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1 Introduction
Manifolds with covariantly constant spinors often appear in the problem of

string compactifications as those that preserve certain amount of supersym-
metry. Since supersymmetric string theories are consistently formulated in 10
dimensions the problem of finding a way of reducing them to the conventional
4 dimensions is of great importance. Although there are many great books on
differential geometry such as

Nakahara:2003nw
[1] or

Joyce:2000ct
[2] which cover the topic discussed further

in more details, we decided to present this text to the community because it
contains a brief technical introduction to the field of dimensional reductions.
The authors believe that this material will be useful for those who is starting
learning string compactifications and will help to understand the ideas on a
more technical level. With this aim we try to keep the presentation pedagogical
with inclusion of necessary calculation details. At the end we consider few ex-
amples which relate the beautiful world of differential geometry to the physical
problems. Since this text does not give an exhaustive physical introduction
to the topic the reader is referred to the last section which contains a list of
recommended literature with brief comments on the content.

Usually, people talk about compactifications of supergravity as a low energy
limit of string theory with possible inclusion of stringy effects as α′ corrections
to equations of motion and Bianchi identities. It is already known that the most
obvious and the most simple ways to compactify the theory do not work. For
example, one could try to choose a six-torus T6 as a compact manifold. This
would give a theory with maximal amount of supersymmetry N = 8 and trivial
interactions. The obtained theory is too constrained by the supersymmetry
and is too simple to capture any phenomenology.

The next attempt is to take a manifold that preserves less supersymmetries
than the torus, for example a Calabi-Yau manifold, that leads to N = 2 theory in
4 dimensions. In further sections we will see that purely geometrical properties
of the internal manifold X, such as the holonomy group and the number of
constant spinors, are tightly related to the physical properties of the resulting
theory.

Indeed, lets look at the supersymmetry transformations in Type IIA super-
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gravity for example
δψM = ∇Mε + HMε (1.1)

One notices that in order to have a solution that preserves at least some of
the supersymmetries and does not contain fermionic fields all their transfor-
mations should vanish. For example, if we have ψM = 0 for our solution and
δψM ̸= 0 then this solution can not be supersymmetric since a SUSY transfor-
mation will lead to ψM ̸= 0.

The condition of vanishing supersymmetry transformation can be nicely
written as a parallel spinor condition on a compact manifold. Having a covari-
antly constant (in other words, parallel) spinor is a very strong requirement
from the geometric point if view. The restriction is so rigid that compact man-
ifolds with parallel spinors can all be classified. According to the classification
by Bär

Bar:1993
[3], the topology and geometry of a manifold depends on the number of

parallel spinors defined on it.
To decompose supersymmetry parameters ε, that are ten-dimensional spinors,

the internal manifold must have a non-vanishing spinor η

ε = ξ ⊗ η. (1.2)

Warm-up example: compactification on a Minkowski background without fluxes
(from Grana)

2 Differential geometry
2.1 Fibre bundles

A fibre bundle is a triple (E,π,M) where E and M are manifolds and π is a
map

π : E → M. (2.1)

This map is surjective meaning that it covers the whole manifold M or in other
words ∀p ∈ M, ∃x ∈ E such that π(x) = p. The manifold M is called the base of
the bundle while E is called the total space. The crucial defining feature of a
fibre bundle is that images of all points in M are isomorphic to some space F
called a typical fibre

π−1[p] ∼= F, ∀p ∈ M. (2.2)

If the space F is a vector space then the corresponding fibre bundle is called
vector bundle.

In what follows we will deal with the special class of fibre bundles called
locally trivial bundles. Define an atlas A that is a set of patches {Uα} covering
the manifold M ∪

α
Uα ∼= M. (2.3)
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Then the fibre (E,π,M) is locally trivial if there is defined a trivialisation map

..

..π−1[Uα] ..Uα × F

..Uα .

.

fα

.π .
pr

(2.4)

for all patches from {Uα}. Here the map pr denotes the canonical projection
defined as pr(p, a) = p, ∀a ∈ F and ∀p ∈ M. The diagram above means that
locally the fibre bundle can always be represented as a direct product of the
base M and the fibre F. If this trivialisation map is the same for all Uα then
the fibre bundle is trivial and E ∼= M × F.

Consider an intersection of two patches Uα and Uβ and the patch of the
total space over it π−1[Uα ∩ Uβ]. Then the following commutative diagram can
be written

..

..Uα ∩ Uβ × F ..π−1[Uα ∩ Uβ] ..Uα ∩ Uβ × F

. ..Uα ∩ Uβ .

.

fα

.

fβ

.π.pr

.
pr

(2.5)

Here the maps fα and fβ denote the trivialisation maps over the patches Uα
and Uβ. Although we here restrict them only to the intersection of the patches
these maps are in general not the same.

Hence, we see that the map called the gluing co-cycle

ϕαβ := fα ◦ f−1
β : Uα ∩ Uβ × F → Uα ∩ Uβ × F (2.6)

allows us to glue locally trivial patches of the total space. Then one can consider
the fibre bundle E as consisting of trivial pieces of the form Uα×F glued together
by the co-cycles ϕαβ. Since each patch is a direct product these maps act only
on fibres leaving the base points untouched

ϕαβ(p, a) =
(p, gαβ(p)(a)

)
, gαβ(p) ∈ End(F). (2.7)

Here the transition functions gαβ(p) defined at each point p of the base are
elements of the endomorphism group of the fibre F. If the fibre is a vector
space of dimension n then the transition functions will be elements of GL(n).
This is a good place to turn to specific examples.
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2.2 A simple example: cylinder and the Möbius strip
The simplest example of a vector bundle is a bundle over a circle S1 with a

line R1 as a typical fibre. Locally this bundle looks like R1 ×R1 and it is known
that there are precisely two distinct types of gluing one can figure out. The first
one gives us a cylinder, the other leads to Möbius strip.

Lets start with introducing a proper an atlas covering the circle S1. For a
circle one should use minimum two patches to cover it that can be chosen in
the following way

U1 = {0 < θ < 2π},
U2 = {0 < θ < π, π < θ ≤ 2π},

(2.8)

where θ is a coordinate. The patches of this covering can be obtained by re-
moving one point of the circle: θ = 0 for U1 and θ = π for U2 as illustrated on
the Fig. 1. The intersection of the sets U1 and U2 is then a unification of two

..

S1

.

U2

.

U1

Figure 1: Two patches U1 and U2 is enough to cover the circle S1.

sets
U1 ∩ U2 = {0 < θ < π} ∪ {π < θ < 2π}. (2.9)

Over each of these sets our bundle is just a direct product of the form U1∩U2×
R1 ∼= R1 × R1.

The transition functions that glue the patches of the bundle together are
elements of End(R1) = R1. Since a rescaling of the fibre is not relevant for
the topology there are only two distinct classes of transition functions for this
bundle

g±
12 =

{
+ 1, {0 < θ < π}
± 1, {π < θ < 2π}.

(2.10)

This can be easily visualised as follows. Image that the patches U1 × R1 and
U2 × R1 are just paper strips. Then the transition function g+

12 glues these
strips on both intersections in the same way. This gives us a cylinder. On the
contrary, the function g−

12 glues the stripes on the intersection {0 < θ < π} in
the trivial way, but in the region {π < θ < 2π} one of the stripes should be
twisted. This is exactly Möbius strip. The twisting means just flipping the fibre
by multiplying by −1.

5



In other words, after we glue together the stripes in one region we get one
longed strip. Then how we glue the remained two ends of this stripe is crucial.

2.3 Tangent and cotangent bundles
A tangent space TpM to a manifold M at a point p ∈ M is defined as a space

of vectors that are tangent to all curves on M that pass through the point p. A
curve in differential geometry is usually understood as a map from a unit line
segment I = [0, 1] to the manifold

u : I → M. (2.11)

In a chosen basis this map is just given by the coordinates of points of the
curve

u(t) = (x1(t), . . . , xn(t)) ∈ M. (2.12)

Components of a vector tangent to the path u are given by the usual formula

{Xi} = u̇(t) = (ẋ1(t), . . . , ẋn(t)) ∈ Tu(t)M. (2.13)

It is often convenient to use a coordinate-free notation for the tangent vector
that is by definition given by

X := u̇ =
dxi

dt
∂

∂xi = Xi∂i. (2.14)

Here we introduced the canonical natural basis of vector fields {∂i}. Each ele-
ment ∂i of the basis is itself a vector field with components vj = δj

i. Hence, this
is the usual definition of a basis vector but in strange notations. It is conve-
nient to understand vector fields as differential operators on M (this is actually
their proper definition).

In the same way the canonical basis for 1-forms can be introduced. A form
on the manifold M can be written as ω = ωidxi if {xi} are the coordinates on
M. The basis {dxi} of 1-forms is conjugate to the basis of vector fields in the
following sense

dxi(∂j) = δi
j. (2.15) orth

This implies that the action of a 1-form ω on a vector field X is just

ω(X) = ωiXjdxi(∂j) = ωiXi. (2.16)

Now we can define the tangent bundle over the manifold M that is con-
structed as the usual fibre bundle with Fp = TpM for ∀p ∈ M.

s : M → TM (2.17)

that should satisfy π ◦ s = id, where id is the identity map id : p 7→ p, ∀p ∈ M.
The section s gives an element of the fibre F for each point of the base M. In
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the case, when F is a vector space V a section s defines a vector field on the
manifold M.

The typical fibre of the cotangent bundle T∗M over the manifold M is given
by the space of 1-forms T∗

pM at each p ∈ M that is a canonical conjugate of the
tangent space TpM. The conjugation is given by the isomorphism of vectors
and covectors

Xi ⇔ ωi. (2.18)
A section of the cotangent bundle is a differential 1-form on the manifold.

