Dark Matter Models (I)

Dmitr

ar Research of RAS, Mosco

ald all

The Helmholtz International School "Cosmology, strings, and New Physics"

> DIAS-TH Program at BLTP, JINR Dubna, Russia

Dmitry Gorbunov (INR)

- 2 Dark Matter properties
- 3 Thermal Dark Matter

NR

Outline

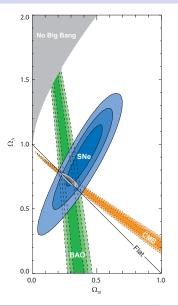
Interplay: Standard Model and Cosmology

Gauge fields (interactions): γ , W^{\pm} , Z, gThree generations of matter: $L = \begin{pmatrix} v_L \\ e_L \end{pmatrix}$, e_R ; $Q = \begin{pmatrix} u_L \\ d_L \end{pmatrix}$, d_R , u_R

- SM Describes
 - all experiments dealing with electroweak and strong interactions
- SM fails to describe (PHENO)
 - Neutrino oscillations
 - Dark matter (Ω_{DM})
 - Baryon asymmetry (Ω_B)
 - Inflationary stage

(THEORY)

- Dark energy (Ω_Λ)
- Strong CP-problem
- Gauge hierarchy
- Quantum gravity


Cosmology asks for new physics severely constrains many BSM

and limits neutrino mass relaxation..?

Outline

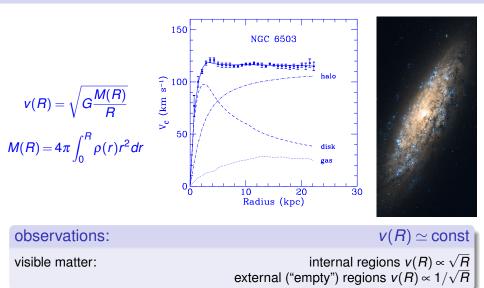
Astrophysical and cosmological data are in agreement

$$\left(\frac{\dot{a}}{a}\right)^{2} = H^{2}(t) = \frac{8\pi}{3} G \rho_{\text{density}}^{\text{energy}}$$
$$\rho_{\text{density}}^{\text{energy}} = \rho_{\text{radiation}} + \rho_{\text{matter}}^{\text{ordinary}} + \rho_{\text{matter}}^{\text{dark}} + \rho_{\Lambda}$$

$$\begin{split} \rho_{\text{radiation}} & \propto 1/a^4(t) \,, \quad \rho_{\text{matter}} \propto 1/a^3(t) \,, \quad \rho_{\Lambda} = \text{const} \\ & \frac{3H_0^2}{8\pi G} = \rho_{\text{density}}^{\text{energy}}(t_0) \equiv \rho_c \approx 0.53 \times 10^{-5} \, \frac{\text{GeV}}{\text{cm}^3} \end{split}$$

Radiation: $\Omega_{\gamma} \equiv \frac{\rho_{\gamma}}{\rho_{c}} = 0.5 \times 10^{-4}$ Baryons (H, He): $\Omega_{B} \equiv \frac{\rho_{B}}{\rho_{c}} = 0.05$ Neutrino: $\Omega_{V} \equiv \frac{\Sigma \rho_{V_{1}}}{\rho_{c}} < 0.01$ $N_{V} \simeq 3$, $\Sigma m_{V} \lesssim 0.2 \text{ eV}$

Dark matter: Dark energy: $\Omega_{\text{DM}} \equiv rac{
ho_{\text{DM}}}{
ho_c} = 0.27$ $\Omega_{\Lambda} \equiv rac{
ho_{\Lambda}}{
ho_c} = 0.68$


Observations we use in the analysis

Astrophysical data (favor Dark Matter) Observations in galaxies: rotation curves, number of dwarfs Observations in galaxy clusters: X-rays, strong lensing Cosmological data (favor Dark Matter and Dark Energy) Observation of objects at cosmological distances (cosmic ladder): cefeids, SN Ia, LRG, RGB? Baryonic Acoustic (Sakharov) Oscillations (BAO): two-point galaxy correlation function Galaxy formation process: Evolution of galaxy clusters: X-rays, Sunyaev–Zeldovich effect

 Anisotropy and Polarization of Cosmic Microwave Background (CMB): gaussianity, angular size of the sound horizon at recombination, ISW-effect, reionization, weak lensing, GW?, ...

