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Can the Null Energy Condition

be violated in a simple and healthy way?

Folklore until fairly recently: NO!

Today: YES

Senatore’ 2004;

V.R.’ 2006;

Creminelli, Luty, Nicolis, Senatore’ 2006

General properties of non-pathological

NEC-violating field theories:

Non-standard kinetic terms

Non-trivial background, instability of Minkowski space-time
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Example: scalar field, generalized Galileon π(xµ),

L = F(X ,π)+K(X ,π) ·2π

2π ≡ ∇µ∇µπ , X = (∂µπ)2

Second order equations of motion (but L cannot be made first
order by integration by parts)

Generalization: Horndeski theory (1974)
rediscovered several times

Fairlie, Govaerts, Morozov’ 91;

Nicolis, Rattazzi, Trincherini’ 09, ...

Minkowski:

Ln = Kn(X ,π)∂ µ1∂[µ1
π · · · · ·∂ µn∂ µn]π

Five Lagrangians in 4D, including K0 ≡ F

Generalization to GR: L0, L1 trivial, Ln>1 non-trivial

Deffayet, Esposito-Farese, Vikman’ 09



Simple playground

L = F(Y ) ·e4π +K(Y ) ·2π ·e2π

2π ≡ ∇µ∇µπ , Y = e−2π · (∂µπ)2

Deffayet, Pujolas, Sawicki, Vikman’ 2010

Kobayashi, Yamaguchi, Yokoyama’ 2010

Second order equations of motion

Scale invariance: π(x)→ π ′(x) = π(λx)+ lnλ .

(technically convenient)
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Towards Genesis: homogeneous solution

in Minkowski space (attractor)

eπc =
1√

Y∗(t∗− t)

Y ≡ e−2πc · (∂µπc)
2 = Y∗ = const, a solution to

Z(Y∗)≡−F +2Y∗F ′−2Y∗K +2Y 2
∗ K ′= 0

′ = d/dY .

Energy density

ρ = e4πcZ = 0

Effective pressure T11:

p = e4πc (F −2Y∗K)

Can be made negative by suitable choice of F(Y ) and K(Y )
=⇒ ρ + p < 0, violation of the Null Energy Condition.



Turning on gravity

p = e4πc (F −2Y∗K) =− M4

Y 2∗ (t∗− t)4 , ρ = 0

M: mass scale characteristic of π

Use Ḣ =−4πG(p+ρ) =⇒

H =
4π
3

M4

M2
PlY

2∗ (t∗− t)3

ρ ∼ M2
PlH

2 ∼ 1

M2
Pl(t∗− t)6

Initial stage of Genesis

Early times =⇒ weak gravity, ρ ≪ p.

Expansion, H 6= 0, is negligible for dynamics of π.



Perturbations about homogeneous

Minkowski solution

π(xµ) = πc(t)+δπ(xµ)

Quadratic Lagrangian for perturbations:

L(2) = e2πcZ ′(∂tδπ)2−B(~∇δπ)2+W (δπ)2

V =V [Y ;F,K,F ′,K′,K′′]. Absence of ghosts:

Z ′ ≡ dZ/dY > 0

No gradient instabilities and superluminal propagation

B > 0 ; B < e2πcZ ′

Can be arranged. Initial stage of Genesis healthy.



Bouncing Universe: marry ekpyrosis (e.g., scalar field with
negative exponential potential) with Galileon.

Ekpyrotic field dominates at very early contraction epoch, then
Galileon takes over, violates the NEC and produces bounce.

All this can happen in weak gravity regime.

Osipov, V.R. ’2013
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Or simply make use of specially designed generalized Galileon

Ijjas, Steinhardt ’2016
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Further evolution

Taken at face value: Big Rip singularity

a(t) = e
ε

M2
Pl (t0−t)2 , ε = const ≫ 1 .

Known attempts to construct “complete” Genesis and bouncing
cosmologies: either Big Rip singularity, π = ∞, H = ∞

Creminelli, Nicolis, Trincherini ’2010

or gradient instability

Cai, Easson, Brandenberger ’2012;

Koehn, Lehners, Ovrut ’2013;

Pirtskhalava, Santoni, Trincherini, Uttayarat ’2014;

Qiu, Wang ’2015;

Kobayashi, Yamaguchi, Yokoyama ’2015;

Sosnovikov ’2015

Is instability generic
or just a drawback of models constructed so far?

Can one construct healthy classical bounce and/or Genesis?



Another facet: Lorenzian traversable wormholes. Also require NEC
violation.

Static wormhole ⇐⇒ Bouncing Universe

⇐⇒

Suspicious: wormhole =⇒ time machine.