2.4 Horizontal spaces and connection 1-form
In this section we will briefly introduce the notion of connection on a fibre

bundle, covariant derivative and parallel (horizontal) transport. For a more
detailed explanation one can follow

Nakahara:2003nw
[1].

Consider a fibre bundle (E,π,M) with dimE = m + n, where m = dimM is
the dimension of the base and n = dimF is the dimension of the fibre F. There
always exist n linearly independent 1-forms on E

∃ θ1, . . . ,θn ∈ T∗E. (2.19)

Then one can construct the so-called annulator of these forms Hp = Ann(θ1
p, . . . ,θn

p)
at each point p ∈ E that is a vector space Hp ⊂ TE whose elements are all an-
nihilated by the forms θi at this point

∀Xp ∈ Hp, θi
p(Xp) = 0. (2.20)

Basically, the tangent space TEp at the point p ∈ E was split into 2 parts,
the horizontal subspace Hp and the vertical subspace Vp

TEp = Hp ⊕ Vp. (2.21) split

Dimension of the horizontal space Hp is that of the base M and dimVp ≡ dimF =
n. If it is possible to define a distribution of the horizontal spaces Hp globally,
i.e. for each p ∈ E, then this is equivalent to having a connection on the base
M.

To show this lets introduce coordinates (ai, xμ) on the bundle E. The natural
basis of 1-forms on E is then written as {dai, dxμ}. Here small Latin indices run
from 1 to n and correspond to fibre directions and small Greek indices run from
1 to m and correspond to base directions.

In this basis the vertical forms θi can be written as

θi = f i
j (a, x)daj + gi

μ(a, x)dxμ, (2.22)

where the functions f i
j and gi

μ are just components of the forms. Since these
forms are vertical they themselves provide a basis for 1-form on the fibre F
implying that we can always choose f i

j = δi
j.
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If we choose the functions gi
μ to be linear with respect to the coordinates ai,

i.e. gi
μ(a, x) = Γi

jμ(x)aj then the vertical forms become

θi = dai + Γi
jμajdxμ. (2.23)

In this forms one can see something very familiar. Indeed, the 1-forms ωi
j =

Γi
jμdxμ are called the connection forms.

2.5 Covariant derivative
In this chapter we introduce covariant derivative of a section of a fibre bun-

dle. To remind, a section of a fibre bundle E with base manifold M and a typical
fibre F is a map

s : M → E. (2.24)

Hence, a section gives an element of the fibre for each chosen point on M. If
we are talking about a vector bundle over M then sections of this bundles are
nothing but vector fields on M, that are often denoted by X.

..

b = u(0)

.

u(1)

.

u(t)

.

s(u(t))

.

v(t)

.

F

.

F

.

s(b)

.

M

.

E

Figure 2: Curves

Following our definition of a horizontal space we can define a horizontal
section s by the condition

θi(s) = 0. (2.25)

If we are talking about a vector bundle whose sections are vector fields X on
M, then we have horizontal vector fields.

Consider a section of a vector bundle s : M → E and a curve u : I → M on
the base (see Figure 2.). Consider a horizontal curve v : I → E that covers the
curve u(t)

π(v(t)) = u(t), ∀t ∈ [0, 1]. (2.26)
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A curve is called horizontal if its tangent vector is annihilated by all the vertical
forms

θi(v̇) = 0. (2.27)

The curve v(t) is called the horizontal lift of u. Obviously, in general the section
s(u(t)) is not horizontal since we do not impose any conditions on it. However,
it covers the curve u(t) as well

π(s(u(t))) = u(t) (2.28)

simply because π ◦ s = id.
A simple way to understand this is to think about vector bundles. Then the section s(u(t))

is just a vector field over the curve u. I.e. at each point of u(t) ∈ M we have a vector. The
(horizontal) section v(t) is again a vector field. It is important to understand that v(t) /∈ Hu(t),
i.e. the vector v(t) on M at the point u(t) does not belong to the horizontal space defined earlier.
Only the tangent vector to this curve belongs to Hu(t). Basically, at each point we have a vector
v(t) and we define the velocity of v̇(t) of the curve. This velocity shows how fast the vector is
changing when we moving along the curve.

Now the covariant derivative ∇Xs|b of the section s(u) along the vector field
X = u̇ at the point b = u(0) is defined as a difference between the section and
the horizontal curve covering the curve u(t)

∇Xs|b= lim
t→0

s(u(t))− v(t)
t . (2.29) def_cov_der

Lets show that this reproduces exactly the well known formula for the co-
variant derivative in the coordinate form. The curves are then given by

u(t) = (x1(t), . . . , xm(t)),
v(t) = (x1(t), . . . , xm(t), a1(t), . . . , an(t)),

s(u(t)) = (x1(t), . . . , xm(t), s1(t), . . . , sn(t)),
(2.30)

where xμ are the coordinates on the base M. The tangent vector v̇ has the
following form

v̇(t) = ȧi∂i + ẋμ∂μ. (2.31)

Since this vector is horizontal the following is true

θi(v̇) = ȧi + Γi
jμajẋμ = 0, (2.32) hor

where we used the orthogonality condition (
orth
2.15). Then the covariant derivative
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reads
∇Xsi = lim

t→0
si(x(t))− ai(t)

t ≡

≡ lim
t→0

si(x(t))− si(x(0))
t − lim

t→0
ai(t)− si(x(0))

t =

= lim
t→0

si(x(t))− si(x(0))
t − lim

t→0
ai(t)− ai(0)

t =

= ṡi(0)− ȧi(0) = ṡi + Γi
jμaj(0)ẋμ =

= ṡi(0) + Γi
jμsj(0)ẋμ.

(2.33)

Here in the second line we just added and subtracted si(x(0)) in the numerator,
in the third line we used that si(x(0)) ≡ ai(0) by the construction (see Fig. 2.).
Finally in fourth line we used the equation (

hor
2.32).

In more familiar notations the last formula of the equation above can be
written as

∇Xsi = Xμ∇μsi = Xμ (∂μsi + Γi
jμsj) . (2.34)

Finally, if we are talking about the tangent bundle TM then the section si is just
a vector field and the fibre indices i are exactly the same as the base indices
μ. Then we can replace si by some vector say Yα and write

∇μYα = ∂μYα + Γα
μνYν, (2.35)

that is exactly the covariant derivative of a vector field.

2.6 Parallel transport and holonomy groups
Recall the definition (

def_cov_der
2.29) of the covariant derivative ∇Xs of a section s :

M → E of a fibre bundle E along a vector field X = γ̇ being a tangent vector to
a curve γ : R → M

∇Xs|b= lim
Δt→0

s(u(t + Δt))− v(t + Δt)
Δt . (2.36)

For infinitesimally small shifts of the parameter Δt one can then write

v(t + Δt) = s(u(t + Δt))−∇Xs(t)Δt. (2.37)

It is important to mention here, that a section is defined on the manifold M
globally, hence we have a value s(p) for each point p ∈ M on the manifold.
Hence, s(u(t + Δt)) is a value of the section at the point u(t + Δt) defined by the
curve u(t).

However, if we would like to compare the value s(u(t + Δt)) of the section
to the value of the same section s(u(t)), we encounter a difficulty since these
values are taken in different point. One should define a way of shifting the
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value s(u(t)) to the point u(t+Δt) in a way, that does not depend on the section.
This is done by introducing a notion of parallel trandport, that in our notations
is just v(t + Δt).

So, one defines a parallel transport of a section s : M → E from the point
u(t) ∈ M to the point u(t + Δt) ∈ M to be a value v(t + Δt) of the horizontal lift
v : R → M of the curve u : R → M at the point u(t + Δt), with the value at u(t)
fixed by v(t) = s(u(t)).

Using the definiton of the covariant derivative above one writes

v(t + Δt) = s(u(t + Δt))− ṡ(u(t))Δt − ΓX[s](t)Δt = s(u(t))− ΓX[s](t)Δt, (2.38) transport

where we define ΓX[s] = XμΓμ
i
jsjej for {ej} = basF. Hence, one comes up with

a geometric understanding of the notion of covariant derivative, that is: an
amount to which a parallel transport of a section differs from the section at
this point. In addition one notes that a horizontal curve can be defined as such
a curve that is invariant under parallel transport.

Finally, one is able to define a notion of a geodesic curve on the manifold M.
Consider a tangent bundle TM and a curve γ : R → M on the manifold. Then
γ̇ is a curve on TM. The curve γ is said to be geodesic if its lift γ̇ to TM is
horizontal (with respect to a connection Γ), i.e. ∇γ̇γ̇ = 0. In a local frame this
implies

∇γ̇γ̇ = ∇γ̇ẋμ∂μ =
(ẍμ + Γνρ

μẋνẋρ)∂μ = 0, (2.39)

that is the well known geodesic equation.
The notion of parallel transport allows to define the concept of holonomy

group (algebra), that is very useful for applications. The holonomy group
Holp(∇) of a connection ∇ at the point p ∈ M of the manifold is defined to be
a set of all transformations of sections at the point p under parallel transport
along a closed loop γ : S1 → M starting and ending at the point p. Obviously,
for any fibre bundle the holonomy group is a subgroup of all allowed trans-
formations of the typical fibre F, i.e. Holp(∇) < Hom(F). Hence, for a vector
bundle with a fibre V of dimension dimV = n the holonomy groupat a point is
Holp(∇) < GL(n).

There exists a theorem, that is not included here, stating that the holonomy
group Holp(∇) actually does not depend on the chosen point p ∈ M (under some
conditions, that are always satisfied for physical applications).

