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Lecture 1: Entanglement entropy in QFT’s 

  

-Entanglement entropy (definitions and basic properties)  

-EE and Renyi entropy (REE): methods of computations in free 

QFT's (spectral geometry and etc) 

-logarithmic part of EE and conformal anomalies 

- some developments 

 

Lecture 2: Holographic approach to entanglement entropy  

 

-Holographic EE (HEE)  

- motivations for HEE  

- HEE: how it works  

- HEE and conformal anomalies  

- Bekenstein-Hawking entropy of black holes 

- Entanglement and Gravity  

 

 

 

Plan of lectures 



quantum mechanics:  

states of subsystems may not be described  independently 

= states are entangled 
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Quantum entanglement 

importance:  

studying correlations of different systems (especially at 

strong couplings), critical phenomena and etc  

  



entangled states (an example) 

Quantum  state  of  particle «1» cannot be described independently from 

particle «2» (even for spatial separation at long distances) 
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measure of entanglement 

-   entropy of entanglement 

density matrix of particle  

«2» under integration over  

the states  of «1» 

 «2» is in a mixed state  when information about «1» is  not available 

 

S – measures the loss of information about “1”   (or “2”)  
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reduced density matrix- a general definition 
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Entanglement Renyi Entropy 
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reduced density matrix

entanglement Renyi entropy

and

Next we consider integer values

In general
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An example: 
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Basic properties 
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 if and only if  is pure state)
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entanglement entropy

where   is the # of nonvanishing eigenvalues of reduced density m

Different limits:

I.  

0, ( 0,

, 1

Tr ln

lim ln ,

S S

S S

S

S D

D

 











 





 

 

 



( )

1 1

1

atrix 
1

where   is the largest eigenvalue of     
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Basic properties 
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sketch of the proof: let    then 

non-vanishing eigenvalues of  and  coincide;

in general,

II. "Symmetry" in a pure state
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Basic properties: the entropy is a function of the 

characteristics of the separating surface 

( ) ( )

1 2 ( )S S f A  

in a simple case the entropy 

is a function of the area A of a separating 

surface 
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in a relativistic QFT (for Srednicki 93, Bombelli et al, 86)

- in some fermionic condensed matter systems (Gioev 

& Klich 06),  e.g. for Fermi liquids (Swingle 1007.4825, Calabres
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Basic properties: dependence on UV cutoff 

spin lattice continuum limit 

A – area of a flat separation surface B   which 

divides the system into two parts (pure state) 

entropy per unit area in a QFT is determined by a UV cutoff!  
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Entanglement as a possible source 

of black hole entropy 

Bekenstein-Hawking entropy 

- area of the horizon 

BH entropy may be a measure of the loss of information about  

States hidden under the horizon  
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subadditivity of the entanglement entropy (not Renyi!) 
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 strong subadditivity  

1 2 1 2 1 2S S S S  

equalities are applied to the von Neumann entropy and 

are based on the concavity property  

Basic properties : 



Basic properties : modular Hamiltonian and 

reduction to thermal states 

1

is  the "modular Hamiltonian" (non-local operator, in general)

one-parameter modular group:    

symmetry transformations

Kubo-Martin-Schwinger peri
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odicity relation

is  a non-local operator, in general. 

Some exceptions: planar and spherical entangling surfaces in flat space

Tr ( ( ) )  = Tr ( )
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Basic properties : planar entangling surface and 

Unruh effect 
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Minkowsky metric

position of entangling surface: 

one-parameter modular group is the group of boost transformations

Rindler coordinates 
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  -  Rindler Hamiltonian, -  Rindler partition 

function, 
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Basic properties : planar entangling surface and 

Unruh effect (continued) 
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Rindler thermal density matrix: 

thermal density matrix

 -  Rindler temperature

-  Rindler free energy
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Problem with path integral construction and 

geometrical representation for  non-integer indexes 
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entanglement for a cylindrical entangling surface

position of a cylindrical entangling surface

 observers at rest w.r.t. giv

cosh , sinh

( cosh )



 

  



    

 

  

     

ds dt dr r d dz
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r a x t

ds x d dx a x d dz

en coordinates are Rindler observers;

 metric is not static, constant   sections are conical surfaces (with different 

conical angles);

 there is a conical singularity if  and with

there
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 is a jump of the curvature at   (constant   sections are different!) 2  
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the reduced density matrix is a time ordered opeartor

where is a time dependent generator of the evolution;
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               consequences:

 in general,   cannot be represented as an analogous evolution operator 

(for non-integer ),  

 there may not exist a geometrical construction of a 

background manifold w
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ith conical singularities which corresponds to   

modular Hamiltonian is a non-local operator
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Computations of Entanglement Entropy 



Ising spin chains 
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critical regime   
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RG-evolution of the entropy 

entropy does not increase under RG-flow  

(as a result of integration of high energy 

modes) 

 

IR 

IR 

UV 

1        is UV fixed point 



Explanation 

Near the critical point the Ising model is equivalent to a 2D 

quantum field  theory with mass m proportional to  

 

 

 

At the critical point it is equivalent to a 2D CFT with 2 massless  

fermions each having the central charge 1/2 
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entanglement in 2D models: 

analytical results 
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a is a UV cutoff 