No stable, static, spherically symmetric wormholes in generalized
Galileon theories: always ghosts. V.R. ’2016



Generalized Galileons

Lagrangian

L = F(X ,π)+K(X ,π) ·2π

2π ≡ ∇µ∇µπ , X = (∂µπ)2

Galileon field equation

(

−2FX +2Kπ −2KXπ∇µπ∇µπ −2KX2π
)

2π +(−4FXX +4KXπ)∇µπ∇ν π∇µ∇ν π

−4KXX ∇µπ∇ν π∇µ∇νπ2π +4KXX ∇ν π∇λ π∇µ∇νπ∇µ∇λ π +2KX ∇µ∇ν π∇µ∇ν π

+2KX Rµν∇µπ∇ν π + . . .= 0 ;

where Fπ = ∂F/∂π, etc. Dots = less than two derivatives.

Subtlety: Galileon E.O.M. involves second derivatives of
metric. Likewise, Einstein eqs. involve second derivatives of
Galileon. Same for linearized eqs. for perturbations.

Quadratic effective action for Galileon perturbations not
immediate even for high momentum/frequency modes.



Trick: use Einstein equations to trade second derivatives of
metric for second derivatives of Galileon.

Deffayet, Pujolas, Sawicki, Vikman ’2010

equivalent to

Kobayashi, Yamaguchi, Yokoyama ’2010

Galileon perturbations χ about background π: resulting
quadratic Lagrangian

L(2) = [FX +KX2π −Kπ +∇ν(KX ∇νπ)]∇µ χ∇µ χ

+[2(FXX +KXX2π)∇µπ∇ν π −2(∇µKX )∇νπ −2KX ∇µ∇νπ]∇µ χ∇ν χ

−κK2
X X2∇µ χ∇µ χ +4κK2

X X∇µπ∇ν π∇µ χ∇ν χ .

κ = 8πG.



Specifying to spatially flat, homogeneous isotropic Universe,

ds2 = dt2−a2(t)dx2

Energy-momentum

ρ = 2FX X −F −Kπ X +6HKX π̇3 ,

p = F −2KX X π̈ −Kπ X .

Largangian for perturbations:

L(2) = Aχ̇2− 1
a2B(∂iχ)2+ . . .

with

A = FX +2FXX X −Kπ −KXπ X +6Hπ̇(KX +KXX X)+3κK2
X X2 ,

B = FX −Kπ +2KX π̈ +KXπ X +2KXX X π̈ +4HKX π̇ −κK2
X X2



No-go
Libanov, Mironov, V.R. 2016

No ghosts, gradient instabilities:

A > 0 , B > 0

Use Friedmann equations to get

Bπ̇2 =
d
dt

(

KX π̇3− 1
κ

H

)

−κKX π̇3
(

KX π̇3− 1
κ

H

)

.

Introduce combination

R = a−1
(

KX π̇3− 1
κ

H

)

Then

Bπ̇2

a
= Ṙ−κaR

2 .

B > 0 =⇒ Ṙ−κaR2 > 0. NB: one must have Ṙ > 0.



Integrate Ṙ/R2−κa > 0 from ti to t f > ti:

1
R(ti)

− 1
R(t f )

> κ
∫ t f

ti
dt a(t) .

Bouncing scenario, standard Genesis with usual expansion in the
end:

∫ t f

−∞
dt a(t) = ∞ ,

∫ ∞

ti
dt a(t) = ∞ .

Suppose R(ti)> 0. Then at t > ti one has R(t)> 0 (remember

Ṙ > 0!).

1
R(t f )

<
1

R(ti)
−κ

∫ t f

ti
dt a(t) .

Right hand side changes sign at some t f =⇒
R(t f ) = ∞, singularity.



Case R(t)< 0:

1
R(ti)

>
1

R(t f )
+κ

∫ t f

ti
dt a(t) .

=⇒ singularity in the past. Either singularity or gradient/ghost
instability

Argument generalized to all Horndeski theories

Kobayashi ’2016

Argument intact in presence of matter (obeying NEC)
which interacts with Galileon only gravitationally.

Extends to model with extra conventional scalar φ and

L =− 1
2κ

R+F(π,X ,φ)+K(π,X ,φ)2π +Fφ (Xφ ,φ)

where Xφ = (∂φ)2. Kolevatov, Mironov ’2016

Similar argument forbids wormholes (problem with A)
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Are there ways to repair?

Bouncing scenario at 2-derivative level: not that I know of.

Analogy to wormholes suggests that it should be hard, if at all
possible.

Way out: cure gradient instability by higher order terms in
Galileon effective action ⇐⇒ short duration of instability
period, low cutoff scale of effective Galileon theory.