Galactic dark halos:

flat rotation curves

Dmitry Gorbunov (INR)

Dark Matter in clusters

X-rays from hot gas in clusters

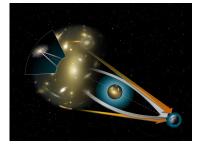
$$\frac{dP}{dR} = -\mu n_e(R) m_p \frac{GM(R)}{R^2} , \quad M(R) = 4\pi \int_0^R \rho(r) r^2 dr , \quad P(R) = n_e(R) T_e(R)$$

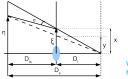
galaxies in clusters

virial theorem

$$U + 2E_k = 0$$
$$3M \langle v_r^2 \rangle = G \frac{M^2}{R}$$

Milky Way: Virgo infall


Dmitry Gorbunov (INR)


Gravitational lensing in GR:

$$\alpha = 4GM/(c^2b)$$

Einstein Cross

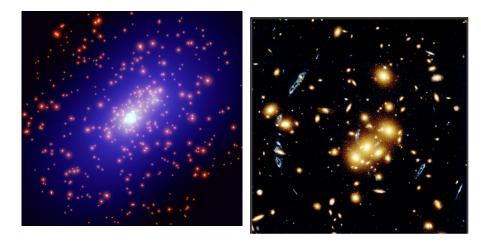
 $ec{\eta} = rac{D_{s}}{D_{l}}ec{\xi} - D_{ls}ec{lpha}\left(ec{\xi}
ight)$

common lens with specific refraction coefficient

$$\vec{\alpha}\left(\vec{\xi}\right) = \frac{4G}{c} \int \frac{\vec{\xi} - \vec{\xi}'}{\left|\xi - \vec{\xi}'\right|^2} d^2 \xi' \int \rho\left(\vec{\xi}', z\right) dz$$

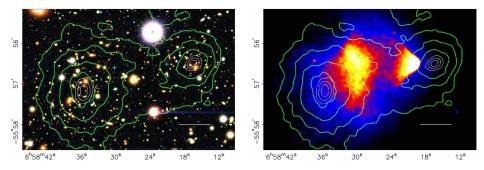
Dmitry Gorbunov (INR)

Dark Matter Models (I)


9/31

Dark Matter in clusters

gravitational lensing


 $ho_{\scriptscriptstyle B} pprox 0.25
ho_{DM}$

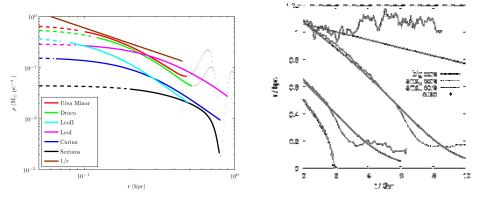
Dmitry Gorbunov (INR)

Colliding clusters (Bullet clusters 1E0657-558)

gravitational lensing

Observations in X-rays $M \simeq 10 \times m$

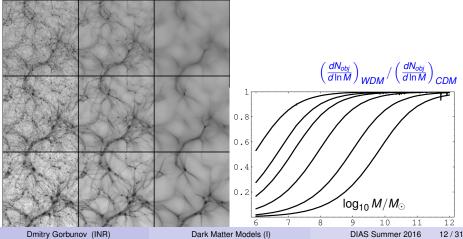
scale is 200 kpc clusters are at 1.5 Gpc


implies collisionless DM

AN NA

CDM Problems at small-scales ...?

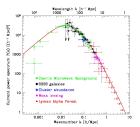
- NFW profile fits nicely DM in galaxy clusters $\rho \propto r^{-1}(r+r_c)^{-2}$
- Dwarf galaxy density profiles: ρ_M(r) ∝ r^{-(0.5-1.5)} cusp most DM-dominated objects


Cores observed (?)

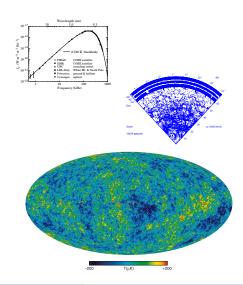
5 Clusters in the Fornax dSph

CDM Problems ...?