Before going to explicit examples in the next section, we show that to calcu-
late holonomy group of a connection one actually does not need to perform all
possible parallel transport along infinitesimal curves and look at their group
structure. It appears, that such parallel transport is actually given by Cartan
tensor (curvature of the connection Γ).
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2.7 Geometric meaning of curvature tensor
We would like now to show, that holonomy of a section s around a closed

loop is related to [∇X1 ,∇X2 ]s and hence to curvature. Here, X1,2 = γ̇1,2 ∈ TM
are vector field on the manifold tangent to curves γ1,2(t) (see Fig.

loop
3). One has

to choose the closed curve along which the parallel transport is performed to
be partially smooth, i.e. consisting of finite number of smooth pieces, since
otherwise the fields X1,2 will be singular (have a vortex somewhere).

..

t1

.

t2

.

t3

.

s(t)

.

v(t)

.

γ1

.

γ2

Figure 3: Illustration of the parallel transport along a closed loop (see the text). loop

Consider a section s : M → E of a fiber bundle E and its parallel transport
along the curves γ1,2 defined by the horizontal curve v : R → E. According to
(
transport
2.38) we have

v(t2) = s(t1)− ΓX1 [s](t1)dt = s(t1)− Γμ[s](t1)dxμ, (2.40)

where we used the definition of a vector tangent to a curve Xμ = (dxμ/dt)∂μ and
denoted Γμ[s] = Γμ

i
jsjei for {ei} = basF.

Doing the same for the second point γ2(t3) we write

v(t3) = v(t2)− ΓX2 [v](t2) = v(t2)− Γμ[v](t2)dx̃μ, (2.41)

where dx̃μ is the shift along the curve γ2 from t2 to t3.
Note, that since v(t) is a horizontal curve, a parallel transport shifts the curve into itself.

I.e. a parallel transport of v(t2) to the point t3 is just v(t3). And hence one could have written

v(t3) = v(t2) + v̇(t2)dt. (2.42)

However, because of the horizontality condition ∇X2v = 0 this expression is exactly the same
as the previous one. Obviously, it is consistent to just formally apply the rules of parallel
transport to the curve v(t).

Substituting v(t2) into this expression we have

v(t3) = v(t2) − Γμ[v](t2)dx̃μ = s(t1) − Γμ[s](t1)dxμ − Γμ[v](t2)dx̃μ

= s(t1)− Γμ[s](t1)dxμ −
(Γμ + Γ̇μdt)[s − Γν[s]dxν](t1)dx̃μ.

(2.43)
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The second term in the last line needs a bit of explanation. The second bracket
here just originates from substitution of v(t2) as in the first line. The first
bracket contains Ġμ that takes into account that befor the function Γμ

i
j was

defined at the point γ1(t2) rather than γ1(t1). This is cured by the usual ex-
pansion of Γμ as a function around t2.

Opening the brackets and writing everything together we have

v(t3) = s(t1)− Γμ[s](t1)(dxμ + dx̃μ)− Γ̇μ[s](t1)dtdx̃μ − Γμ[Γν[s]](t1)dxνdx̃μ =

= s(t1)− Γμ[s](t1)(dxμ + dx̃μ)−
(
∂νΓμ + ΓμΓν

)
[s](t1)dxνdx̃μ,

(2.44)
where in the second line we replaced Ġμ(t1)dt = ∂νΓμdxν since the derivative is
taken along the curve γ1 that corresponds to the shift dxμ. The term ΓμΓν[s](t1)
in the local frame is just Γμ

i
kΓν

k
jsj(t1)ei.

To close the loop one should preform the same steps going further along the
curves denoted by dashed lines on the figure. In this case one would have to
perform multiple Taylor expansions to relate Gamma’s at say t4 to Gamma’s at
t1. To avoid this procedure we will do a trick and instead go along the dashed
lines in the opposite direction starting at γ1(t1). Obviously. this will provide us
the same resilt up to change dxμ ↔ dx̃μ, i.e.

v′(t3) = s(t1)− Γμ[s](t1)(dx̃μ + dxμ)−
(
∂νΓμ + ΓμΓν

)
[s](t1)dx̃νdxμ. (2.45)

We see, that the result of parallel transport crucially depends on the curve
chosen and not on the final point only. This failure of integrability is described
by curvature tensor

v′(t3)− v(t3) = −Rμν[s](t1)dx̃μdxν;

Rμν
i
j = 2∂[μΓν]

i
j − 2Γ[μ

i
kΓν]

k
j.

(2.46)

Finally, it is straightforward to check that the Riemann curvature tensor can
be calculated by taking commutator of covariant derivatives

[∇μ,∇ν]si = Rμν
i
jsj − Tμν

ρ∇ρsi, (2.47)

where Tμν
ρ = Γμν

ρ − Γνμ
ρ is torsion of the connection Γμν

ρ in the tangent
bundle induced by the connection Γμ

i
j in the bundle E. Geometric meaning of

torsion will be considered in the next section.
In the coordinate free form these tensors can be written as

R(X,Y)s = [∇X,∇Y]s +∇[X,Y]s,
T(X,Y) = ∇XY −∇YX − [X,Y].

(2.48)

Here X,Y ∈ Vect(M) are vector field on the base M and [X,Y] = L∇
X Y is a

covariant Lie derivative of Y along X
[X,Y]μ = Xν∇νYμ − Yν∇νXμ. (2.49)
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Note, that the above procedure can be understood as going around a closed
loop starting from t3 and hence it defines action of the algebra of the holonomy
group (the loop is infinitesimally small). This implies Rμν ∈ hol(∇) and hence
the curvature tensor can be written as

R = τ ⊗ h, (2.50)

where τ ∈ Ω2(M) is a 2-form on M and h ∈ hol(∇) is an element of the holonomy
algebra. This basically means that we can represent the curvature as

Rμν
i
j = τμν ⊗ hi

j. (2.51)

As a basic example one can take the Schwarzschild metric in d dimensions, cal-
culate its Riemann curvature and prove that its components are proportional to
generators of SO(d). And indeed a Riemannian manifold has holonomy group
SO(d).

This is a consequence of a very important theorem whose proof we will not
present here 1. Consider a tangent bundle TM over a manifold M with con-
nection ∇. Holonomy group H = Hol(∇) is a subgroup of the structure group
H ≤ GL(TxM) for any x ∈ M. The theorem states, that if S ∈ Γ(TM) is a constant
tensor on M, i.e. it satisfies ∇S = 0, then it is invariant under the holonomy
group. In other words

∇S = 0 ⇐⇒ L(S) = 0, L ∈ hol(∇), (2.52)

where hol(∇) is the Lie algebra of the holonomy group. This allows to determine
the holonomy group of a bundle by looking at its parallel sections.

Example. Let take a Riemann manifold that is a manifold endowed with a
metric g. Consider a connection ∇LC that is compatible with the metric, i.e.

∇LCg = 0. (2.53)

Such a connection is called Levi-Civita connection. From the theorem above
we derive that the holonomy group is the one that fixes the metric g. Written
in components for an element Λ ∈ Hol(∇LC) this condition reads

Λa
cΛb

dgab = gcd. (2.54)

This gives Λ ∈ SO(d), where d = dimM. Hence, we see that holonomy group of
a Riemann manifold is indeed SO(d).

2.8 Geometric meaning of torsion tensor
Let us now turn to the torsion tensor and consider vectors fields X and Y

at a point p ∈ M that has coordinates {xμ} in a local frame. The question
1The proof can be found in

Joyce:2000ct
[2] as Lemma 2.5.1 and proposition 2.5.2
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is if it is possible to form a parallelogram on M from integral curves of these
vector fields. To do so, one should be able to say which sides of the figure are
parallel and which sides are equal to each other. The first concept can be easily
related to the notion of parallel transport, while the second needs more careful
consideration.

Let us start with the point p ∈ M with coordinates {ξμ} and to vectors Xp and
Yp at this point, whose integral curves intersect. One draws the first side pr
of the parallelogram by going say along the integral curve of the field X (green
on Fig.

torsion
4). As usual the curve is parametrised by a real number t, and we

define the point r as a shift along the vector X by the amount of dt. i.e. r has
coordinates

xμ + Xμ(p)dt. (2.55)

Doing the same with the field Y we construct another side pq of the parallelo-
gram and arrive to the point q with coordinates

xμ + Yμ(p)dt′, (2.56)

where in general dt′ ̸= dt.

..

p

.

X(p)

.

Y(p)

.

X′(q)

.

Y′(r)

.

q

.

r

.

q′

.

r′

Figure 4: Failure of parallel transported vectors to form a parallelogram torsion

Let us now construct the side qq′ parallel to pr, that is given by a segment
of the integral curve of the vector X′

q parallely transported from the point p.
Note, that in general X′

q ̸= Xq, but we have instead X′μ(q) = Xμ(p)−Γνρ
μXνYρdt′

since we transport X along Y to the distance determined by dt′. This gives the
following coordinates of q′

xμ + Yμ(p)dt′ + Xμ(q)dt′′ = xμ + Yμ(p)dt′ + Xμ(p)dt − Γνρ
μXν(p)Yρ(p)dt′dt (2.57)

It is important here, that the side qq′ should be equal to pr that implies dt′′ = dt.
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To construct the last side rr′ we use the parallel transport of the vector Y
to the point r that is Y′μ(r) = Yμ(p) − Γρν

μYr(p)Xν(p)dt and the coordinate of r′
reads

xμ + Xμ(p)dt + Yμ(r)dt′ = xμ + Xμ(p)dt + Yμ(p)dt′ − Γρν
μYρ(p)Xν(p)dtdt′. (2.58)

Finally, comparing this to the coordinates of q′ we see, that they do not
match and the difference Δμ is given by

Δμ =
(

Γνρ
μXν(p)Yρ(p) − Γρν

μYρ(p)Xν(p)
)
dtdt′

= (Γνρ
μ − Γρν

μ)Xν(p)Yρ(p)dtdt′ = Tνρ
μXν(p)Yρ(p)dtdt′,

(2.59)

where Tμν
ρ is the torsion tensor.