L = F(X ,π)+K(X ,π) ·2π − 1
Λ2(2π)2

Action for perturbations π +χ with gradient instability:

L(2) = Aχ̇2+
1
a2 |B|(∂iχ)2+

1
Λ2(∂

2
i χ)2

Valid for |k| ≪ Λ.

ω2 =
1
A

(

−|B|k2+
1

Λ2k4
)



For A, |B| ∼ 1 time scale of instability tinst ∼ Λ−1. For small |B| even

shorter.

Arrange model in such a way that istability lasts less than tinst .

Possible, though contrived

Pirtskhalava, Santoni, Trincherini, Uttayarat ’2014; Koehn, Lehners, Ovrut ’2015

Work in progress towards “complete” bouncing model.

Genesis: way out

∫ t

−∞
dt a(t) = finite

Elaborate. One still has

∫ ∞

t
dt a(t) = ∞ .

Thus, above argument requires R < 0. Introduce

Q ≡ a(t)R = KX π̇3− 1
κ

H < 0



Thus, we must have

H > κKX π̇3

κKX π̇3|Q|> |Q̇| .

Simple option: power law behavior of Q as t →−∞ =⇒

KX π̇3 ∝ |t|−1 , H =
h
|t| =⇒ a =

1
|t|h , h > 1 .

Both energy density and pressure behave like |t|2 as t →−∞.

Equation of state

p =

(

−1− 2
3h

)

ρ , w =−1− 2
3h

instead of w =−∞ .

Galileon energy-momentum, space-time curvature tend to zero as
t →−∞ =⇒ modified Genesis.



Modified Genesis

L =− 1
2κ

R− f 2(∂π)2+α0e−2π(∂π)4+β0e−2π(∂π)2 ·2π

Scaling of Galileon action under π(x)→ π(λx)+ lnλ ,

gµν(x)→ gµν(λx): S → λ−2S, same as Einstein–Hilbert.

[ Cf. original Genesis

L =− 1
2κ

R− f 2e2π(∂π)2+α∗(∂π)4+β∗(∂π)2 ·2π , S → S ]

Solution at large negative t:

eπ =
1

H∗ · |t|
, H =

h
|t|

Constants H∗, h expressed through f , α0, β0.

Stability, consistency with putative further evolution (Q < 0):

1< κβ0H2
∗ < h ⇐⇒ choice of f ,α0,β0 .



Initial modified Genesis solution can be continued to
“conventional” cosmology with π behaving as “normal”

massless scalar field, L = (∂π)2.

Reheating: similar to k-essence.

Peculiarity: past geodesic incompleteness.

∫ t

−∞
a(t) dt < ∞

⇐⇒ backward geodesics reach r = ∞ in finite proper time
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Intermediate summary

Homogeneous and isotropic Universe:

Bouncing cosmology particularly difficult

Genesis is easier, but also pretty hard

Exotic cosmology needs exotic fields that violate NEC.

Interesting candidates: generalized Galileons.



Violating NEC: generalized Galileons (aka Horndeski)

Towards Genesis
and bouncing Universe

“No-go”

Ways to repair

Higher order terms

Modified Genesis

Intermediate summary

Inhomogeneous Universe

Toy model

General setting

Summary



Inhomogeneous Universe

Primordial scalar perturbations

Generated at some stage preceding the hot epoch

Gaussian (or nearly Gaussian) random field ζ (~x), with nearly

flat (nearly Harrison–Zeldovich) power spectrum

Gaussianity suggests the origin: enhanced vacuum
fluctuations of some (almost) free quantum field

Mukhanov’s lectures

There must be some symmetry behind flatness of spectrum

Inflation: symmetry of de Sitter space-time, SO(4,1): spatial

dilatations supplemented by time translations

~x → λ~x , t → t − 1
2H

logλ

+ nearly time-independent inflaton φ , φ̇



Alternative: conformal symmetry SO(4,2)

Conformal group includes dilatations, xµ → λxµ .

=⇒ No scale, good chance for flatness of spectrum
First mentioned by Antoniadis, Mazur, Mottola’ 97

Concrete models: V.R.’ 09;

Creminelli, Nicolis, Trincherini’ 10

General analysis: Libanov, Mironov, V.R.’ 11;

Hinterbichler, Khoury’ 11;

Hinterbichler, Joyce, Khoury’ 12

What if our Universe started off from or passed through

an unstable conformal state

and then evolved to much less symmetric state we see today?

In line with developments in Quantum Field Theory

N = 4 super Yang–Mills; adS/CFT correspondence ...



Toy model: conformal rolling
V.R. ’2009

Main requirement: long evolution before the hot stage.

