		
₩± H±	Charginos χ ₁ [±] χ ₂ [±]	Standard Particles	Supersymmetric Partners		
g Z h H A	Neutralinos $\chi_1^0 \chi_2^0 \chi_3^0 \chi_4^0$	Leptons ℓ	$\frac{\textbf{Sleptons}}{\hat{\ell}_{R,L}}$		
9 _i	Gluinos <mark>ĝ</mark> i	Neutrinos V_{ℓ}	Sneutrinos \widetilde{V}_{ℓ}		
[Two Higgs doublets] And also	[All fermions]	Quarks	Squarks $\widetilde{q}_{R,L}$		
Graviton G	Gravitino $\widetilde{\mathbf{G}}$	1	[All scalars]		

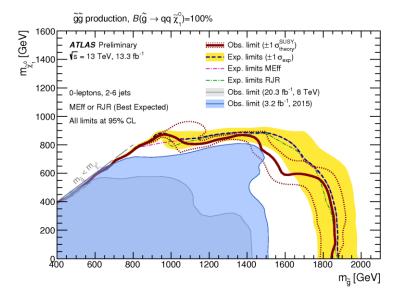

SUSY

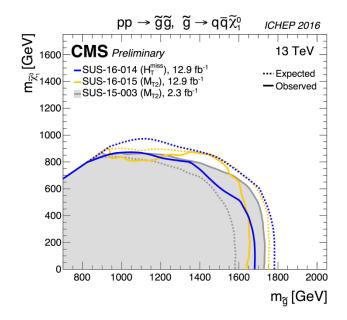


 $\Delta M_{H}^{2}|^{\mathrm{tot}} = \tfrac{\lambda_{f}^{2}N_{f}}{4\pi^{2}}[(m_{f}^{2} - m_{S}^{2})\mathrm{log}(\tfrac{\Lambda}{m_{S}}) + 3m_{f}^{2}\mathrm{log}(\tfrac{m_{S}}{m_{f}})] \quad \text{M}_{\text{H}} \text{ is protected!}$

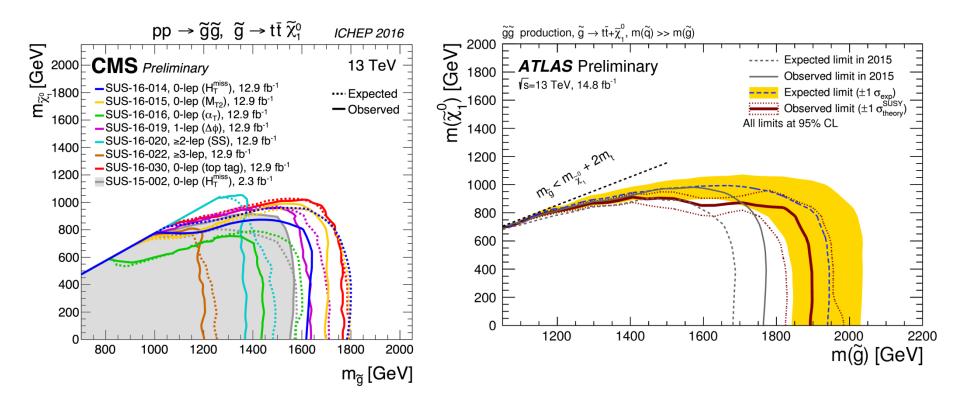

- 2. Lightest SUSY particle is stable (if R-parity) Dark Matter candidate
- 3. Unification of couplings in contrast to SM