Hence, one concludes that non-zero torsion of a connection on a tangent
bundle of a manifold M does not allow to build parallelograms. Note, that in
general one is able to build any closed figure, but for it to have parallel and
mutually equal sides the connection shoud be torsionless.

2.9 Berger’s classification
In general case one can consider different types of constant tensors on a

manifolds and obtain different types of manifolds. Following the classification
by Berger we may write a table

Holonomy group Manifold type
1. SO(n) generic Riemann manifold
2. U(n) Kähler metrics on 2n-dimensional manifold
3. SU(n) Calabi-Yau manifold
4. Sp(n) 4n-dimensional hyper-Kähler manifold
5. G2 G2 manifold
6. Spin(7) Spin(7) manifold

Table 1: Berger’s classification of manifolds according to their holonomy group.

3 Complex geometry
3.1 Complex structure

A complex manifold is defined in the similar way as a real differential mani-
fold. Without entering into unnecessary mathematical details we can say that
complex manifold is a manifold with complex coordinates defined on it and
with transition functions being holomorphic. This is self-consistent definition
that does not need the notion of real even-dimensional manifold. However, in
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application one usually starts with a real manifold and then defines a struc-
ture of the complex manifold on it. Evidently, this can be done not for any real
manifold and in this section we describe the procedure following mainly the
reference

kobayashi1963
[4].

First of all for a physicist it is pretty straightforward that to be able to carry
a complex structure a real manifold should be even dimensional. We will start
with more simple case of a linear space V of dimension dimV = 2n. A complex
structure is such endomorphism J ∈ End(V) that squares to minus the identity
transformation J2 = −1:

J : V → V,

J : v 7−→ v′, ∀v, v′ ∈ V,

J ◦ J : v 7−→ −v,
(3.1)

where small circle denotes composition of endomorphisms. For a given basis
the matrix representation of the operator J takes the familiar form

J0 =

[ 0 In
−In 0

]
, (3.2)

where In is n × n identity matrix. We call this the canonical complex structure
and denote by J0.

Since a complex vector space is defined over the field of complex numbers
while a real vector space is defined over the reals we are not allowed to just
multiply vectors of the 2n-dimensional space V by complex numbers. This is
where the complex structure J becomes useful: we define multiplication of a
vector X ∈ V by a complex number a + ib in the following way

(a + ib)X := aX + bJX. (3.3)

Hence the tensor J basically plays the role of the imaginary unit i. This allows
to go backwards and define a complex structure on a complex vector space as
JZ := iZ. Note that here the vector Z is an element of the complex space and
this can be multiplied by the imaginary unit.

The complex structure J can be used to define a naturally consistent basis.
Indeed, for any set of vectors {e1, . . . , en} on V of dimension dimV = 2n we can
define

{e1, . . . , en, Je1, . . . , Jen} = basV (3.4)
since all elements are linearly independent as detJ = 1.

The canonical complex structure J0 is not the only tensor with the property
J2 = −1 that can be defined on a vector space. In general, it can be rotated by
a matrix S ∈ GL(2n,R)

J = SJ0S−1. (3.5)
It is easy to check that such defined J introduces a proper complex structure,
i.e. J2 = −1. However, matrices S0 ∈ GL(n,C) commute with J0 and hence the
space of complex structures on R2n is equivalent to GL(2n,R)/GL(n,C).
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This result is proven to be very important for investigating complex structure
moduli on manifolds. As a simple example consider the linear space R2 that for
us will play the role of a torus T2, that is often used in string compactifications.
A general matrix on R2 that satisfies J2 = −1 can be written as

J =

[√
−1 − bc b

c −
√
−1 − bc

]
(3.6)

Now fix a vector e1 ∈ R2 and consider the basis generated by J

e1 =

[1
0
]
, e2 = Je1 =

[√1 − bc
c

]
. (3.7)

A general vector X = x1e1 + z2e2 on the vector space R2 then takes the following
form

X =

[x1

0
]
+

[x2√−1 − bc
x2c

]
. (3.8)

Now we define the complex coordinate on R2 in the usual way, namely ℜz =
X1 = x1 + x2√−1 − bc and ℑz = X2 = x2c. In more sensible notations this can
be written as

z = x1 + τx2, (3.9) tau

where τ =
√
−1 − bc + ic ∈ C is what is usually called complex structure

modulus.
The fact that our definition of the complex coordinate z on the torus is dif-

ferent from what one would expect, namely z = x1 + ix2, is a consequence of
the general form of the complex structure J. For J = J0, i.e. if we set b = 1 and
c = −1 one would have the canonical definition.

Now we say that complex structure on a 2-dimensional vector space (let’s
say a 2-torus) can be parametrised by a complex structure modulus τ ∈ C.
Hence, the complex structure moduli space of the 2-torus is two-dimensional
in agreement with the general picture.

3.2 (Almost) complex structure and Hermitian manifolds
Kähler manifolds are defined as a special case of Hermitian manifolds which

in turn are a complex analogue of Riemann manifolds. To avoid the common
confusion one should distinguish between the Hermitian metric g (or better,
inner product, compatible with J) and the Hermitian structure on the tangent
space H (or alternatively the Hermitian inner product). One defines the inner
product g compatible with J on a complex manifold M in the usual way

g : TM ⊗ TM → R,
g(JX, JY) = g(X,Y).

(3.10) def_hmetr
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In turn the Hermitian structure H on M is defined as a Hermitian inner product
on each fibre TpM of the tangent bundle TM

H : TpM × TpM → C,
H(a1X1 + a2X2,Y) = a1H(X1,Y) + a2H(X2,Y),

H(Y,X) = H(X,Y),

H(JX,Y) = iH(X,Y),

for all X,X1,X2,Y ∈ TpM.

(3.11) def_hstr

Such defined Hermitian structure leads to what is also often called a Hermitian
metric h leading to the confusion

h(X,Y)|p = H(Xp,Yp). (3.12)

In addition, there exists a relation between these objects g(X,Y) = ℜh(X,Y). In
what follows we will refer to g as the Hermitian metric, while h will be called
the Hermitian inner product on TM (in constract the form H is the Hermitian
inner product on TpM).

To see, how the products h and H and the Hermitian metric g can be ex-
pressed in the coordinate form, let us define the canonical basis on TM in the
spirit of the previous section

basTM = {ea, ẽa} = {ea, Jea}, a = 1, .., dimCM. (3.13)

Hence, any vector field in this basis can be written as X = xaea + yaẽa, or in
complex coordinates we may write za = xa + iya. The tangent space TM is then
split into its holomorphic and anti-holomorphic part spanned by vectors

ThM =

{
∂

∂za

}
=

{
∂

∂xa − i ∂

∂ya

}
,

TahM =

{
∂

∂z̄a

}
=

{
∂

∂xa + i ∂

∂ya

}
.

(3.14)

The spaces ThM and TahM are eigenspaces of the operator J with eigenvalues
±i. Equivalently for cotangent space T∗M we have {dza} and {dz̄a} as bases of
its holomorphic and anti-holomorphic parts.

Indeed, for the canonical basis defined above one writes the action of J as
follows

J(ea) = ẽa, J(ẽa) = −ea,

equivalently in the coordinate notation

J
( ∂

∂xa

)
=

∂

∂ya , J
( ∂

∂ya

)
= −

∂

∂xa .

(3.15) action_J

Now it is straightforward to see that for the holomorphic coordinates za and z̄a

one has
J(∂a) = i∂a, J(∂̄a) = −i∂̄a. (3.16)
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The vector X = xaea + yaẽa can be written as X = za∂a + z̄a∂̄a, that using the
equations above gives

J(X) = i(za∂a − z̄a∂̄a) = (iza)∂a + iza∂̄a. (3.17)

Hence, the action of the complex structure J on the holomorphic components
of the vector X is just a multiplication by i.

Let us now look first at what we call the Hermitian metric g on the complex
manifold M. Using the definition one obtains for components in the holomor-
phic basis

gab = g(∂a, ∂b) = g(J(∂a), J(∂b)) = −gab, =⇒ gab = 0. (3.18)

In the same manner one has gāb̄ = 0. In addition, since g is a usual metric on
a complex manifold, it is said to be symmetric and real, that gives

g(X,Y) = g(X,Y) =⇒ gab̄ = gāb,

g(X,Y) = g(Y,X) ⇔ gab̄ = gb̄a.
(3.19)

Gathering all this together we write the metric g in the following form

g = gab̄dza ⊗ dzb̄ + gābdzā ⊗ dzb

= gab̄(dza ⊗ dzb̄ + dzb̄ ⊗ dza)
(3.20)

Now let us turn to the Hermitian structure h. In the canonical basis {e1, ẽa}
the only independent component is h(ea, eb). Indeed, using the properties in
the definition of Hermitian inner product one obtains

h(ẽa, ẽb) = ih(ea, ẽb) = −ih(Jea, eb) = h(ea, eb),

h(ẽa, eb) = ih(ea, eb),

h(ea, ẽb) = −h(Jea, eb) = −ih(ea, eb).

(3.21)

These relations imply that the only non-zero component of the form h in the
holomorphic basis is hab̄ = h(∂a, ∂b). To illustrate the idea, let us check only one
of the vanishing components

h(∂̄, ∂̄) = h(e, e) + h(e, iẽ) + h(iẽ, e) + h(iẽ, iẽ)
= h(e, e)− ih(e, ẽ) + ih(ẽ, e) + h(ẽ, ẽ)
= 2h(e, e)− 2h(e, e) = 0,

(3.22)

where the indices of the basis vectors ea and ẽa were omitted. The other iden-
tities go in the same way.

