Presentation: "Mirror QCD and Cosmological Constant"

G.U. Prokhorov¹

In collaboration with

*R. S. Pasechnik*², *O. V. Teryaev*¹

¹ BLTP, JINR, Dubna, ² THEP, Department of Astronomy and Theoretical Physics, Lund University, Lund, Sweden.

Helmholtz - DIAS International Summer School "Cosmology, Strings, New Physics", 2016.

Structure

- Vacuum catastrophe, history of the problem.
- QCD ground state and cosmology, general review.
- Mirror QCD (mQCD).
- Vacuum compensation from positive beta-function.
- mQCD as the basis for vacuum compensation scenario. Discussion.
- Effective Yang-Mills theory in the expanding Universe: exact quasiclassical solution with positive beta-function.
- Main Results

Background

Vacuum catastrophe

Problem

"Astronomical observations indicate that the cosmological constant is many orders of magnitude smaller than estimated in modern theories of elementary particles." (Steven Weinberg, Rev.Mod.Phys. 61 (1989) 1-23 UTTG-12-88).

Illustration Observation

 $|\rho_V| \lesssim 10^{-29} \text{ g/cm}^3 \approx 10^{-47} \text{ GeV}^4$

1. Supernovae Ia (S. Perlmutter et al. [Supernova Cosmology Project Collaboration], Astrophys. J. 517, 565 (1999) [astro-ph/9812133];).

2. Cosmic microwave background anisotropies (E. Komatsu et al. [WMAP Collaboration], Astrophys. J. Suppl. 192, 18 (2011) [arXiv:1001.4538 [astro-ph.CO]]).

3. Large scale structure (U. Seljak et al. [SDSS Collaboration], Phys. Rev. D 71, 103515 (2005) [astro-ph/0407372]).

10¹¹⁸, 10⁴⁴ times difference between theory and observation and opposite sign in QCD case

Vacuum compensation problem on the QCD scale remains a debated issue in cosmology

QCD ground state and cosmology

Mirror QCD (mQCD).

Class of the models with additional non-Abelian gauge group (M.J. Strassler, K.M. Zurek, Phys. Lett. B 651, 374 (2007) doi:10.1016/j.physletb.2007.06.055 [hep-ph/0604261]; Z. Chacko, D. Curtin and C. B. Verhaaren, Phys. Rev. D 94, no. 1, 011504 (2016) doi:10.1103/PhysRevD.94.011504 [arXiv:1512.05782 [hep-ph]].)

Supersymmetric models (folded supersymmetry	Quirky little Higgs models	Twin Higgs models	TeV extra dimensions, string theory and so on
F303Y)		Twin copy of SM	
stops Have EW charge, but neutral over SM color	quirks with "infracolor" compensate top loops,	······································	

Main features

- 1. Suppressed interaction with SM particles: through loops of heavy particles with botn charges.
- 2. Hidden valley of light mQCD particles.
- 3. Different gauge groups, often mirror QCD gauge group.
- 4. Usually high scale 1 GeV < Λ_v < 1 TeV
- 5. In confinment: several v-hadrons and v-glueballs.

Mirror QCD (mQCD).

Particular case

(Z. Chacko, D. Curtin and C. B. Verhaaren, Phys. Rev. D 94, no. 1, 011504 (2016) doi:10.1103/PhysRevD.94.011504 [arXiv:1512.05782 [hep-ph]].)

No light quarks:

- 1. Stable glueballs.
- 2. Top partners mass below few TeV.
- 3. Glueball mass 10-60 GeV.
- 4. Glueball mixes with Higgs and decay to pair of SM heavy quarks.

Experimental signatures

- 1. Can be looked for on the colliders.
- 2. Displaced vertices
- 3. Stable v-hadrons: missing energy and Dark Matter
- 4. Can have different life-time.
- 5. Different final states: two SM fermions + v-hadron, ggg, WW, ZZ

Vacuum compensation from positive beta-function.

Vacuum compensation from positive beta-function.

Concrete model of mQCD vacuum, leading to the supposed compensation scenario: Conformal coordinates are used $S_{\rm eff}[\mathcal{A}] = \int \mathcal{L}_{\rm eff} \sqrt{-g} d^4 x \,, \qquad \mathcal{L}_{\rm eff} = \frac{J}{4\bar{g}^2(J)}$ 1. Coupling depends on field gauge invariant J. 2. Like in Savvidy vacuum model, but don't use perturbative beta-function. **RG-equation Reproduces gluon anomaly** $2J\frac{d\bar{g}^2}{d(I)} = \bar{g}^2\,\beta(\bar{g}^2)$ $T^{\nu}_{\mu} = \frac{1}{\bar{g}^2} \left[1 - \frac{1}{2} \beta(\bar{g}^2) \right] \left(-\frac{\mathcal{F}^a_{\mu\lambda} \mathcal{F}^{\nu\lambda}_a}{\sqrt{-g}} - \frac{1}{4} \delta^{\nu}_{\mu} J \right),$ Defines coupling running **Traceless part**

Vacuum compensation can be reached in nonperturbative case.