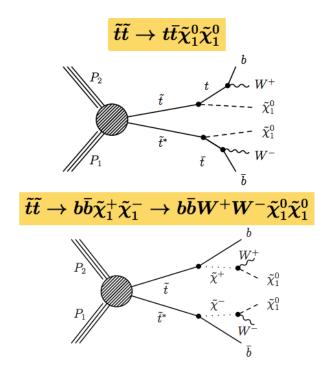

4. Fit of EW precision data

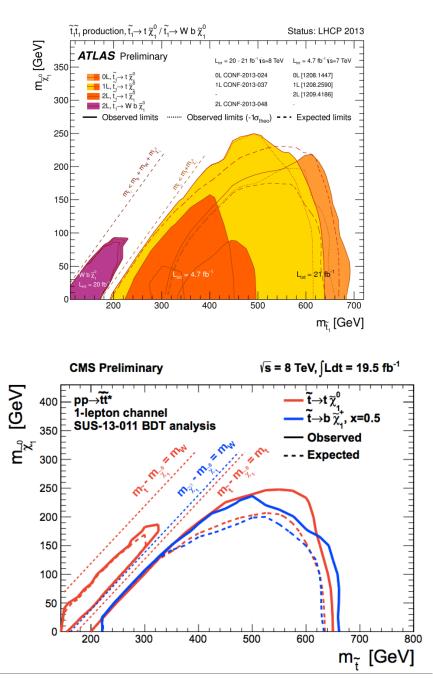


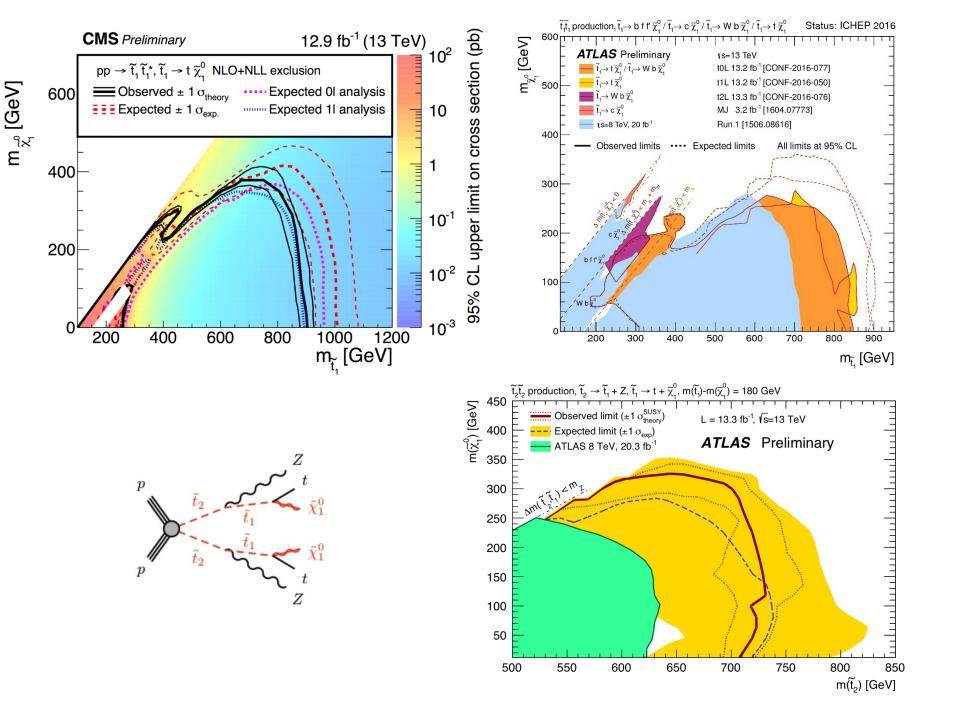


Searches for strongly interacting superpartners

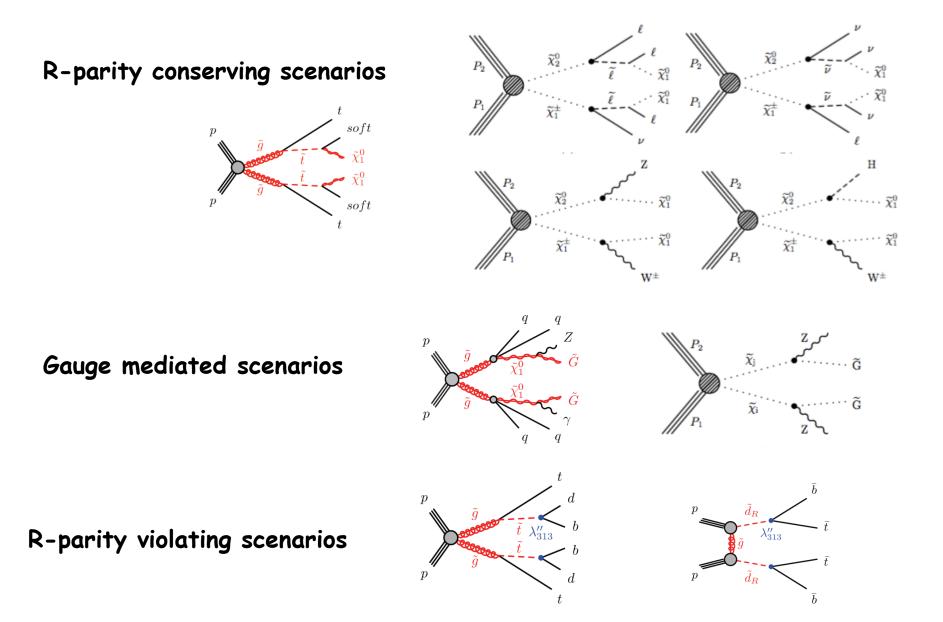





Gluino decays to tt+LSP



Searches for Stops



Mass exclusion limits: Mstop ~660 GeV and Msbottom ~630 GeV

Many other searches for superpartners

ATLAS SUSY Searches* - 95% CL Lower Limits Status: August 2016

Sta	atus: August 2016						\frown	$\sqrt{s} = 7, 8, 13 \text{ TeV}$
	Model	ε, μ, τ, γ	Jets	ET	∫£ dt[fb	1 Mass limit	$\sqrt{s} = 7, 8 \text{ TeV}$ $\sqrt{s} = 13 \text{ TeV}$	Reference
Inclusive Searches	$\begin{array}{l} \mbox{MSUGRA/CMSSM} \\ & \bar{q}\bar{q}, \ \bar{q} \rightarrow q \bar{x}_1^0 \\ & \bar{q}\bar{q}, \ \bar{q} \rightarrow q \bar{x}_1^0 \ (compressed) \\ & \bar{g}\bar{g}, \ \bar{g} \rightarrow q \bar{y}_1^0 \ (compressed) \\ & \bar{g}\bar{g}, \ \bar{g} \rightarrow q \bar{y}_1^0 \ \bar{g}\bar{g}, \ \bar{g} \rightarrow q \bar{y}_1^{(0)} \\ & \bar{g}\bar{g}, \ \bar{g} \rightarrow q \bar{y}_1^{(0)} \ \bar{g}\bar{g}, \ \bar{g} \rightarrow q \bar{y}_1^{(0)} \ \bar{g}\bar{g}\bar{g}, \ \bar{g} \rightarrow q \bar{y}_1^{(0)} \ \bar{g}\bar{g}\bar{g}\bar{g} \ \bar{g} \rightarrow q \bar{y}_1^{(0)} \ \bar{g}\bar{g}\bar{g}\bar{g}\bar{g} \ \bar{g} \rightarrow q \bar{y}_1^{(0)} \ \bar{g}\bar{g}\bar{g}\bar{g}\bar{g}\bar{g}\bar{g}\bar{g}\bar{g}\bar{g}$	$\begin{array}{c} 0\text{-}3 \ e, \mu/1\text{-}2 \ \tau \\ 0 \\ \text{mono-jet} \\ 0 \\ 3 \ e, \mu \\ 2 \ e, \mu \ (\text{SS}) \\ 1\text{-}2 \ \tau + 0\text{-}1 \\ 2 \ \gamma \\ \gamma \\ 2 \ e, \mu \ (\text{S}) \\ 0 \end{array}$	2-6 jets 1-3 jets 2-6 jets 2-6 jets 4 jets 0-3 jets	 b Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 13.3 13.3 13.3 13.2 13.2 13.2 3.2 20.3 13.3 20.3 20.3	4 608 GeV 27 27 27 27 27 27 27 27 27 27 27 27 27	1.85 TeV m(x)=m(x) 1.35 TeV m(x)=m(x) m(x)=m(x) 200 GeV, m(1" gen. i)=m(2" gen. i) m(x)=m(x) 5 GeV 1.85 TeV m(x) m(x) 0 GeV 1.85 TeV m(x) m(x) 0 GeV 1.85 TeV m(x) 1.7 TeV m(x) 1.65 TeV cr(NLSP)<0.0 (m(x)	1507.05525 ATLAS-CONF-2016-078 1604.07773 ATLAS-CONF-2016-078 ATLAS-CONF-2016-078 ATLAS-CONF-2016-037 ATLAS-CONF-2016-037 1607.05979 1606.09150 1507.05493 ATLAS-CONF-2016-066 1503.03290 1502.01518
3 rd gen. § med.	$\overline{g}\overline{g}, \overline{g} \rightarrow b\overline{b}\overline{\chi}_{1}^{0}$ $\overline{g}\overline{g}, \overline{g} \rightarrow t\overline{t}\overline{\chi}_{1}^{0}$ $\overline{g}\overline{g}, \overline{g} \rightarrow b\overline{t}\overline{\chi}_{1}^{1}$	0 0-1 ε,μ 0-1 ε,μ	3 b 3 b 3 b	Yes Yes Yes	14.8 14.8 20.1	8 8 8	1.89 TeV m(t ⁰)=0 GeV 1.89 TeV m(t ⁰)=0 GeV 1.37 TeV m(t ⁰)<300 GeV	ATLAS-CONF-2016-052 ATLAS-CONF-2016-052 1407.0600
3rd gen, squarks direct production	$ \begin{array}{l} \bar{b}_1\bar{b}_1, \bar{b}_1 \rightarrow b\bar{k}_1^{0} \\ \bar{b}_1\bar{b}_1, \bar{b}_1 \rightarrow b\bar{k}_1^{0} \\ \bar{t}_1\bar{t}_1, \bar{t}_1 \rightarrow b\bar{k}_1 \\ \bar{t}_1\bar{t}_1 \\ \bar{t}_1\bar{t}_1, \bar{t}_1 \rightarrow b\bar{k}_1 \\ \bar{t}_1$	$\begin{array}{c} 0\\ 2\ e,\mu\ (SS)\\ 0-2\ e,\mu\\ 0-2\ e,\mu\\ 0\\ 2\ e,\mu\ (Z)\\ 3\ e,\mu\ (Z)\\ 1\ e,\mu \end{array}$	2 b 1 b 1-2 b 0-2 jets/1-2 mono-jet 1 b 1 b 6 jets + 2 b	b Yes Yes Yes Yes	3.2 13.2 4.7/13.3 4.7/13.3 3.2 20.3 13.3 20.3	δ₁ 840 GeV δ₁ 325-685 GeV \$\$\$\$ 17-170 GeV 200-720 GeV \$	$\begin{split} & m(\tilde{r}_1^0){<}100~\text{GeV} \\ & m(\tilde{r}_1^0){<}150~\text{GeV}, \; m(\tilde{r}_1^0){=}\;m(\tilde{r}_1^0){+}100~\text{GeV} \\ & m(\tilde{r}_1^0){=}\;2m(\tilde{r}_1^0), \; m(\tilde{r}_1^0){=}55~\text{GeV} \\ & m(\tilde{r}_1){=}\;1~\text{GeV} \\ & m(\tilde{r}_1){=}\;1~\text{GeV} \\ & m(\tilde{r}_1){=}\;15~\text{GeV} \\ & m(\tilde{r}_1){=}\;15~\text{GeV} \\ & m(\tilde{r}_1^0){=}\;15~\text{GeV} \\ & m(\tilde{r}_1^0){=}\;0~\text{GeV} \\ & m(\tilde{r}_1^0){=}\;0~\text{GeV} \end{split}$	1606.06772 ATLAS-CONF-2016-037 1209.2102, ATLAS-CONF-2016-077 1506.08816, ATLAS-CONF-2016-077 1604.07773 1403.5222 ATLAS-CONF-2016-038 1506.08816