Note, that the component h(∂a, ∂b) was denoted by hab̄ rather than hab, that is
due to sesquilinearity condition. Indeed, taking into account the above identi-
ties we have for the form action on two vectors X and Y

h(X,Y) = h(Xa∂a + X̄a∂̄a,Yb∂b + Ȳb̄∂̄b̄) = XaȲb̄h(∂a, ∂b)

= hab̄XaȲb̄.
(3.23)
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It is important to mention, that barred and unbarred indices here run the same
set of values, however we use barred indices to denote components of complex
conjugate components. Since here one obtains Yb still having the ∂b inside,
there appears a summation of a barred and unbarred index. To avoid all these
subtleties it is suggestive to write the inner product as

h = hab̄dza ⊗ dz̄b̄. (3.24)

Note, that because of the third line in (
def_hstr
3.11) the matrix hab̄ is Hermitian, i.e.

hab̄ = hb̄a. Often such defined tensor field h is called the metric on a Hermitian
manifold, that sometimes proves to be convenient. In what follows, we always
distinguish between h and g, although the former will be referred to as a metric.

Starting from the inner product h one is able to define the Hermitian metric
g and a 2-form ω, that plays a crucial role in complex geometry

g =
1
4(h + h̄),

ω =
i
4(h − h̄).

(3.25)

Coefficients here are chosen to make contact with those widely used in the
literature. In the natural basis the above expressions can be written as follows

g =
1
2habdza ⊙ dz̄b

=
1
2ℜhab(dxa ⊙ dxb + dya ⊙ dyb)−ℑhabdxa ⊙ dyb,

ω =
i
2habdza ∧ dz̄b

= ℜhabdxa ∧ dyb +
1
2ℑhab(dxa ∧ dxb + dya ∧ dyb),

(3.26)

where α⊙β = α⊗β+β⊗α. Simple calculation shows, that such defined 2n×2n
real matrix g and n × n hermitian matrix h satisfy the following relation√

det g = det h. (3.27)

This will be of crucial importance for definition of Hodge dual and a volume
element on complex space. Finally, it is straightforward to check, that the
metric g and the 2-form ω satisfy the following equations

g(JX, JY) = g(X,Y),

ω(X,Y) = g(JX,Y),
(3.28)

that is precisely the usual definition of Hermitian metric and the associated
2-form.
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3.3 Differential forms on complex manifolds
One should note, that components of a (1,1)-form

ω =
1
2ωmm̄dzm ∧ dz̄m̄, (3.29)

defined on the complex manifold are not given by an antisymmetric tensor
ωmm̄ ̸= −ωm̄m in contrast to differential forms on real manifolds.

3.4 Kähler manifolds
A Kähler manifold is defined as such Hermitian manifold with Hermitian

metric h whose imaginary part defines a 2-form ω that is closed

Kähler: dω = 0. (3.30)

The corresponding metric h is called then Kähler. In the coordinate form the
condition above gives precisely the Cauchi-Riemann equations

∂hab
∂zc =

∂hcb
∂za ,

∂hab
∂z̄c =

∂hac
∂z̄b .

(3.31)

This implies that a Kähler metric can be written as derivative of a complex
function K called Kähler potential

hab =
∂2K

∂za∂z̄b . (3.32)

The scalar function K is defined up to a shift by holmorphic and antiholmorphic
functions called Kähler transformation

K′(z, z̄) = K(z, z̄) + f1(z) + f2(z̄). (3.33)

The potentials K′ and K define the same Kähler metrics.
Connection on a Kä hler manifold is defined as a complex linear extension

of the usual connection. I.e. we have

∇X+iY(U + iV) = ∇XU + i∇YU + i∇XV −∇YV, (3.34)

for vectors X,Y,U,V ∈ TpM on the complex manifold M. This is further re-
stricted by the condition to be compatible with the complex structure J and to
be a Levi-Civita connection

∇XJY = J∇XY = ∇JXY, compatibility with J;
∇Zg(X,Y) = g(∇ZX,Y) + g(X,∇ZY) Levi-Civita condition.

(3.35)
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The latter basically means that the connection preserves length of a vector. In
addition one has

∇XY = ∇X̄Ȳ, (3.36)
that tells us how to do complex conjugation.

Christoffel symbols with respect to a chosen basis {ea, eā} for this connection
are defined in the usual way

∇eaeb =: Γab
cec + Γab

c̄ec̄, (3.37) Chris

and the same for three other combinations ∇eaeb̄,∇eāeb and ∇eāeb̄. We will work
in the holomorphic basis {∂a, ∂b̄}, whose properties under the action of J imme-
diately imply

∇∂a∂b̄ = 0,
∇∂ā∂b = 0. (3.38)

A certain component of the Christoffel symbol can be singled out from the
definition (

Chris
3.37) by taken the inner product with a basis vector. Hence, we

write say for Γab
c̄

g(∇∂a∂b, ∂c) = Γab
c̄gcc̄

||
g(J∇∂a∂b, J∂c) = g(∇J∂a∂b, J∂c) = −g(∇∂a∂b, ∂c) = −Γab

c̄gcc̄,

(3.39)

where in the vertical line we used compatibility of the metric and the complex
structure (

def_hmetr
3.10). Acting in the similar way, one concludes that the only non-

vanishing Christoffel symbols are
Γab

c = gcc̄∂agac̄,

Γāb̄
c̄ = gcc̄∂āgcb̄.

(3.40)

Given the relation between the metric and the Kähler potential, the connection
is indeed torsionless.

An important consequence of the above construction is that a holomorphic
vector X = Xa∂a remains holomorphic after parallel transport by the Levi-Civita
connection. Indeed, for an infinitesimal translation one has

∇aX = Γab
cXb∂c =⇒ δξXa = ξbΓbc

aXc (3.41)
Since the connection preserves length of a vector, parallel transport along a
closed loop gives just a U(n) rotation, where dimCM = n. To see this, let us
denote a finite transformation of a holomorphic vector Xa after performing the
transport by X′a = Ua

bXb. Then for its length we have

g(X′,X′) = gab̄X′aX′b̄ = gab̄Ua
cUb̄̄

dXcX̄d̄ = gab̄XaXb̄. (3.42)

Since locally one is always able to diagonalise the metric this implies U†U = 1.
Hence, the group of parallel transport along a closed loop starting and ending
at a given point (that is the holonomy group Holp(∇) of the connection at this
point) is indeed U(N). Given the theorem, that the holonomy group does not
depend on a choice of the point, this result is extended to the full manifold.
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3.5 Hodge star operation
Due to existence of a 2-form directly related to Hermitian metric and Hermi-

tian structure on the complex manifold, properties of the Hodge star operation
lead to come peculiar identities. Start with the fact, that the volume form
dVol = √gdx1 ∧ · · · ∧ dxn ∧ dy1 ∧ · · · ∧ dyn is just an n-th power of the 2-form

Vol = 1
n!
∫

ω ∧ · · · ∧ ω︸ ︷︷ ︸
n

(3.43)

Indeed, using the fact that dzi ∧ dz̄i = 2idyi ∧ dxi for any given i (no sum), one
writes

ω ∧ · · · ∧ ω︸ ︷︷ ︸
n

=
in
2n hm1m̄1 · · · hmnm̄ndzm1 ∧ dz̄m̄1 ∧ · · · ∧ dzmn ∧ dz̄m̄n

=
in
2n hm1m̄1 · · · hmnm̄n ϵm1...mn ϵm̄1...m̄ndz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n

= (−1)nn!(det h)dy1 ∧ dx1 ∧ · · · ∧ dyn ∧ dxn = n!dVol,

(3.44)

where ϵm1...mn is an alternating symbol (without determinant of the metric) and
we used the simple relation, following from the properties of the wedge-product

dzm1 ∧ · · · ∧ dzmn = ϵm1...mndz1 ∧ · · · ∧ dzn. (3.45)

The above derivation works in any dimensions, however from now on in this
section we would like to stick to a 3-fold, i.e. a manifold of complex dimension
three. In this case we define the Hodge star by

∗ ω =
1
2ω ∧ ω. (3.46) hodge0

Note that the conventional definition of the Hodge star (up to a sign) is directly
related to the above. Hence, for any (p, q)-forms ρ and σ we define

ρ ∧ ∗σ = −(ρ,σ)dVol, (3.47)

where (ρ,σ) is just contaction of all indices and the minus sign was used for
consistency with the previous definition, that is commonly accepted in the
literature.

Let us now prove the formula of a Hodge star of a closed (1,1)-form σ on a
Kähler 3-fold first noticed by Strominger in

Strominger:1985ks
[5]

∗ σ = −ω ∧ σ +
3
2

κ(σ,ω,ω)

κ(ω,ω,ω)
ω ∧ ω, (3.48) hodge

where κ(σ1, σ2, σ2) =
∫ σ1 ∧ σ2 ∧ σ3. This identity is of crucial use in the con-

struction of Kähler moduli space (see Section
moduli
4) and to prove that we write for
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an arbitrary not necessarily closed (1,1)-form

∗σ =
1

16iεmnkεm̄n̄k̄σkk̄dzm ∧ dzn ∧ dz̄m̄ ∧ dz̄n̄

=
3!
16ihm[m̄h|n|n̄h|k|k̄]σkk̄dzm ∧ dzn ∧ dz̄m̄ ∧ dz̄n̄

=
1
8i
(hmm̄hnn̄hkk̄σkk̄ − 2hmm̄σnn̄

)dzm ∧ dzn ∧ dz̄m̄ ∧ dz̄n̄

= −ω ∧ σ −
1
2(ω,σ)ω ∧ ω,

(3.49)

note the extra overall minus sign in the last line, that comes from proper ar-
rangement of the differentials dz and dz̄. The first line above is defined to be
consistent with the non-coordinate expression (

hodge0
3.46) and

σmm̄ = hmn̄hnm̄σnn̄ (3.50)

with hmm̄ being inverse of hmm̄. In the second line the following consequence of
the definition of determinant was used

εmnkεm̄n̄k̄ = 3!hm[m̄h|n|n̄h|k|k̄], (3.51)

where the antisymmetrization goes over {m̄, n̄, k̄} and εmnk =
√

h ϵmnk with ϵmnk
being an alternating symbol.