- Missing satellites: $\frac{dN_{obj}}{d\ln M} \propto \frac{1}{M}$
- "Too big to fail" problem
- Solved (?) by Warm Dark Matter (sterile neutrino, gravitino) free-streaming

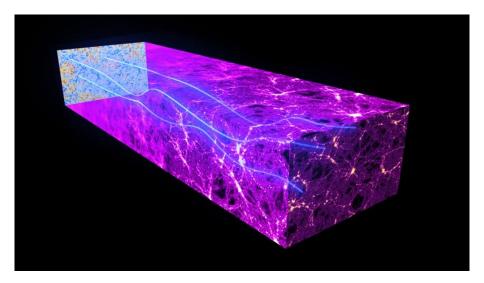

no-scale 100 instead of 1000

ЯN ИК


Matter perturbations

- CMB is isotropic, but "up to corrections, of course..."
 - Earth movement with respect to CMB $\frac{\Delta^{T} \text{dipole}}{T} \sim 10^{-3}$
 - More complex anisotropy: $\frac{\Delta T}{T} \sim 10^{-4}$
- There were matter inhomogenities $\Delta \rho / \rho \sim \Delta T / T$ at the stage of recombination $(e + \rho \rightarrow \gamma + H^*) \implies$
 - Jeans instability in the system of gravitating particles at rest $\implies \Delta \rho / \rho \nearrow$ galaxies (CDM halos)
- $\Delta \rho_{DM} / \rho_{DM} \propto a \propto 1/T$ from T = 0.8 eV, while $\Delta \rho_B / \rho_B \propto a \propto 1/T$ only after recombination T = 0.25 eV

without DM total growth factor would be 1100 not enough to explain structures!



Dmitry Gorbunov (INR)

On top of that: propagation in expanding Universe

Dmitry Gorbunov (INR)

So far only gravitational evidence for DM

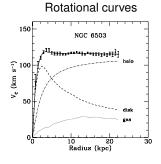
0

$$\begin{pmatrix} \frac{\dot{a}}{a} \end{pmatrix}^2 = H^2(t) = \frac{8\pi}{3} G \rho_{\text{density}}^{\text{energy}}$$

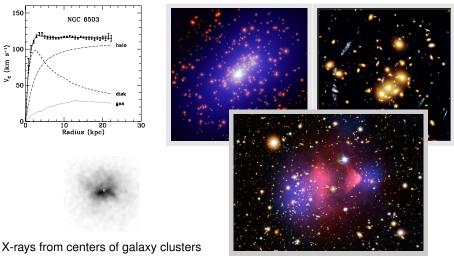
$$\rho_{\text{density}}^{\text{energy}} = \rho_{\text{radiation}} + \rho_{\text{matter}}^{\text{ordinary}} + \rho_{\text{matter}}^{\text{dark}} + \rho_{\Lambda}$$

$$\rho_{\text{radiation}} \propto 1/a^4(t) \propto T^4(t) , \quad \rho_{\text{matter}} \propto 1/a^3(t)$$

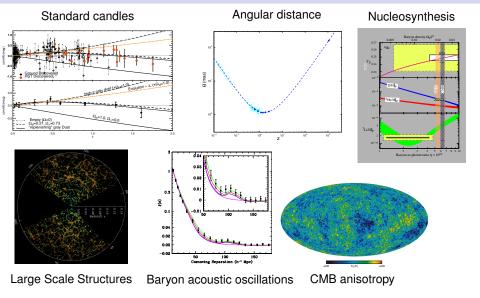
$$\rho_{\Lambda} = \text{const}$$


Why do we think it is most probably new particle physics (new gravity if any is not enough) ?

DM phenomena happen at various spatial and time scales


Dmitry Gorbunov (INR)

Dark Matter in astrophysics


Gravitational lensing

"Bullet" cluster

Dmitry Gorbunov (INR)

Dark matter in cosmology

Dmitry Gorbunov (INR)

Dark Matter properties

Dark Matter properties from cosmology:

p = 0

(If) particles:

- stable on cosmological time-scale
 - requires new (almost) conserved quantum number
- Produced in the early Universe

some time before RD/MD-transition (T = 0.8 eV)

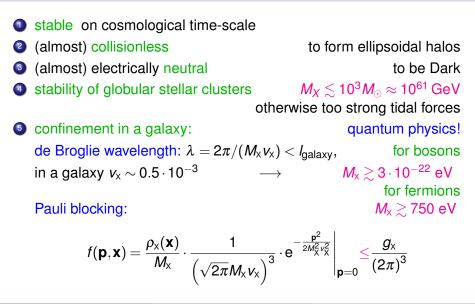
smoothed out by free streaming

In onrelativistic particles long before RD/MD-transition (T = 0.8 eV) (either Cold or Warm, $v_{RD/MD} \lesssim 10^{-3}$) Otherwise no small-size structures, like dwarf galaxies:

If were in thermal equilibrium:

- (almost) collisionless
- (almost) electrically neutral
- In all matter inhomogeneities (perturbations) are adiabatic:

$$\delta\left(\frac{n_B}{n_{DM}}\right) = \delta\left(\frac{n_B}{n_{\gamma}}\right) = \delta\left(\frac{n_v}{n_{\gamma}}\right) = 0$$

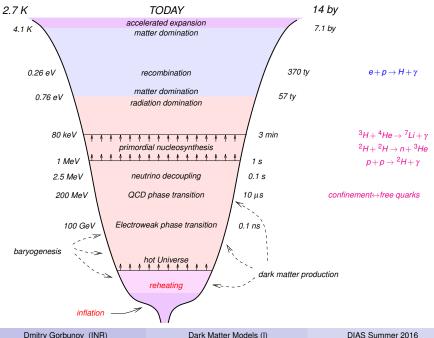

 $M_X \gtrsim 1 \text{ keV}$

 $p = 0, v_{sound} = 0$

CMB distortion

Dark Matter properties

Dark Matter properties from astrophysics



Thermal Dark Matter

Decoupling of relativistic Dark Matter

Assumptions

- DM particles are in equilibrium in plasma
- 2 DM decouple from plasma at temperature $T_d \gtrsim M_X$, so they are relativistic

$$n_X(T_d) = g_X \cdot \begin{pmatrix} 1 \\ \frac{3}{4} \end{pmatrix} \cdot \frac{\zeta(3)}{\pi^2} T_d^3$$

Later on

 $n_X a^3 = \text{const}, \quad sa^3 = \text{const} \qquad \implies \frac{n_X}{s} = \text{const} = \# \frac{g_X}{g_*(T_d)}$

DM particle mass M_X fixes Ω_X :

$$\Omega_X = \frac{M_X \cdot n_{X,0}}{\rho_c} = \frac{M_X \cdot s_0}{\rho_c} \frac{n}{s} \approx 0.2 \times \frac{M_X}{100 \text{ eV}} \left(\frac{g_X}{2}\right) \cdot \left(\frac{100}{g_*(T_d)}\right)$$

NO heavy stable feebly coupled to SM particles !
 NO realistic DM models:

Pauli blocking prevents fermionic DM

too energetic for the proper structure formation

Dmitry Gorbunov (INR)

 $\frac{p_X}{M_X} \propto \frac{a_d}{a} \sim \frac{3T}{M_X} \left(\frac{g_*(T)}{g_*(T_d)}\right)^{1/3}$

Dark Matter Models (I)

(e.g. neutrino)

useful

Thermal Dark Matter

Decoupling of relativistic Dark Matter

Can we save the relativistic Dark Matter ??

one can try, say, nonstandard cosmological evolution

with entropy production

1	hot stage (radiation domination) $ ho \propto 1/a^4$		
2	add new nonrelativistic particles decoupled from plasma $ ho lpha 1/a^3$		
3	later they start to dominate		
	intermediate stage of matter domination	terminates be	fore BBN !!
4	both relativistic DM density and entropy density drop		
5	new nonrelativistic particles decay reheating the Univer-	rse	<i>T</i> > 3 MeV
	entropy production		
-	new nonrelativistic particles decay reheating the Unive		<i>T</i> > 3 MeV

Decoupling of nonrelativistic Dark Matter

Assumptions:

- no $X \bar{X}$ asymmetry either $X = \bar{X}$ or $n_{X} = n_{\bar{X}}$
- **2** @ $T \lesssim M_X$ in thermal equilibrium with plasma

$$n_{\rm X}=n_{\rm \bar{X}}=g_{\rm X}\left(\frac{M_{\rm X}T}{2\pi}\right)^{3/2}{\rm e}^{-M_{\rm X}/T}$$

 $X\bar{X} \longrightarrow$ light particles

freeze-out temperature T_f

$$H\equiv T^2/M_{_{
m Pl}}^*$$

(e.g. neutrons)

$$n_{\rm X} \langle \sigma_{\rm ann} v \rangle = H(T_f) \longrightarrow T_f = \frac{M_{\rm X}}{\ln\left(\frac{g_{\rm X} M_{\rm X} M_{\rm Pl}^* \sigma_0}{(2\pi)^{3/2}}\right)}$$