EW direct	$ \begin{array}{l} \tilde{\ell}_{L_{R}}\tilde{\ell}_{1,R,\tilde{t}}\tilde{\epsilon}\rightarrow\ell\tilde{r}_{1}^{0}\\ \tilde{\chi}_{L_{R}}\tilde{\ell}_{1,R,\tilde{t}}\tilde{\epsilon}\rightarrow\ell\tilde{r}_{1}^{0}\\ \tilde{\chi}_{L_{R}}^{\dagger}\tilde{\chi}_{1,\tilde{t}}^{-}\tilde{\epsilon}\rightarrow\ell\tilde{r}_{1}\ell\tilde{r}_{1}\tilde{r}_{1}^{-}\phi\gamma(\ell\tilde{\nu})\\ \tilde{\chi}_{L}^{\dagger}\tilde{\chi}_{2}^{0}\rightarrowW\tilde{r}_{1}^{0}\chi\tilde{r}_{1}^{0}\chi\tilde{r}_{1}^{0}\tilde{r}_{1}\ell(\tilde{\nu})\\ \tilde{\chi}_{L}^{\dagger}\tilde{\chi}_{2}^{0}\rightarrowW\tilde{r}_{1}^{0}\chi\tilde{r}_{1}^{0}\tilde{r}_{1}\tilde{r}_{1}\tilde{r}_{1}\tilde{r}_{1}\phi\tilde{r}_{1}\tilde{r}$	2 ε,μ 2 ε,μ 2 τ 3 ε,μ 2-3 ε,μ τ/γγ 4 ε,μ,γ 4 ε,μ 1 ε,μ + γ 2 γ	0 0 	Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	ℓ 90-335 GeV \vec{x}_1^+ 140-475 GeV \vec{x}_1^+, \vec{x}_2^+ 355 GeV \vec{x}_1^+, \vec{x}_2^+ 715 GeV \vec{x}_1^-, \vec{x}_2^+ 425 GeV $\vec{x}_{2,3}^-, \vec{x}_2^+$ 270 GeV $\vec{x}_{2,3}^-, \vec{x}_2^+$ 635 GeV \vec{w} 115-370 GeV \vec{w} 590 GeV	$\begin{split} m(\tilde{k}_{1}^{0})=&0~GeV\\ m(\tilde{k}_{1}^{0})=&0~GeV,~m(\tilde{c},\tilde{v})=&0.5(m(\tilde{k}_{1}^{0})+m(\tilde{k}_{1}^{0}))\\ m(\tilde{k}_{1}^{0})=&0~GeV,~m(\tilde{c},\tilde{v})=&0.5(m(\tilde{k}_{1}^{0})+m(\tilde{k}_{1}^{0}))\\ m(\tilde{k}_{1}^{0})=&m(\tilde{k}_{2}^{0}),~m(\tilde{k}_{1}^{0})=&0.5(m(\tilde{k}_{1}^{0})+m(\tilde{k}_{1}^{0}))\\ m(\tilde{k}_{1}^{0})=&m(\tilde{k}_{2}^{0}),~m(\tilde{k}_{1}^{0})=&0.5(m(\tilde{k}_{1}^{0})+m(\tilde{k}_{1}^{0}))\\ m(\tilde{k}_{2}^{0})=&m(\tilde{k}_{2}^{0}),~m(\tilde{k}_{1}^{0})=&0.5(m(\tilde{k}_{2}^{0})+m(\tilde{k}_{1}^{0}))\\ m(\tilde{k}_{2}^{0})=&m(\tilde{k}_{2}^{0}),~m(\tilde{k},\tilde{v})=&0.5(m(\tilde{k}_{2}^{0})+m(\tilde{k}_{1}^{0}))\\ cr<1~mm\\ cr<1~mm \end{split}$	1403.5294 1403.5294 1407.0350 1402.7029 1403.5294, 1402.7029 1501.07110 1405.5086 1507.05493
Long-lived particles	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived J Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived J Stable, stopped \tilde{g} R-hadron Metastable \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{\tau}, \tilde{\mu})_{\pm}$ GMSB, $\tilde{\chi}_1^0 \rightarrow g\tilde{\tau}(\tilde{\tau}, \tilde{\mu})_{\pm}$ $\tilde{g}_{\tilde{g}}, \tilde{\chi}_1^0 \rightarrow g\tilde{\tau}(\tilde{\tau}, \tilde{\mu})_{\pm}$ GGM $\tilde{g}_{\tilde{g}}, \tilde{\chi}_1^0 \rightarrow g\tilde{\tau}(\tilde{\tau}, \tilde{\mu})_{\pm}$	at dE/dxtrk 0 trk dE/dxtrk	1-5 jets - -	Yes Yes Yes Yes	20.3 18.4 27.9 3.2 19.1 20.3 20.3 20.3	X̂ [±] ₁ 270 GeV X̂ [±] ₁ 495 GeV k̂ 850 GeV k̂ 537 GeV X̂ [±] ₁ 440 GeV X̂ [±] ₁ 1.0 Te X̂ [±] ₁ 1.0 Te	· · · · · · · · · · · · · · · · · · ·	1310.3675 1506.05332 1310.6584 1606.05129 1604.04520 1411.6705 1409.5542 1504.05162
ЧН	$ \begin{array}{l} LFV pp \rightarrow \bar{\mathbf{v}}_{\tau} + X, \bar{\mathbf{v}}_{\tau} \rightarrow e\mu/e\tau/\mu \\ Blinear \ RPV \ CMSSM \\ \bar{\mathcal{K}}_1^+ \bar{\mathcal{K}}_1^+ \rightarrow W \bar{\mathcal{K}}_1^0, \bar{\mathcal{K}}_1^0 \rightarrow eev, e\mu, \\ \bar{\mathcal{K}}_1^+ \bar{\mathcal{K}}_1^+ \rightarrow W \bar{\mathcal{K}}_1^0, \bar{\mathcal{K}}_1^0 \rightarrow eev, e\mu, \\ \bar{\mathcal{K}}_1^+ \bar{\mathcal{K}}_1^+ \rightarrow W \bar{\mathcal{K}}_1^0, \bar{\mathcal{K}}_1^0 \rightarrow eev, e\mu, \\ \bar{\mathcal{K}}_2^+ \bar{\mathcal{K}}_1^- \bar{\mathcal{K}}_1^+ \rightarrow \bar{\mathcal{K}}_2^0, \bar{\mathcal{K}}_1^0 \rightarrow gqq \\ \bar{g}_2^+ \bar{g}_2^- \rightarrow \bar{q}_1 \bar{\mathcal{K}}_1, \bar{\ell}_1 \rightarrow bs \\ \bar{\ell}_1 \bar{\ell}_1, \bar{\ell}_1 \rightarrow bs \\ \bar{\ell}_1 \bar{\ell}_1, \bar{\ell}_1 \rightarrow b\ell \end{array} $	2 e, μ (SS) μμιν 4 e, μ γ 3 e, μ + τ 0 4	0-3 b 1-5 large-R j 1-5 large-R j 0-3 b 2 jets + 2 l 2 b	ets - Yes	3.2 20.3 13.3 20.3 14.8 14.8 13.2 15.4 20.3	\$\vec{r}\$ 1.14 \$\vec{k}\$ 1.14 \$\vec{k}\$ 1.08 T \$\vec{k}\$ 0.4-1.0 Te'	m(k ² ₁)>0.2×m(k ² ₁), λ _{1:3} ≠0 BR(r)=BR(r)=BR(r)=0% 1.55 TeV m(k ² ₁)=800 GeV 1.3 TeV m(l ₁)<750 GeV	1807.08079 1404.2500 ATLAS-CONF-2016-075 1405.5098 ATLAS-CONF-2016-057 ATLAS-CONF-2016-057 ATLAS-CONF-2016-037 ATLAS-CONF-2016-037 ATLAS-CONF-2016-037 ATLAS-CONF-2016-031
	Scalar charm, $\tilde{\epsilon} \rightarrow \tilde{c} \tilde{\ell}_1^0$ ly a selection of the availates or phenomena is show		2 c its on nev	Yes v	20.3 1	ε 510 GeV	m(₽1)<200 GeV 1 Mass scale [TeV]	1501.01325