Note, that the formula above is consistent with our definition of the Hodge
star. Indeed, taking into account (ω,ω) = −3 we recover precisely the definition
(
hodge0
3.46). The result obtained

∗ σ = −ω ∧ σ −
1
2(ω, σ)ω ∧ ω (3.52) hodge1

is valid on any Hermitian 3-fold, while to make contact to the identity (
hodge
3.48)

one recalls the property of the Kähler form dω = 0. Using this and the fact
that σ is closed dσ = 0 one concludes that (ω,σ) =const and hence writes

(ω,σ) = 1
Vol

∫
(ω, σ)dVol = − 1

Vol

∫
σ ∧ ∗ω = − 1

2Vol

∫
σ ∧ ω ∧ ω

= −3
∫ σ ∧ ω ∧ ω∫ ω ∧ ω ∧ ω = −3 κ(σ ∧ ω ∧ ω)

κ(ω ∧ ω ∧ ω)
.

(3.53)

Substituting this back to (
hodge1
3.52) we recover precisely (

hodge
3.48).

3.6 Examples of Kähler manifolds. Fubini-Study metric.
So far we have introduced Kähler manifolds as a class of complex manifolds

with Hermitian metric h consistent with complex structure J. The most evident
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example of Kähler manifold is certainly the complex plane Cm where the metric
and the complex structure are defined as

h =
m∑

j=1
dzjdz̄j,

ω = i
m∑

j=1
dzj ∧ dz̄j.

(3.54)

Obviously the complex structure J satisfied the Kähler condition dJ = 0.
Another big class of manifolds with Kähler structure is the so=called Rie-

mann surfaces that are 1-dimensional complex manifolds. The condition dω =
0 satisfies trivially since the dimension is 1.

Less trivial and a widely used class of Kähler manifolds is represented by
complex projective spaces CPn which are defined as a coset space Cn+1/∼ with
the equivalence relation Z ∼ λZ for any λ ∈ C. In other words a point of an
n-dimensional projective space CPn represent a straight line in Cn+1.

Consider a complex n+1-dimensional space Cn+1 with coordinates {ζ1, . . . , ζn+1}.
On a patch where ζ j ̸= 0 one can choose n coordinates {zA = ζA/ζ j}, where
A = 1, . . . , j − 1, j + 1, . . . , j. These can be proven to be good local coordinates
on the patch Vj = Uj/∼ of the projective space CPn. The set of n + 1 patches Vj
cover the whole projective space.

Such defined local coordinates can be used to construct a Kähler metric
on the projective space. Let’s fix j = n + 1 for simplicity and denote the local
coordinates as {za} with a = 1, . . . , n. Then the so-called Fubini-Study metric
and complex structure are given by

hab =
1(1 + |z|2)2

(
δab
(1 + |z|2)− zaz̄b

)
,

ω = − i(1 + |z|2)2 zaz̄bdza ∧ dz̄b,
(3.55)

where |z|2 =
∑

a zaz̄a. It is an easy exercise to show that the Käher form is indeed
closed dω = 0.

3.7 Calabi-Yau manifolds
A Calabi-Yau n-fold is a compact Kähler manifold of complex dimension n

that admits a nowhere vanishing (n, 0) holomorphic form Ω. By definition a
(n, 0) form can be represented as

Ω = Ωa1...andza1 ∧ . . . ∧ dzan , (3.56)
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i.e. it does not contain dz̄a. Holomorphicity of the form Ω means ∂̄Ω = 0. A
holomorphic (n, 0)-form on an n-dimensional complex manifold is closed

dΩ = (∂ + ∂̄)Ω = 0. (3.57)

Hence, a Calabi-Yau n-fold usually denoted as CYn carries a closed holomor-
phic (n, 0)-form Ω that is not exact. In the next section we will show that the
corresponding cohomology classes can be used to classify Calabi-Yau mani-
folds (CY moduli space).

Lets consider Riemann surfaces as a one-dimensional example of a Calabi-
Yau manifold CY1. A 2-torus, that is the only example of a Calabi-Yau 1-
fold, can be understood in the spirit of Section

wp
8.1 as an algebraic curve in

2-dimensional complex projective space CP2 (in this section we mainly followVandoren:2008ab
[6])

y2 = 4x3 − ax − b (3.58)

with local coordinates y = z2/z0 and x = z1/z0. These are proper coordinates in
the patch V0 = U0/∼ of CP2, where U0 is a patch of C3 with z0 ̸= 0. The 1-form
Ω can be defined as follows

Ω =
dx

2y(x) , (3.59)

where the factor 2 is just a matter of convenience. As was mentioned before
any holomorphic 1-form on a Riemann surface is closed dΩ = 0. Using the
topological residue construction described in Section

res
8.2 one may write

Ω =
dx

∂f/∂y = −
dy

∂f/∂x . (3.60)

Since there is only one (n, 0)-form on Calabi-Yau n-fold it should be pro-
portional to the Leray residue construction as it is an intrinsic form for the
surface defined (locally) by a function f. Lets see that global properties of the
form Ω restrict the function f to a particular form. Lets start with CP2 with
homogeneous coordinates [z0 : z1 : z2] and define the CY 1-fold by the following
equation

F(z0, z1, z2) = zn
0 + zn

1 + zn
2 = 0. (3.61)

In the patch V0 where z ̸= 0 we choose local coordinates x = z1/z0 and y = z2/z0.
The local function f then is defined as F = zn

0f(x, y) and becomes

f(x, y) = 1 + xn + yn = 0. (3.62)

In this patch the residue can be written in the usual way

Ω0 =
dx

∂f/∂y =
1
n

dx
yn−1 . (3.63)
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Lets now go to another local patch V1 defined as z1 ̸= 0 with local coordinates
x̃ = z0/z1 and ỹ = z2/z1. Performing coordinate transformation x = x̃−1, y = ỹ/x̃
we obtain on the intersection V0

∩V1

Ω0|V0
∩V1 = −

1
n

x̃n−3dx
ỹn−1 . (3.64)

This can be extended to the (n, 0)-form Ω1 on the patch V1 defined as

Ω1 = −
1
n

x̃n−3dx
ỹn−1 . (3.65)

The function f that locally defines the 1-fold in the patch has basically the
same form f̃(x̃, ỹ) = 1 + x̃n + ỹn and comes from F = zn

1f̃(x̃, ỹ) = 0.
Hence in order for the form Ω1 to be the Leray residue one has to fix n = 3

(the minus sign does not count since g = −1 is a holomorphic function on a
compact manifold). Since the residue form is intrinsic and unique this implies
that a Calabi-Yau 1-fold as a hypersurface in CP2 is always defined by a third-
order polynomial.

It is straightforward now to repeat the same for a 2-fold hypersurface CY2 in
3-dimensional projective space CP3. Using the same arguments as above one
figures out that these should be defined by a 4-order polynomial

F(z0, z1, z2, z3) =
∑

a
aijklzizjzkzl, (3.66)

where aijkl are some constants. The (2, 0)-form in the local patch V0 where z0 ̸= 0
then takes the following form (see (

constr
8.6))

Ω0 =
dx1 ∧ dx2
∂f/∂x3

= −
dx1 ∧ dx3
∂f/∂x2

=
dx2 ∧ dx3
∂f/∂x1

, (3.67)

where xμ = zμ/z0. In mathematical literature such defined manifolds are called
K3-surfaces. The completely symmetric 4-tensor aijkl has 35 independent pa-
rameters, 16 of which can be removed by action of the group GL(4,C) on zi.
Hence, one is left only with 35 − 16 = 19 parameters called moduli. These
completely define the manifold.

Evidently, the same constructions can be repeated for the most interesting
case of Calabi-Yau 3-folds, that are defined by 5-order polynomials. Here we
have 126 parameters, 25 of which can be eliminated by GL(5,C) leaving us with
101-dimensional moduli space.

Holonomy groups of Calabi-Yau and Kähler manifolds
Bouchard:2007ik
[7]
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4 Geometry of Calabi-Yau moduli space
moduli

4.1 ??? Killing vectors, Killing prepotential

4.2 Infinitesimal deformations of complex and Kähler struc-
ture

In the study of supergravity compactifications of high importance is the
notion of moduli fields, which from the point of view of the lower dimensional
theory show up as scalar fields. Geometrically these fields appears as a set
of parameters that completely define the internal manifold and all structures
living on it. Indeed, restricting the internal manifold of our compactification
model to be say a CY of certain topology, i.e. of certain Hodge numbers hp,q, we
are still allowed in principle to deform the manifold in such a way that preserves
the given topology. In other words, there may be different CY manifolds for a
given choice of Hodge numbers. Since these deformations are purely internal
and may vary with position in the external space, they show up as scalar fields.