Calabrese, Cardy 

hep-th/0405152 

ground state entanglement 

on an interval 

massive case: 

massless case: 

is the length of  



analytical results in 2D (continued) 
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1/T 

ground state entanglement for a 

system on a circle 

 

system at a finite temperature 

1L is the length of  



Computations of Entanglement Entropy in 

Higher Dimensions and Spectral Geometry 

 



1st step: representation in terms of  

a ‘partition function’ 
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we want to find an analog of Rindler relation 

put  thermal density matrix

a partition function

 "inverse temperature"
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2d step: relation of a ‘partition function’ to an 

effective action on a ‘curved space’ 

effective action( , ) ln ( , )W T Z T   

1{ ' }2{ }

2{ } 1{ } 0 

1/T 

these intervals  

are identified  

3

1 1Tr 

a ‘curved space’ with conical singularity at the separating point (surface) 

one glues n 

(n=3) copies   



effective action on a manifold with conical singularities           

is the gravity action (even if the manifold is locally flat) 

(2)4 (1 ) ( )  R n B

curvature at the singularity is non-trivial: 

entanglement entropy in a flat space has to do 

with gravity effects! 



3d step: use results of spectral geometry   
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hysical scale (mass, inverse syze etc)

an example: a scalar Laplacian :
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There are non-trivial contributions from conical singularities

located at the 'separ
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computations   
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CFT central charge

Renyi entropy

a typical syze of the system,   

the result holds for a system on an inter
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val devided into 2 or 3 parts

- the number of separating points (which yield conical singularities)1,2k 

2D CFT: “c” massless scalars and spinors   
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 scalar multiplets, 4 multiplets of Weyl spinors, 1 multiplet of gluon fields

area of the separating surface  
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4D N=4 super SU(N) Yang-Mills theory at weak coup. 

 



Conformal invariance of the heat coefficients 
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Let classical action be invariant w.r.t.

conformal transformations:

T

Tr , 0;

[ , ] ( ) ( )

'( ) ( ), '( ) ( ),

[ , ] [ ', ']

 

 

  

 

 










 

 







p d

tL

p

p

d

x k x

L

e t A t

I g d x g x L x

g x e g x x e x

I g I g

hen   is conformal invariant:   [ ] [ ']  p d p d p dA A g A g



3 invariants on a smooth entangling surface B in d=4 

(no boundaries)  
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EE and trace anomaly in d=4: 
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local conformal anomaly

"density" of the Euler n.

the Weyl tensor

 "bulk charges"   

- monotonically decreases under RG flow 
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a from UV to IR

suggested by J. Crardy, PLB 215, 749-752 (1988),

proved by Z.Komargodski and A.Schwimmer, JHE 201P 12 ( 1)099



Logarithmic term in EE in d=4 

conformal charges in the trace anomaly of a CFT uniquely fix the 

logarithmic term in EE (no boundaries) ! 

log
(no boundaries)

  Ryu,Takayanagi, JHEP 0608, 045 (2006),  

  Solodukhin,  PLB 665, 305 (2008)

  Fursaev, Patrushev, Solodukhin,  PRD 88, 044054 (2013)

         for CFT's
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Why relation of the log part of EE and scale anomaly  

is interesting? 

In supersymmetric  CFT’s ‘charges’ do not receive quantum 

corrections. This means computations in free theories can be used 

at strong couplings. 

 

One can compare ‘holographic’ EE (strong couplings) and 

straightforward computations in free CFT’s (to check they coincide) 

 



Entanglement across a spatial surface is sensible to: 

 
- the area of the surface (the leading terms); 

- topology of the surface; 

- extrinsic curvatures; 

- geometrical properties of a spacetime 
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inder of radius and length  R L



Computation of coefficient functions in SYM 
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contributions to heat kernel coefficients from conical singularities 
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  ( 'holographic'  arguments by S.N. Solodukhin, arXiv:0802.3117)
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Some developments: EE in gauge theories 

Definition of EE in gauge theories should be taken with care: the 

Hilbert space of physical degrees of freedom does not admit a tensor 

product description associated to spatial separation (the  physical 

degrees of freedom are non-local: lines, loops,…) 

 

to put it other way: spatial separation of physical states violates the 

Gauss law 

 

(see Polikarpov and Buividovich, 2008) 

 

A wayout is to embed the physical Hilbert space to a larger space 

which admits factorization, see 

 

Donnelly (2012), Cassini, Huerta, Rosabal (2014), Ghosh, Soni, 

Trivedi (2015) and other 



Some developments: EE and RG flow in d=3  

The F-theorem (a 3D analog of C-theorem): finite part of the free 

energy on 3-sphere decrees along RG flow 

 

Cassini, Huerta (2012): a monotonic RG behavior of EE in 3d (EE for 

a circle) 



Some developments: EE and boundaries  

Boundary effects in EE: 

 

In d=4 

Fursaev (2006), Wilczek and Hertzberg (2011), Fursaev (2013), Kuo-

Wei Hung (2016) 

 

In d=3 (and connection to boundary charges in the integrated scale 

anomaly) 

 

Fursaev and Solodukhin (2016), Kuo-Wei Hung (2016) 



thank you for attention 