ATLAS Preliminary

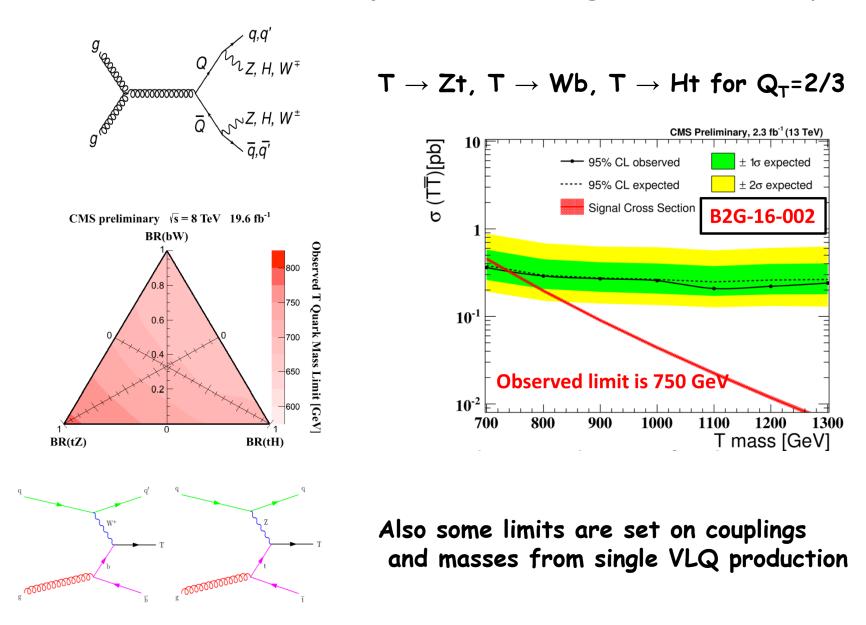
Searches for various resonances

Simplified models

Vector like top partners

Vector-like quarks - spin 1/2 particles with the same colour (triplet) and electroweak quantum numbers for left and right components Masses not from the BEH mechanism $\bar{Q}_L Q_R$ mass terms are allowed by EW gauge symmetry

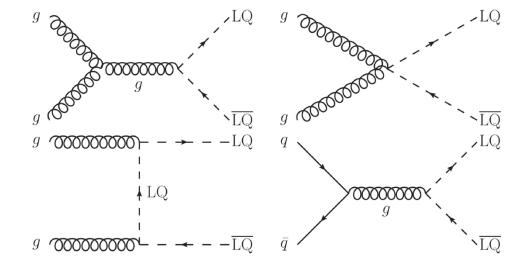
		1	-		
partner (MG name)	Q	W^{\pm}	Z	h	$W^{\pm}W^{\pm}$
$T_{2/3}$ (T23)	2/3	$c_L^{TW}, \ c_R^{TW}$	$c_L^{TZ}, \ c_R^{TZ}$	$c_L^{Th}, \ c_R^{Th}$	
$B_{1/3}~({ m B13})$	-1/3	$c_L^{BW}, \ c_R^{BW}$	$c_L^{BZ}, \ c_R^{BZ}$	$c_L^{Bh}, \ c_R^{Bh}$	
$X_{5/3}$ (X53)	5/3	$c_L^{XW}, \ c_R^{XW}$			
$Y_{4/3}$ (Y43)	-4/3	$c_L^{YW}, \ c_R^{YW}$			
$V_{8/3}$ (V83)	8/3				$c_L^{VW}, \ c_R^{VW}$


VLQ appear in many BSM extensions

Matsedonskyia, Panicob, Wulzer

Example of the simplified model Lagrangian (after mixing and mass matrix diagonalization)

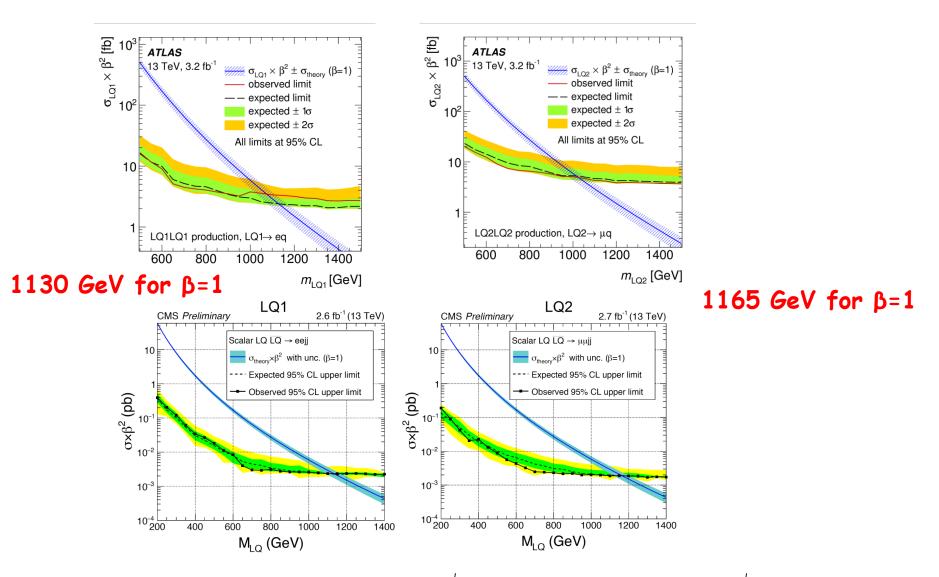
$$\frac{g_w}{2} c_L^{TW} \left[\overline{T}_L \gamma_\mu b_L W^\mu \right] + h.c.$$
$$c_L^{Th} \left[\overline{T}_R t_L h \right] + h.c.$$