The most convenient way to describe moduli fields of Calabi-Yau manifolds
is to consider deformations of the Hermitean metric δh, that includes deforma-
tion of the Riemannian metric (Kähler structure) itself and the complex struc-
ture. In general the deformations of the metric can be of the following three
types

δhab̄, δhab, δhāb̄, (4.1)

which are restricted by the Ricci-flatness and Kähler conditions. The latter
simply states, that understood as components of a 2-form the deformation
δhab̄ belong to H1,1

δω = δhab̄dza ∧ dz̄b̄. (4.2)

Indeed, to keep ω a Kähler form we want to consider closed deformation δω = 0,
while all exact deformations δω = dδω′ represent just coordinate transforma-
tions and should be dropped.

Things are less straightforward for the remained components δhab and δhāb̄
as one should consider Riemann tensor and expand it to first order in the de-
formation to ensure, that these indeed closed. Instead, using the fact that two
of the triple (J, g,ω) unambiguously define the rest, we consider deformation
of the complex structure Ja

b, that is an element of ΛTM⊗TM, i.e. is a form on
TM rather than M.

As a warm-up lets start with a 2-torus and show that its complex structure
moduli space is parametrised by one complex number and hence is just C. A
2-torus T2 = C/Z2 can be defined as a complex plane factorized by the following
action of the group Z2 = Z× Z

z ∼ z + mλ1 + nλ2, m, n ∈ Z, (4.3)
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where the complex numbers λ1,2 define the 2-dimensional lattice. Collecting
these number into one vector Λ = [λ1 λ2] one immediately notices that two
vectors Λ′ and Λ define the same lattice if they a related by a matrix U ∈
GL(2,Z)

Λ′ =

[λ′
1

λ′
2

]
=

[a b
c d

] [λ1
λ2

]
= UΛ. (4.4)

Indeed, going back to the equivalence relation this equation implies

z ∼ z + m(aλ1 + bλ2) + n(cλ2 + dλ2) = z + (ma + nc)λ1 + (mb + nd)λ2. (4.5)

Hence, if the entries of the matrix U are integer the above relation indeed de-
fines the same torus. In addition we want to preserve orientation of the torus
and its area that leads to further restriction giving U ∈ SL(2,Z).

..

λ1

.

λ2

.

x

.

y

.

x′

.

y′

Figure 5: Elementary lattice on complex plane C defined by two complex num-
bers λ1 and λ2. We assume that Arg(λ1) < Arg(λ2). The dashed lines represent
rotated transformed coordinates z = λ1z′. parall

The lattice defined by the two complex numbers (λ1, λ2) looks like a parallel-
ogram rotated with respect to the real axis (see Figure

parall
5). It is more convenient

to perform a coordinate transformation z → z′ such that the point (m, n) = (1, 0)
belongs to the real axis

z ∼ λ1(z′ + m + nτ). (4.6)
Under the SL(2,Z) transformation the parameter τ transforms in the familiar
way

τ →
c + τd
a + τb (4.7)

and is precisely the complex structure of (
tau
3.9). Indeed, turning from the com-

plex coordinate z′ = x′ + iy′ to z′ = x̂ + τŷ we end up with a square lattice for
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the torus. That is the complex structure modulus τ of a 2-torus shows the
failure of the lattice to be square. Alternatively, this corresponds to different
definitions of the complex structure J on the torus.

For the general discussion of the complex structure moduli lets consider
the tensor J to be a small deformation from the canonical complex structure
J = J0 + ε. From the equation J2 = (J0 + ε)2 = −1 one concludes that the
deformation ε has only the holomorphic and anti-holomorphic components

ε = εh
a
b∂a ⊗ dz̄b + εah

a
b∂̄a ⊗ dzb (4.8)

Since J is a real tensor the anti-holomorphic part of ε should be a complex
conjugate of εh. The linearised integrability condition N(J) = 0 implies the
following equation

∂̄εh = 0. (4.9)

Hence, we conclude that the tensor εh = εh
a
b∂a ⊗ dz̄b is closed as a (0,1)-form

on the holomorphic tangent bundle TM.
To keep track fo only relevant deformation of the complex structure one has

to remove trivial deformations. These are just coordinate transformations of
the form J′ = M−1JM. Linearised this equation reads

J′ = J + ∂̄vh + ∂vah. (4.10)

This implies that trivial deformations of the form ε0
h = ∂̄vh do not change the

complex structure, instead these correspond to redefinition of coordinates on
M. All together the above results imply that complex structure moduli are
classified by the (0,1) cohomology classes H0,1(TM) of the manifold TM with
respect to the differential operator ∂̄.

Since it is more convenient to deal with cohomology groups of a manifold
rather than of its tangent bundle one may use the fact that a Calabi-Yau n-fold
has trivial tangent bundle to show

H(0,1)(TM) = H(0,1)(Λn−1T∗M) = H(n−1,1)(M). (4.11)

Hand-waving argument is, that we just lower the vector index of the tensor εh
by the (n, 0)-form Ωa1...an ending up with a (n − 1, 1)-form on M

εh
a
b∂a ⊗ dz̄b −→ εh

a
bΩacddz̄b ∧ dzc ∧ dzd. (4.12)

Hence, dimension of the complex structure moduli space of a Calabi-Yau n-fold
is given by the Hodge number hn−1,1. For the example of a 2-torus considered
above we have h1,1 that is 1, hence one complex structure parameter τ. In
addition one would have one Kähler structure parameter usually denoted by
U.
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For the most interesting case of Calabi-Yau 3-fold we have h1,1 and h2,1 for
the dimensions of Kähler structure and complex structure moduli spaces re-
spectively. Introducing bases on the spaces of cohomology classes

{ωi} = basH(1,1),

{χα} = basH(2,1), {χ̄α} = basH(1,2),
(4.13)

where the forms χ are chosen to be complex for convenience as h1,2 = h2,1.
Deformations of the metric δhab and δhāb̄ are related to the forms χ as follows

δhab = Ωabchbb̄hcc̄χ̄αbb̄c̄δz̄α,

δhāb̄ = Ωāb̄c̄hbb̄hcc̄χαb̄bcδzα.
(4.14)

Given the obvious applications to compactifications of supergravity, it is
suggestive to consider also the Kalb-Ramond field B, that is a 2-form in 10-
dimensions. Equations of motion on its internal part b imply that the 2-form
is harmonic and closed. Given that exact 2-forms give just trivial pure gauge
configurations, the non-trivial part should be an element of the cohomology
class H2. Actually, one gets b ∈ H(1,1) as the Hodge numbers h2,0 = 0 = h0,2 for a
Calabi-Yau manifold. With this field included it is better to talk about moduli
space of a field configuration, rather than just the Calabi-Yau manifold.

With all that in mind we consider the following deformations

δt ≡ b + iδω = (bi + iδvi)ωi = δtiωi ∈ H(1,1),

δz = δzα χα ∈ H(2,1),

δz̄ = δz̄α χ̄α ∈ H(1,2).

(4.15)

Let us now investigate metrics on the complex and Kähler structures moduli
space separately.

4.3 Geometry of H1,1

Metric on the moduli space of Kähler structure and perturbation of the
Kalb-Ramond field is defined by the following measure

||δt||2 =
1
V
∫

δt ∧ ∗δt = δtiδtj 1
V
∫

ωi ∧ ∗ωj =

=

(
−

3!κ(ωi,ωj,ω)

κ(ω,ω,ω)
+ 9κ(ωi,ω,ω)κ(ωj,ω,ω)

κ(ω,ω,ω)2

)
δtiδtj

= Gījδtiδt j̄,

(4.16)

where the property of the Hodge dual operation (
hodge
3.48) has been used. In the

last line the barred indices has been introduced just to emphasize that the
coordinates ti on the moduli space are complex.
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Since the Kähler form can be represented as ω = viωi in the chosen basis
on H(1,1) the metric on the Kähler structure moduli space can be written as

Giȷ̄ =
∂

∂vi
∂

∂vj logκ(ω,ω,ω) =
∂

∂ti
∂

∂ t̄ȷ̄ logκ(ω,ω,ω), (4.17)

that implies that it is Kähler. Here we are using the property of the CY moduli
space that infinitesimal deformations can be integrated into the full ω. This is
not true in general.

Note that the metric Giȷ̄ depends only on vi, that is expected as the Kalb-
Ramond field is not a part of the deformations of the Calabi-Yau manifold.

For further application to supergravity compactifications it is convenient
to introduce projective coordinates tI = (t0, ti) on the Kähler structure moduli
space. Then introducing a function F , the would be Kähler prepotential, we
can write the quantity κ(ω,ω,ω, ) as follows

κ(ω,ω,ω) = −
3i
4
(
tI∂̄IF̄ − t̄I∂IF

)∣∣∣∣
t0=1

,

F = − 1
3!

κijktitjtk

t0

(4.18)

with κijk ≡ κ(ωi,ωj,ωk) being the triple intersection numbers. To check that
we write

κ(ω,ω,ω) = κijkvivjvk = −
iκijk

8 (ti − t̄i)(tj − t̄j)(tk − t̄k)

= −
iκijk

8 (titjtk − 3t̄itjtk + 3t īt j̄tk − t̄ īt j̄tk)

= −
3i
4
(
f − f̄ − t̄i∂if + ti∂̄if̄

)
,

(4.19)

where in the second line we’ve used the fact that κijk is fully symmetric in its
indices by construction and have defined the function

f =
1
3!κijktitjtk. (4.20)

Now writing f = −t0F we obtain the desired relation up to identification t0 = 1.
With all this in hands the Kähler potential K = − logκ(ω,ω,ω) can be writ-

ten in terms of the prepotential as

e−K =
4
3
∫

ω ∧ ω ∧ ω = −i
(
tI∂̄IF̄ − t̄I∂IF

)
(4.21)

on the projective space with normal coordinates given by tI = (1, ti). Note that
Kähler symmetry K(z, z̄) ≃ K(z, z̄) + g1(z) + g2(z̄) for any g1,2 has been used to
remove the additional prefactor.
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4.4 ??? Geometry of H2,1

5 Spin geometry
5.1 ??? Spinor bundles

A spinor bundle S over a manifold M is just a vector bundle whose sections
are representations of the corresponding Spin(n), where n = dimM. This group
is a double cover of the orthogonal group SO(n) that acts on tangent spaces of
M.