Bethe formula:

s-wave: $\sigma_{ann} = \frac{\sigma_0}{v}$

Thermal Dark Matter

Weakly Interacting Massive Particles

density after freeze-out: $n_{X}(T_{f}) = \frac{T_{f}^{2}}{M_{P}^{*}\sigma_{0}}$ present density: $n_{X}(T_{0}) = \left(\frac{a(T_{f})}{a(T_{0})}\right)^{3} n_{X}(T_{f}) = \left(\frac{s_{0}}{s(T_{f})}\right) n_{X}(T_{f}) \propto \frac{1}{T_{f}}$

 $X + \bar{X}$ contribution to critical density:

$$\Omega_{\rm X} = 2 \frac{M_{\rm X} n_{\rm X}(T_0)}{\rho_c} = 7.6 \frac{s_0 \ln \left(\frac{g_{\rm X} M_{\rm Pl}^{\rm M} M_{\rm X} \sigma_0}{(2\pi)^{3/2}}\right)}{\rho_c \sigma_0 M_{\rm Pl} \sqrt{g_*(T_f)}}$$
$$= 0.1 \cdot \left(\frac{(10 \text{ TeV})^{-2}}{\sigma_0}\right) \frac{10}{\sqrt{g_*(T_f)}} \ln \left(\frac{g_{\rm X} M_{\rm Pl}^{*} M_{\rm X} \sigma_0}{(2\pi)^{3/2}}\right) \cdot \frac{1}{2h^2}$$

WIMPs: discussion

$$\Omega_{\rm X} = 0.1 \cdot \left(\frac{\left(10 \text{ TeV}\right)^{-2}}{\sigma_0}\right) \frac{10}{\sqrt{g_*(T_f)}} \ln \left(\frac{g_{\rm X} M_{\rm Pl}^* M_{\rm X} \sigma_0}{\left(2\pi\right)^{3/2}}\right) \cdot \frac{1}{2h^2}$$

- natural DM: subweak-scale cross section $\sigma_0 \sim 0.01 \times \sigma_W$ say, $M_X \sim 1$ TeV or X is not a weak gauge eigenstate
- naturaly "light" unitarity $\sigma_0 \lesssim \frac{4\pi}{M_{\star}^2} \longrightarrow M_X \lesssim 100 \text{ TeV}$
- all stable particles with smaller σ_0 are forbidden !!
- WIMPs remain in kinetic equilibrium with plasma till $T \sim 10 \, \text{MeV}$

this is Cold Dark Matter, $v_{RD/MD} \ll 10^{-3}$

WIMPs may form dark halos (clumps) much lighter than

dwarf galaxies

Weakly IMPs are mostly welcome (e.g. LSP in SUSY)

We can fully explore the model !!

lectures by S.Demidov

• Direct searches for Galactic Dark Matter ($v \sim 10^{-3}$)

$$X + \text{nuclei} \rightarrow X + \text{nuclei} + \Delta E$$

• Can search for WIMPs in cosmic rays: products of WIMPs annihilation (in Galactic center, dwarf galaxies, Sun)

$$X + \bar{X} \rightarrow p\bar{p}, e^+e^-, v, \gamma, \dots$$

• Can search for WIMPs in collision experiments (LHC):

$$X + \bar{X} \leftrightarrow SM + SM' + \dots$$

If thermal CDM but not Weakly IMPs?

We still can study the model if DM annihilates (partly) into SM particles

• But DM particle X can be light and feebly coupled (t-channel)

$$\sigma_0 \sim rac{\xi^4}{M_X^2}$$

- $\boldsymbol{\xi}$ is not a gauge coupling within GUT !
- With small σ_0 one needs entropy production
- σ_0 may be increased by *s*-channel resonance, $M_Y \approx 2M_X$
- annihilation can be amplified by co-annihilation channels, $X + A \rightarrow SM$
- With light messangers between Dark and Visible sectors many estimates change, say $\sigma_0 = \sigma_0(\nu)$
- DM interaction at freeze-out and now are not the same say, Sommerfield enhancement of the annihilation of slow particles $v \sim 10^{-3}$

Summary

Summary (I)

We need DM both in past (cosmology)

and at present (astrophysics)

- Por stability a symmetry is needed
- There are claimed discrepancies between CDM simulations and observations of small scale structures, observations of central regions of dwarf galaxies
- WDM? selfinteracting DM? no proof
- Structures: DM cannot be hot (e.g. SM neutrinos can not help)
- WIMPs (neutralino) are natural candidates for Cold Dark Matter
- Ø Much more options for WIMP-like candidates...
- Generally, heavy and/or feebly coupled thermal relics

are forbidden !!