Similar limit at 13 TeV with just 2.3 fb⁻¹ integrated luminosity

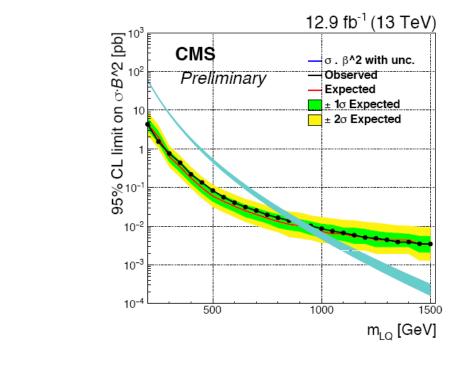


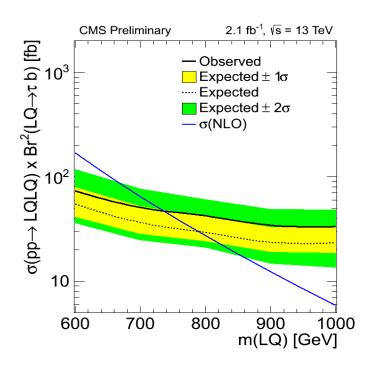
Leptoquark searches

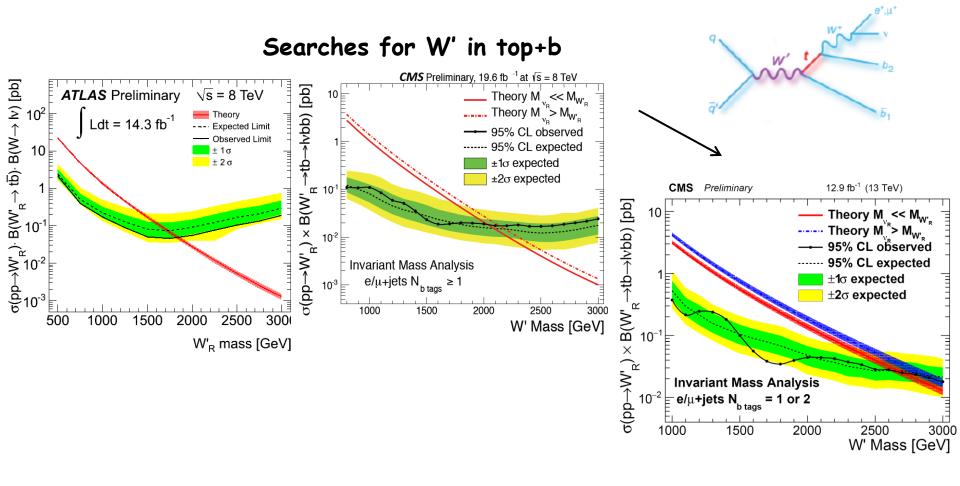
LQs are predicted by composite models, GUT ...


Production channels

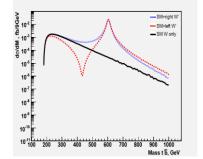
Final states for leptoquarks of three generations


 $LQ1 \rightarrow eu, ed, v_eu, v_ed$ $LQ2 \rightarrow \mu c, \mu s, v_{\mu}c, v_{\mu}s$ $LQ3 \rightarrow \tau t, \tau b, v_{\tau}t, v_{\tau}b$ 1st generation LQ mass limit for $\beta=1$ 2nd generation LQ mass limit for $\beta=1$ RUN1 · CMS: 1010 GeV; ATLAS 1060 GeV RUN1 · CMS: 1080 GeV; ATLAS 1050 GeV

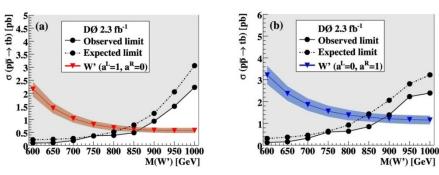

Sensitivity is similar for ~20 fb⁻¹ at $\sqrt{s} = 8$ TeV and for ~3 fb⁻¹ at $\sqrt{s} = 13$ TeV