The group Spin(n) is generated by the matrices γmn = [γm,γn] where the
gamma-matrices are defined as

{γm,γn} = 2ηmn, (5.1)
where ηmn is a (flat) metric on the tangent space TpM for any p ∈ M.

Everything that was said about vector bundles is obviously true for spinor
bundles. A connection on a spinor bundle is usually called spin-connection
and is introduced as

∇sψ = (d + ω)ψ. (5.2)
Here ω = ωμdxα is the connection 1-form that takes values in the algebra
spin(n) meaning ωμ = ωα

mnγmn. Here we distinguish between the curved in-
dices μ, ν that label sections of TM in the natural basis {dxμ} and the flat
indices m, n that correspond to the orthonormal frame {ea} with

em = em
μdxα. (5.3)

The components of the orthonormal frame em
μ written in the natural frame are

exactly what we usually call a vielben.

5.2

5.3 Bär classification
Bar

Since the connection 1-form is an element of Λ1M ⊗ spin(n) it implies that
the holonomy group is a subgroup of Spin(n) in general. As in the case of vector
bundle manifolds with the structure of spin bundle are classified according to
the properties of constant section, i.e. parallel spinors, that are defined as

∇sψ = 0. (5.4)
The classification is given by the important theorem by Bär that states the
following. Consider a manifold M whose dimension is dimM ≥ 3 and a spinor
bundle S over it. Denote the space of parallel spinors by Σ, i.e.

Σ = {σ ∈ Γ(S), ∇s(σ) = 0}, N = dimΣ. (5.5)
Let’s denote numbers of parallel spinors of positive and negative chiralities by
N+ and N− respectively. Then one of the following holds
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Dimension Holonomy group Dimension of Σ
1. n = 4m, m ≥ 1 SU(2m) N+ = 2, N− = 0
2. n = 4m, m ≥ 2 Sp(m) N+ = m + 1, N− = 0
3. n = 4m + 2, m ≥ 1 SU(2m + 1) N+ = 1, N− = 1
4. n = 7 G2 N = 1
6. n = 8 Spin(7) N+ = 1, N− = 0

Table 2: Bär classification of manifolds according to their holonomy group.

5.4 Explicit examples
Example 1. Consider a spinor bundle S over a manifold M of dimension 4

with a connection 1-form ωμ and a parallel spinor ε

∇με = (∂μ + ωμ)ε = 0. (5.6)

We can choose the spinor to be constant then this equation reduces to

ωμ
abγabε = 0. (5.7) paral1

Components ωμ of the connection 1-form are elements of spin(1, 3) = su(2) ⊕
su(2). Under this splitting any spinor can be decomposed as

4 = (2, 1)⊕ (1, 2), (5.8)

that is just the well-known decomposition of a Dirac spinor into two Weyl
spinors

ψ =

[ψRψL

]
. (5.9)

The connection 1-form then can be written in the block diagonal form

ωμ =

[ωμR 0
0 ωμL

]
. (5.10)

Hence, to solve the equation (
paral1
5.7) we can choose a connection in su(2), that is

equivalent to setting ωμL = 0. Then the parallel spinor will be of the form

ε =

[ 0
εL

]
. (5.11)

We know see that we have here two parallel spinors of positive chirality, i.e.
N+ = 2 that is invariant under the group SU(2). According to the table above
we constructed a 4-dimensional Calabi-Yau manifold with SU(2)-holonomy.

Example 2. Lets go now upper in dimension and consider the case relevant
to string phenomenology, i.e. a 6-dimensional manifold M. Recall its special
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holonomy group Hol(g) = SO(6), that is just the holonomy group of the Levi-
Civita connection. Sections of the spinor bundle over this manifold transform
in the 4 of the double cover of SO(6) that is Spin(6) = SU(4).

Now the question is to find such a subgroup of SU(4) that preserves a spinor
on M. One can consider action of the SU(3) subgroup of SU(4) on the 4 repre-
sentation under which it is split as

4 = 3 ⊕ 1, (5.12)

where the 1 is the desired singlet. More deep investigation of the structure of
the Clifford algebra reveals the fact that the real and imaginary components of
this one-dimensional complex representation correspond to positive and neg-
ative chirality spinors of SU(4).

Hence, we have here a 6-dimensional manifold with SU(3) holonomy and
N+ = 1,N− = 1. This is a six-dimensional Calabi-Yau manifold.

6 ??? Applications in string theory
6.1 Heterotic Calabi-Yau compactifications

6.2 Type IIA Calabi-Yau compactifications

6.3 Calabi-Yau orientifolding: N=1 models

6.4 Axions potential and cosmology

6.5 KKLT and LVS models

6.6 Towards non-geometric compactifications

7 Further reading
7.1 Geometry of fibre bundles

For a beginner reading in differential geometry one can take very nice book
by Dubrovin, Novikov and Fomenko

Dubrovin1985modern
[8] and

Dubrovin1992modern
[9]. These books contain basic in-

troduction to tensors, their transformations, Lie derivative, differential geom-
etry and application to physics. At the same level of explanation on can find
the famous book by Nakahara

Nakahara:2003nw
[1] that covers a lot of topics both on geometry

and its application to physics.
For a more mathematical description of these and many other ideas one

can follow the already mentioned book by Joyce
Joyce:2000ct
[2] and the series of books by

Postnikov
Postnikov1982linear
[10]

Postnikov1987lectures
[11].

Geometry of spin bundles is beautifully covered in the book by Salamon
Salamon1996
[12]
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7.2 Flux compactifications in string theory
The paper

Ivanov:2009rh
[13] contains a lot of links for various papers on flux compactifi-

cations and is highly recommended to look at.

8 Appendix
8.1 Weierstrass functions and a torus T2

wp
Double periodic functions on the complex plane C2 are called elliptic func-

tion. A special class of elliptic functions ℘(z) which one can understand as the
most simple ones where introduced by Weierstrass. These satisfy the following
relations that will be the defining property of CY 1-folds

℘(z)′2 = 4℘(z)3 − g2℘(z)2 − g3, (8.1) wp_rel

where g2 and g3 are some constants.
Periodicity in 2-direction of Weierstrass functions can be understood as

defining a 2-dimensional torus T2. There is a natural embedding of such de-
fined 2-torus into a complex projective plane CP2 that is given by

w 7→ [1 : ℘(w) : ℘′(w)]. (8.2) wp_embed

A point on CP2 is denoted as [z0 : z1 : z2], with the projective space defined as a
complex plane C3 with coordinates {z0, z1, z2} factorized in the usual way.

The map above carries the natural group structure on the 2-torus T2 into
the CP2. If we denote local coordinates on the projective space in the patch
z0 ̸= 0 as y = z2/z0 and x = z1/z0, then the relation (

wp_rel
8.1) implies

y2 = 4x3 − g2x − g3. (8.3)

This defines an algebraic curve in CP2 that is isomorphic to the 2-torus by the
isomorphism of Riemann surfaces (

wp_embed
8.2).

It is now straightforward to define an invariant differential form on the el-
liptic curve that is

Rhoades:2003ac
[14]

Ω = dz =
d℘(z)
℘′(z) =

dx
y(x) . (8.4)

This definition maps the form dz on the 2-torus onto the elliptic curve in the
projective space CP2.

8.2 Topological residue
res

To consider more general complex hypersurfaces than elliptic curves defined
by Weierstrass functions it is useful to go through the construction of Leray (or
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Poincaré) topological residue. Consider a complex manifold M with a singular
hypersurface defined by f = 0, where f is a holomorphic function with df ̸= 0
along K.

We are interested in the (n, 0) form on the n-dimensional space K. This can
be constructed using a singular form ω ∈ Ωn+1(M K) that has a first order pole
on K. This means that the form fω can be smoothly extended to the whole M.
Using the division property of df we can write

Weber:2003ab, Nicolaescu:2003ac
[15, 16]

ω =
df
f ∧ r + θ, (8.5)

where e ∈ Ωn(M) and θ ∈ Ωn+1(M) are smooth forms on M. Such defined Leray
residue Resω = r|K of the form ω does not depend on f. It catches cohomology
properties of the form ω and it is the intrinsic (n, 0)-form on K.

For explicit construction of the residue lets consider the manifold M to have
a set of coordinates (z0, z1, . . . , zn). Without loss of generality we choose a patch
where df/dz0 ̸= 0 along the surface f = 0. Then we write

fω := gdz0 ∧ . . . ∧ dzn;

ω =
1
f

1
∂f
dz0

∂f
dz0 dz0 ∧ dz1 ∧ . . . ∧ dzn

=
g
∂f
dz0

df
f ∧ dz1 ∧ . . . ∧ dzn.

(8.6) constr

Hence, the residue r of the form ω takes the following form

r = g
∂f
dz0

dz1 ∧ . . . ∧ dzn, (8.7)

where g is a holomorphic function.
For particular examples of this construction see the section on Calabi-Yau

manifolds since the residue form r is used as a natural (n, 0)-form on a CYn
n-fold defined as a hypersurface in (n + 1)-dimensional projective space CPn+1.
Since there is only one (n, 0)-form on Calabi-Yau n-fold it should be proportional
to the Leray residue construction described above.

8.3 de Ram cohomology
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