Main results

- The mechanism of QCD vacuum compensation on the basis of Savvidy vacuum fluctuations of mQCD fields was suggested.
- Compensation realizes at the expense of change of beta-function sign.
- The necessary qualitative form of the nonperturbative coupling <u>g</u>²(J) is constructed.
- The solution with non-constant fields is suggested.

Thank you for attention!

- M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, Nucl. Phys. B 147, 385 (1979); Nucl. Phys. B 147, 448 (1979).
- [2] T. Schäfer and E. V. Shuryak, Rev. Mod. Phys. **70**, 323 (1998)
- [3] D. Diakonov, Prog. Part. Nucl. Phys. **51**, 173 (2003).
- [4] D. Diakonov, Nucl. Phys. Proc. Suppl. **195**, 5 (2009).
- [5] Y. Zhang, Phys. Lett. B **340** (1994) 18.
- [6] A. Maleknejad and M. M. Sheikh-Jabbari, Phys. Rev. D 84, 043515 (2011).
- [7] A. R. Zhitnitsky, Phys. Rev. D 89, no. 6, 063529 (2014).
- [8] E. C. Thomas, F. R. Urban and A. R. Zhitnitsky, JHEP **0908**, 043 (2009).
- [9] R. Pasechnik, V. Beylin and G. Vereshkov, JCAP **1306**, 011 (2013) [arXiv:1302.6456 [gr-qc]].
- [10] P. Don, A. Marcian, Y. Zhang and C. Antolini, Phys. Rev. D 93, no. 4, 043012 (2016) [arXiv:1509.05824 [gr-qc]].
- [11] D. V. Galtsov and M. S. Volkov, Phys. Lett. B **256**, 17 (1991).
- [12] M. Cavaglia and V. de Alfaro, Mod. Phys. Lett. A 9, 569 (1994).
- [13] K. Bamba, S. Nojiri and S. D. Odintsov, Phys. Rev. D 77, 123532 (2008).
- [14] E. Elizalde and A. J. Lopez-Revelles, Phys. Rev. D 82, 063504 (2010).
- [15] D. V. Gal'tsov and E. A. Davydov, Int. J. Mod. Phys. Conf. Ser. 14, 316 (2012).

- [16] E. Elizalde, A. J. Lopez-Revelles, S. D. Odintsov and S. Y. Vernov, Phys. Atom. Nucl. 76, 996 (2013).
- [17] E. Komatsu et al. [WMAP Collaboration], Astrophys. J. Suppl. 192, 18 (2011).
- [18] P. A. R. Ade *et al.* [Planck Collaboration], Astron. Astrophys. 571, A16 (2014); arXiv:1502.01589 [astro-ph.CO].
- [19] S. Weinberg, Rev. Mod. Phys. **61**, 1 (1989).
- [20] F. Wilczek, Phys. Rept. **104**, 143 (1984).
- [21] R. Pasechnik, Universe **2**, no. 1, 4 (2016).
- [22] P. Bull et al., Phys. Dark Univ. **12**, 56 (2016) [arXiv:1512.05356 [astro-ph.CO]].
- [23] J. Sola, J. Phys. Conf. Ser. **453**, 012015 (2013).
- [24] P. Boucaud *et al.*, Phys. Rev. D **66**, 034504 (2002) [hep-ph/0203119].
- [25] M. Hutter, hep-ph/0107098.
- [26] R. Schutzhold, Phys. Rev. Lett. **89**, 081302 (2002).
- [27] F. R. Klinkhamer and G. E. Volovik, Phys. Rev. D 77, 085015 (2008).
- [28] M. Maggiore, Phys. Rev. D 83, 063514 (2011).
- [29] A. R. Zhitnitsky, Phys. Rev. D **90**, no. 4, 043504 (2014).
- [30] A. R. Zhitnitsky, Phys. Rev. D **92**, no. 4, 043512 (2015).
- [31] Y. B. Zeldovich, JETP Lett. 6, 316 (1967) [Pisma Zh. Eksp. Teor. Fiz. 6, 883 (1967)].