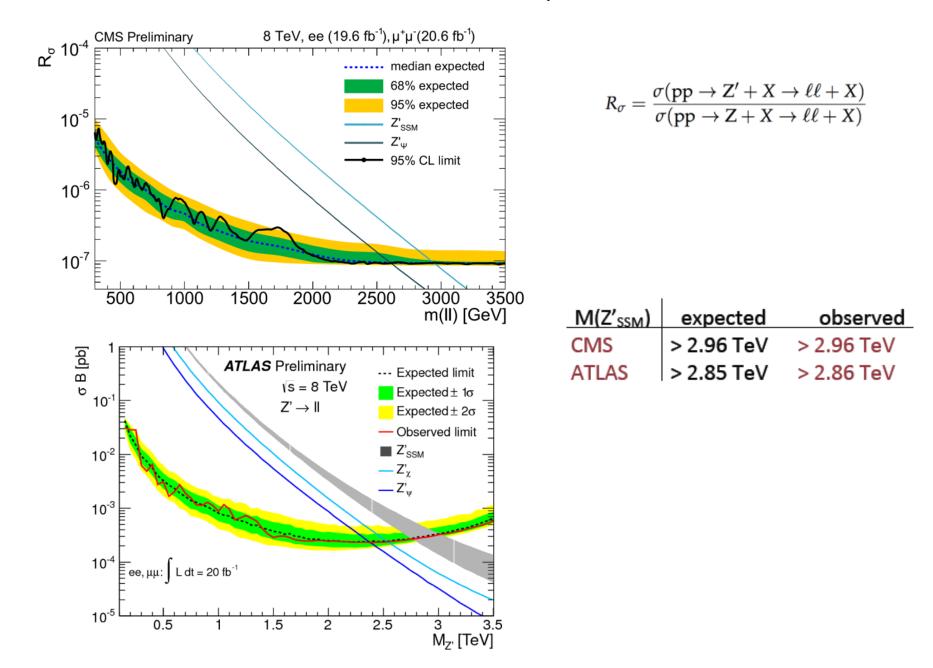

Limits on 3d generation leptoquarks

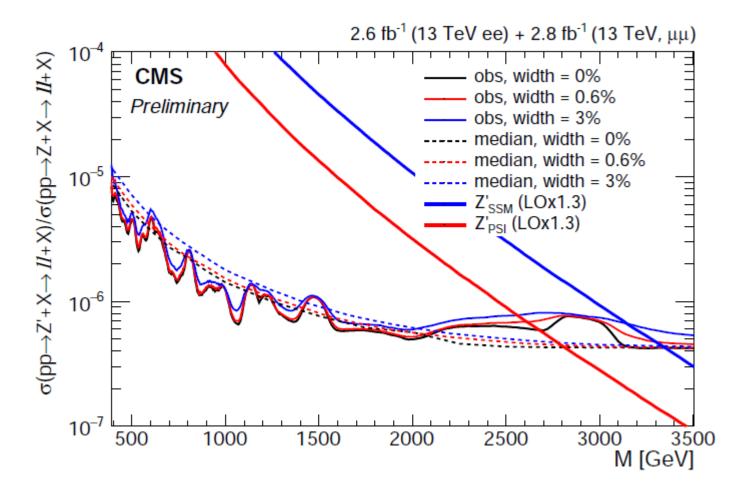
 $\beta = BR(LQ \rightarrow lq)$



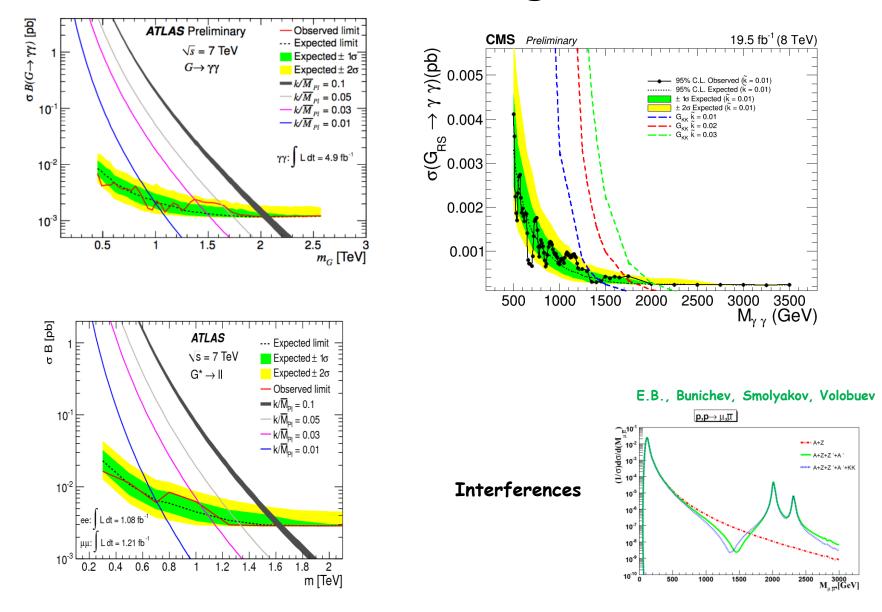
Limit: M(LQ3) > ~ 900 GeV

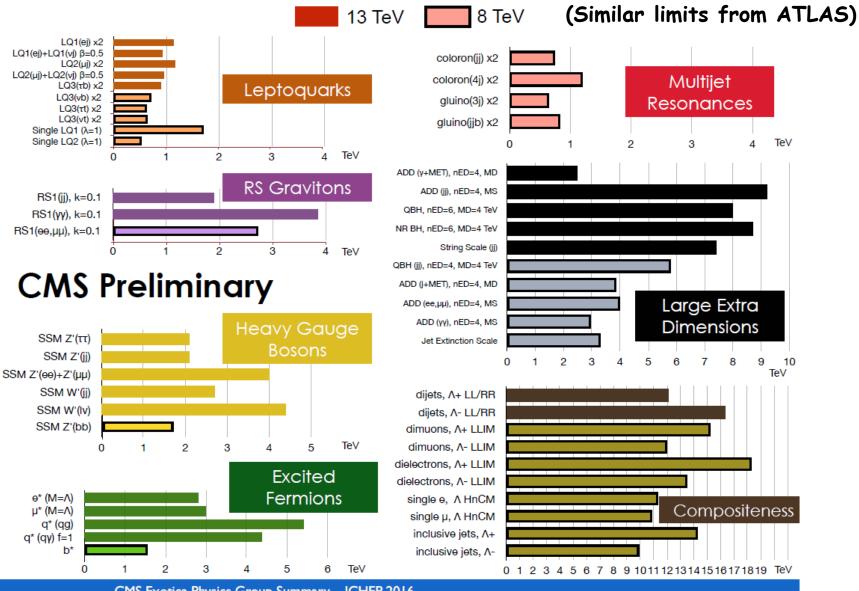




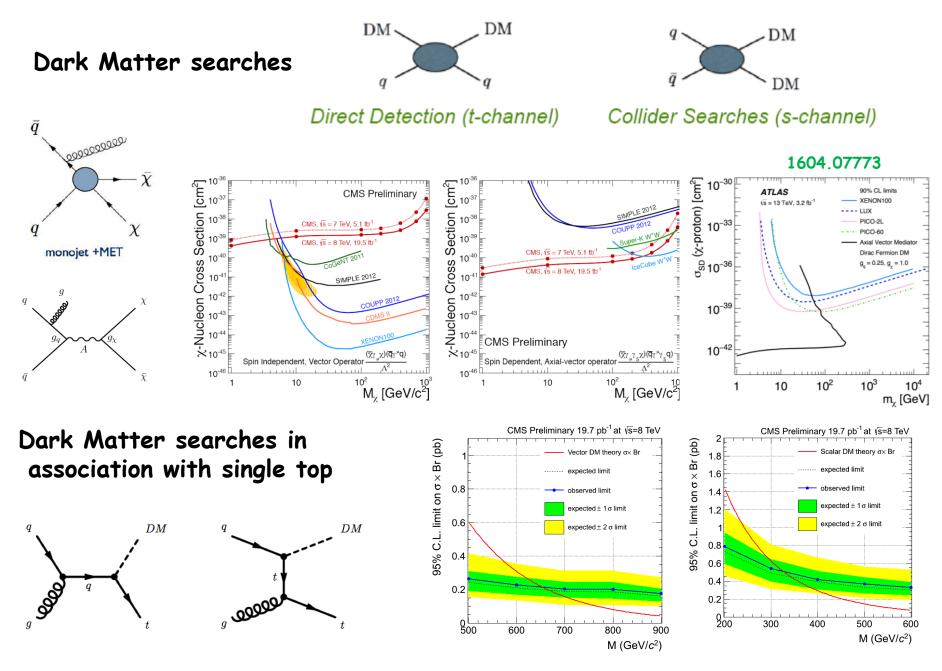

Negative interference

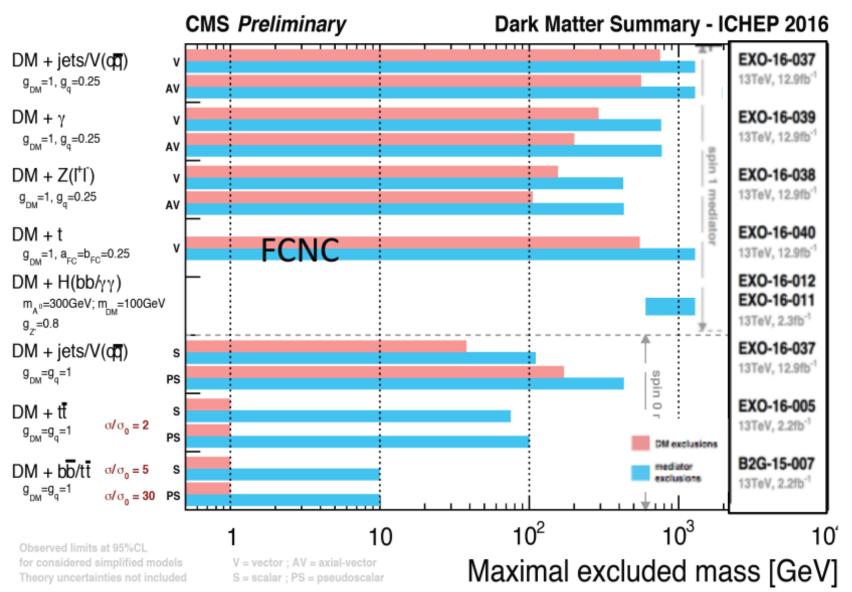
D0 limits: $M_{W'} > 830 (860) GeV L(R)$


Searches for Z' in dileptons



channel		Z'_{ψ}	Z'_{SSM}		
	obs (TeV)	expected (TeV)	obs (TeV)	expected (TeV)	
ee	2.40	2.45	2.75	2.95	
$\mu^+\mu^-$	2.40	2.55	3.00	3.05	
$ee+\mu^+\mu^-$	2.60	2.80	3.15	3.35	


Searches for RS gravitons


Excluding Dark Matter and Long Lived particles searches

CMS Exotica Physics Group Summary – ICHEP, 2016

Mass of vector (scalar) DM candidate less that 655 (327) is excluded at 95% C.L.

m_{nM} [GeV]

Searches below threshold

Effective field theory approach

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i=1}^{N} \frac{c_i}{\Lambda^2} \mathcal{O}_i + \cdots$$

- c_i dimensionless coefficients
- O_i operators constructed from SM fields preserving SM gauge invariance

Anomalous Top Couplings

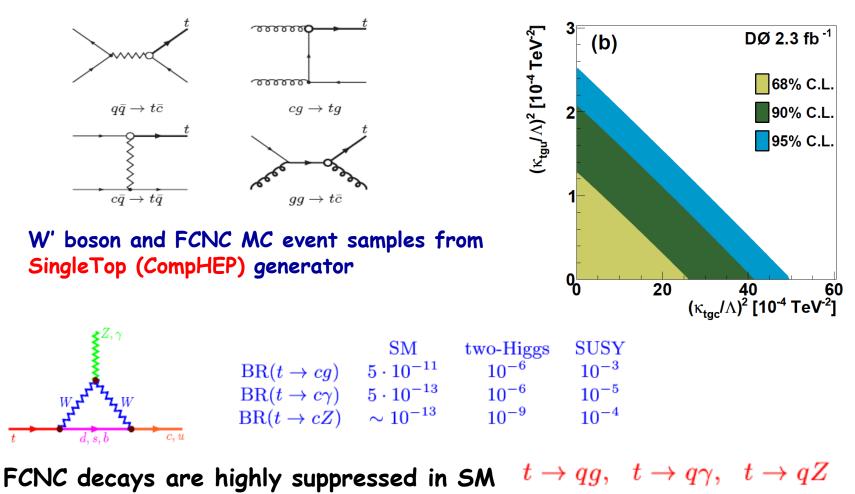
The top quark interactions of dimension 4:

$$\mathcal{L}_{4} = -g_{s}\bar{t}\gamma^{\mu}T^{a}tG^{a}_{\mu} - \frac{g}{\sqrt{2}}\sum_{q=d,s,b}\bar{t}\gamma^{\mu}(v^{W}_{tq} - a^{W}_{tq}\gamma_{5})qW^{+}_{\mu}$$
$$-\frac{2}{3}e\bar{t}\gamma^{\mu}tA_{\mu} - \frac{g}{2\cos\theta_{W}}\sum_{q=u,c,t}\bar{t}\gamma^{\mu}(v^{Z}_{tq} - a^{Z}_{tq}\gamma_{5})qZ_{\mu}$$

The dimension 5 couplings have the generic form:

$$\mathcal{L}_{5} = -g_{s} \sum_{q=u,c,t} \frac{\kappa_{tq}^{g}}{\Lambda} \bar{t} \sigma^{\mu\nu} T^{a} (f_{tq}^{g} + ih_{tq}^{g} \gamma_{5}) q G_{\mu\nu}^{a} - \frac{g}{\sqrt{2}} \sum_{q=d,s,b} \frac{\kappa_{tq}^{W}}{\Lambda} \bar{t} \sigma^{\mu\nu} (f_{tq}^{W} + ih_{tq}^{W} \gamma_{5}) q W_{\mu\nu}^{+} - \frac{g}{\sqrt{2}} \sum_{q=d,s,b} \frac{\kappa_{tq}^{W}}{\Lambda} \bar{t} \sigma^{\mu\nu} (f_{tq}^{Z} + ih_{tq}^{Z} \gamma_{5}) q A_{\mu\nu} - \frac{g}{2\cos\theta_{W}} \sum_{q=u,c,t} \frac{\kappa_{tq}^{Z}}{\Lambda} \bar{t} \sigma^{\mu\nu} (f_{tq}^{Z} + ih_{tq}^{Z} \gamma_{5}) q Z_{\mu\nu}$$

Natural size $k \sim v/\Lambda$

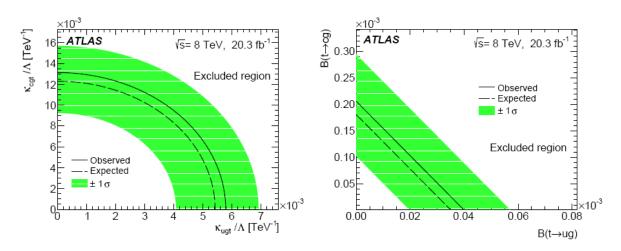

Present constrains come from

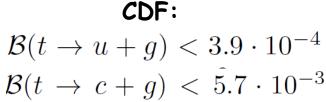
- Low energy data via loop contributions $K_L \to \mu^+ \mu^-$, $K_L K_S$ mass difference, $b \to l^+ l^- X$, $b \to s\gamma$
- LEP2
- Tevatron Run1,2
- HERA
- Unitarity violation bounds

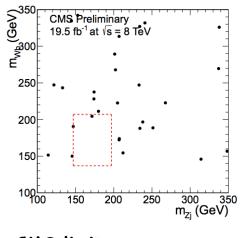
FCNC anomalous top couplings

• Couplings: tqg, $tq\gamma$, tqZ, where q = u, c

$$\Delta \mathcal{L}^{eff} = \frac{1}{\Lambda} \left[\kappa_{tq}^{\gamma,Z} e \bar{t} \sigma_{\mu\nu} q F^{\mu\nu}_{\gamma,Z} + \kappa_{tq}^g g_s \bar{t} \sigma_{\mu\nu} \frac{\lambda^i}{2} q G^{i\mu\nu} \right] + h.c.$$

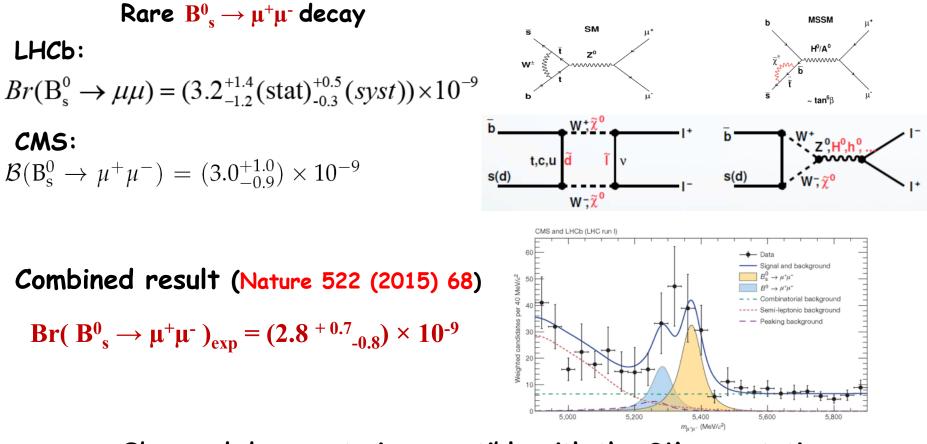



To compare FCNC limits from top decays and top production one can express limits on FCNC couplings in term of Br fractions

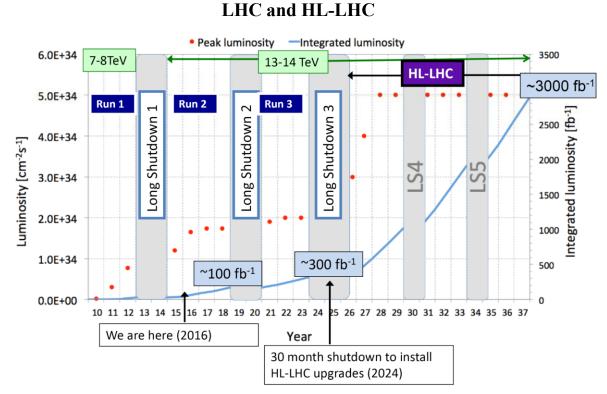

$$\begin{split} \Gamma(t \to qg) &= \left(\frac{\kappa_{tq}^g}{\Lambda}\right)^2 \frac{8}{3} \alpha_s m_t^3 \quad , \quad \Gamma(t \to q\gamma) = \left(\frac{\kappa_{tq}^\gamma}{\Lambda}\right)^2 2\alpha m_t^3, \\ \Gamma(t \to qZ)_\gamma &= \left(|v_{tq}^Z|^2 + |a_{tq}^Z|^2\right) \alpha m_t^3 \frac{1}{4M_Z^2 \sin^2 2\theta_W} \left(1 - \frac{M_Z^2}{m_t^2}\right)^2 \left(1 + 2\frac{M_Z^2}{m_t^2}\right) \\ \Gamma(t \to qZ)_\sigma &= \left(\frac{\kappa_{tq}^Z}{\Lambda}\right)^2 \alpha m_t^3 \frac{1}{\sin^2 2\theta_W} \left(1 - \frac{M_Z^2}{m_t^2}\right)^2 \left(2 + \frac{M_Z^2}{m_t^2}\right) \end{split}$$

	tgu	tgc
Cross section	0.20 pb	0.27 pb
κ_{tgf}/Λ	$0.013 { m ~TeV^{-1}}$	$0.057 \ \mathrm{TeV^{-1}}$
$\mathcal{B}(t \to qg)$	2.0×10^{-4}	3.9×10^{-3}

NO.