- [32] J. Polchinski, hep-th/0603249.
- [33] R. Pasechnik, V. Beylin and G. Vereshkov, Phys. Rev. D 88 (2013) 2, 023509 [arXiv:1302.5934 [gr-qc]].
- [34] A. Y. Kamenshchik, A. A. Starobinsky, A. Tronconi, G. P. Vacca and G. Venturi, arXiv:1604.02371 [hep-ph].
- [35] E. J. Copeland, M. Sami and S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006) [hepth/0603057].
- [36] A. D. Dolgov and M. Kawasaki, astro-ph/0307442;
 A. D. Dolgov and M. Kawasaki, astro-ph/0310822.
- [37] M. J. Strassler and K. M. Zurek, Phys. Lett. B **651**, 374 (2007) doi:10.1016/j.physletb.2007.06.055 [hep-ph/0604261].
- [38] Z. Chacko, H. S. Goh and R. Harnik, Phys. Rev. Lett. **96**, 231802 (2006) [hep-ph/0506256].
- [39] G. Burdman, Z. Chacko, H. S. Goh and R. Harnik, JHEP 0702, 009 (2007) [hep-ph/0609152].
- [40] H. Cai, H. C. Cheng and J. Terning, JHEP **0905**, 045 (2009) [arXiv:0812.0843 [hep-ph]].
- [41] R. Barbieri, T. Gregoire and L. J. Hall, hep-ph/0509242.
- [42] Z. Chacko, D. Curtin and C. B. Verhaaren, Phys. Rev. D 94, no. 1, 011504 (2016) doi:10.1103/PhysRevD.94.011504 [arXiv:1512.05782 [hep-ph]].
- [43] M. B. Voloshin, K. A. Ter-Martirosyan, Theory of gauge interactions of elementary particles, Moscow, Energoatomizdat (1984).
- [44] S. G. Matinyan and G. K. Savvidy, Nucl. Phys. B **134**, 539 (1978).
- [45] H. Pagels and E. Tomboulis, Nucl. Phys. B **143**, 485 (1978).

- [46] S. N. Nedelko and V. E. Voronin, Phys. Rev. D 93 (2016) no.9, 094010 doi:10.1103/PhysRevD.93.094010 [arXiv:1603.01447 [hep-ph]].
- [47] M. Baldicchi, A. V. Nesterenko, G. M. Prosperi, D. V. Shirkov and C. Simolo, Phys. Rev. Lett. 99, 242001 (2007) doi:10.1103/PhysRevLett.99.242001 [arXiv:0705.0329 [hep-ph]].
 [48] D. Shirkov an Xim 0807 1404 [hep-ph]
- [48] D. Shirkov, arXiv:0807.1404 [hep-ph].

$$\delta\epsilon(w) = \frac{-4\rho_{DE}w(1+w)e^{-3t_0\sqrt{\frac{-\rho_{DE}\varkappa w}{3}}}}{\left(\sqrt{-w} + \sqrt{-w}e^{-3t_0\sqrt{\frac{-\rho_{DE}\varkappa w}{3}}} + e^{-3t_0\sqrt{\frac{-\rho_{DE}\varkappa w}{3}}} - 1\right)^2}$$

$$Kx = \coth(x), K = \frac{2}{t_0\sqrt{3\rho\varkappa}} \approx 0.84, x \approx 1.36, w_{min} = -\frac{4x^2}{3\rho t_0^2\varkappa} \approx -1.30$$

$$Kx = \tanh(x), x \approx 0.77, w_{max} = -\frac{4x^2}{3\rho t_0^2\varkappa} \approx -0.42.$$

$$\begin{split} a(t) &\simeq \frac{a^*}{3} \Big(4 - \sqrt{\frac{C}{4\varepsilon_0}} \Big) \, e^{t\sqrt{\frac{\varkappa C}{12}}} + \frac{a^*}{3} \Big(\sqrt{\frac{C}{4\varepsilon_0}} - 1 \Big) \, e^{-2t\sqrt{\frac{\varkappa C}{12}}} \\ T_0^0(t) &\simeq \frac{C}{4} \Big(1 - \Big(1 - \frac{4\varepsilon_0}{C} \Big) \, e^{-3\sqrt{\frac{\varkappa C}{12}}t} \Big), \\ T_\mu^\mu(t) &\simeq C - \frac{C}{4} (g(t) + 1) \Big(1 - \frac{4\varepsilon_0}{C} \Big) \, e^{-3\sqrt{\frac{\varkappa C}{12}}t} \, . \end{split}$$