CMS limit: B(t -> Zq) < 0.07% @ 95%C.L.


Many interesting new results

Indirect search for BSM physics - the main goal of the LHCb experiment.

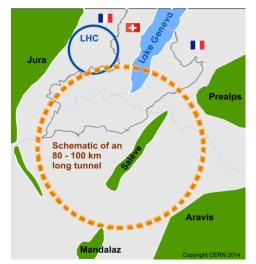
Observed decay rate is compatible with the SM expectation:

Br($B_{s}^{0} \rightarrow \mu^{+}\mu^{-})_{\text{theory}} = (3.66 \pm 0.23) \times 10^{-9}$

International conceptual design study ~100 km ring:

pp collider (FCC-hh)

 $\sqrt{s} \sim 100$ TeV, L~2x10³⁵

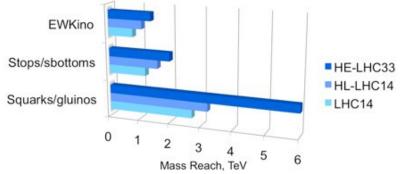

□ e⁺e⁻ collider (FCC-ee)

 $\sqrt{s} = 90-350 \text{ GeV}, L \sim 200-2 \times 10^{34}$ -1

pe collider (FCC-he): option

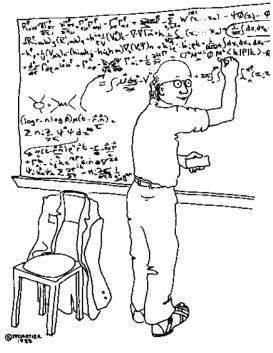
 $\sqrt{s} \sim 3.5$ TeV, L~10³⁴

Future Circular Colliders (FCC)

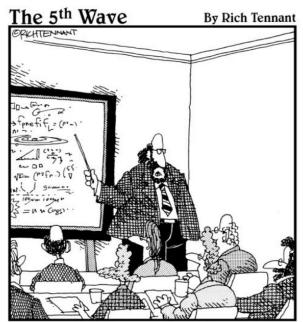

Fabiola Gianotti

Expected precisions for Higgs couplings

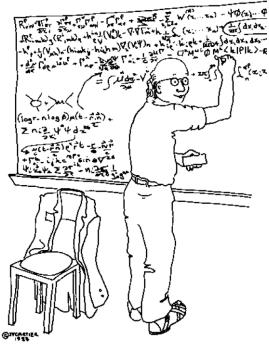
Snowmass Higgs working group 2013

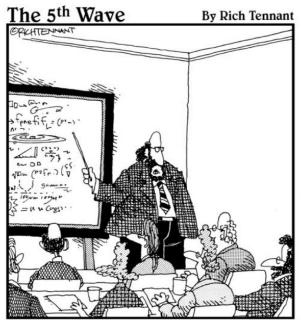

Facility	LHC	HL-LHC	ILC500	ILC500-up	ILC1000	ILC1000-up	CLIC	TLEP (4 IPs)
$\sqrt{s} \; ({\rm GeV})$	$14,\!000$	$14,\!000$	250/500	250/500	250/500/1000	250/500/1000	350/1400/3000	240/350
$\int \mathcal{L} dt \; (\mathrm{fb}^{-1})$	$300/\mathrm{expt}$	$3000/\mathrm{expt}$	250 + 500	1150 + 1600	250 + 500 + 1000	1150 + 1600 + 2500	500 + 1500 + 2000	10,000+2600
κ_{γ}	5-7%	2-5%	8.3%	4.4%	3.8%	2.3%	$-/5.5/{<}5.5\%$	1.45%
κ_g	6-8%	3-5%	2.0%	1.1%	1.1%	0.67%	3.6/0.79/0.56%	0.79%
κ_W	4-6%	2-5%	0.39%	0.21%	0.21%	0.13%	1.5/0.15/0.11%	0.10%
κ_Z	4-6%	2-4%	0.49%	0.24%	0.44%	0.22%	0.49/0.33/0.24%	0.05%
κ_ℓ	6-8%	2-5%	1.9%	0.98%	1.3%	0.72%	$3.5/1.4/{<}1.3\%$	0.51%
κ_d	10-13%	4-7%	0.93%	0.51%	0.51%	0.31%	1.7/0.32/0.19%	0.39%
κ_u	14-15%	7-10%	2.5%	1.3%	1.3%	0.76%	3.1/1.0/0.7%	0.69%

$$\mathcal{L} = \kappa_3 \frac{m_H^2}{2v} H^3 + \kappa_Z \frac{m_Z^2}{v} Z_\mu Z^\mu H + \kappa_W \frac{2m_W^2}{v} W^+_\mu W^{-\mu} H + \kappa_g \frac{\alpha_s}{12\pi v} G^a_{\mu\nu} G^{a\mu\nu} H + \kappa_\gamma \frac{\alpha}{2\pi v} A_{\mu\nu} A^{\mu\nu} H + \kappa_Z \gamma \frac{\alpha}{\pi v} A_{\mu\nu} Z^{\mu\nu} H - \left(\kappa_t \sum_{f=u,c,t} \frac{m_f}{v} f \overline{f} + \kappa_b \sum_{f=d,s,b} \frac{m_f}{v} f \overline{f} + \kappa_\tau \sum_{f=e,\mu,\tau} \frac{m_f}{v} f \overline{f} \right) H$$

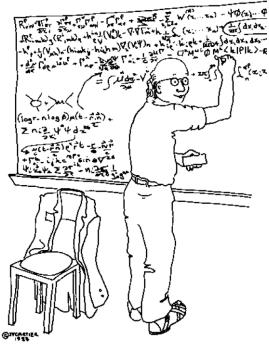


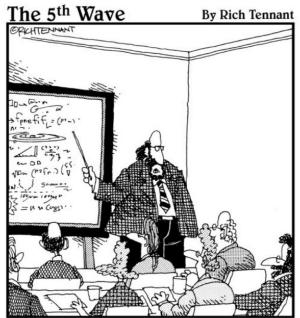
ar dx, dx. (• • • Liget + mon Joriarians <u>.</u>R. W. (R J- (hink ها يركي ≮^و(حر;≂ • मर् । ا- تيوندر = OY) Þ٢ (log - nios A) (t- n.) . Zniz 44 4 dz (بر ال- mail (" - 1 - 5 - - -ALC: N _____ Ţ s GITCARTIES.


"At this point we notice that this equation is beautifully simplified if we assume that space-time has 92 dimensions."


"At this point we notice that this equation is beautifully simplified if we assume that space-time has 92 dimensions."

"Along with 'Antimatter,' and 'Dark Matter,' we've recently discovered the existence of 'Doesn't Matter,' which appears to have no effect on the universe whatsoever."


"At this point we notice that this equation is beautifully simplified if we assume that space-time has 92 dimensions."


Along with 'Antimatter,' and 'Dark Matter,' we've recently discovered the existence of 'Doesn't Matter,' which appears to have no effect on the universe whatsoever."

"It doesn't matter how beautiful your theory is, it doesn't matter how smart you are. If it doesn't agree with experiment, it's wrong". Richard P. Feynman

"At this point we notice that this equation is beautifully simplified if we assume that space-time has 92 dimensions."

Along with 'Antimatter,' and 'Dark Matter,' we've recently discovered the existence of 'Doesn't Matter,' which appears to have no effect on the universe whatsoever."

"It doesn't matter how beautiful your theory is, it doesn't matter how smart you are. If it doesn't agree with experiment, it's wrong". Richard P. Feynman

But with correct (confirmed) experiment....