But otherwise insensitive to regime of cosmological evolution. Can
work at inflation and its alternatives.

Model:

S = SG+M +Sφ

SG+M: gravity plus dominating matter

Sφ : conformal complex scalar field φ with negative quartic potential.

Spectator until late epoch.

S =
∫

d4x
√−g

[

gµν∂µφ ∗∂νφ +
R
6
|φ |2− (−h2|φ |4)

]

Conformal symmetry. Global symmetry U(1). φ = 0: unstable state

with unbroken conformal symmetry. [Conformal symmetry explicitly
broken at large fields. To be discussed later.]



Homogeneous and isotropic Universe, ds2 = a2(η)[dη2−d~x2]:

In terms of the field χ(η ,~x) = a(η)φ(η ,~x) = χ1+ iχ2,

evolution is Minkowskian,

ηµν∂µ∂ν χ −2h2|χ |2χ = 0

Homogeneous background solution, breaks SO(4,2)→ SO(4,1)

Attractor (real without loss of generality)

χc(η) =
1

h(η∗−η)

η∗ = constant of integration, end time of roll.

NB: Particular behavior χc ∝ (η∗−η)−1

dictated by conformal symmetry.
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Fluctuations of Arg χ

automatically have flat power spectrum

Linearized equation for fluctuation δ χ2 ≡ Imχ . Mode of
3-momentum k:

d2

dη2 δ χ2+ k2δ χ2−2h2χ2
c δ χ2 = 0

[recall hχc = 1/(η∗−η)]. Very similar to massless scalar at inflaton.

Regimes of evolution:

Early times, k ≫ 1/(η∗−η), short wavelength regime,

χc negligible, free Minkowskian field

Late times, k ≪ 1/(η∗−η), long wavelength regime,

Phase δθ = δ χ2/χc freezes out with flat power spectrum:

Pδθ =
h2

(2π)2

This is automatic consequence of global U(1)
and conformal symmetry



Comments:

Mechanism requires long cosmological evolution: need

(η∗−η)≫ 1/k

early times, short wavelength regime,
well defined QFT vacuum

For k ∼ H0 this is precisely the requirement that the
horizon problem is solved, at least formally.

This is a pre-requisite for most mechanisms that generate
perturbations

Small explicit breaking of conformal invariance =⇒ tilt of the
spectrum

Osipov, V.R. ’2011

Depends both on the way conformal invariance is broken and
on the evolution of scale factor



φ need not be spectator =⇒ Pseudo-conformal model

with contracting phase of ekpyrotic type

Hinterbichler, Khoury ’2011

adS/CFT interpretation of V =−h2φ4 and SO(4,2)→ SO(4,1)

in terms of 3-brane in adS5

Hinterbichler, Stokes, Trodden ’2014;

Libanov, V.R., Sibiryakov ’2014; Libanov, V.R. ’2015

Spectator scalar field in Galileon background has similar
properties in Genesis models

Creminelli, Nicolis, Trincherini ’2010



Similarity is not an accident

Libanov, Mironov, V.R.

Hinterbichler, Joyce, Khoury

General setting:

Effectively Minkowski space-time

Conformally invariant theory

Field ρ of conformal weight ∆ 6= 0

ρ = const · |φ | in conformal rolling model

ρ = const ·eπ in Galilean Genesis; ∆ = 1 in both models.

Homogeneous classical solution

ρc(t) =
1

(t∗− t)∆

by conformal invariance.



Another scalar field θ of effective conformal weight 0.

Kinetic term dictated by conformal invariance (modulo field
rescaling)

Lθ = ρ2/∆(∂µθ )2

If potential terms negligible =⇒ θ develops perturbations with
flat power spectrum. Automatic for Nambu–Goldstone field.

Assume that conformal evolution ends up at some late time.
Phase perturbations get converted into adiabatic
perturbations by, e.g., modulated decay mechanism

Dvali, Gruzinov, Zaldarriaga’ 03

Kofman’ 03

or (pseudo-Goldstone) curvaton mechanism

Linde, Mukhanov’ 97;

Enqvist, Sloth’ 01; Lyth, Wands’ 01; Moroi, Takahashi’ 01;

K. Dimopoulos et. al.’ 03



In either case

ζ = const ·δθ + possible non-linear terms

Adiabatic perturbations inherit shape of power spectrum and
correlation properties from δθ , plus possible additional
non-Gaussianity.

Interaction between θ -perturbations and ρ-perturbations produce

non-Gaussianities of specific forms (again dictated by conformal
symmetry).

No tensor perturbations = primodial gravity waves



Summary on perturbations

Observed Gaussianity of scalar perturbations suggests their
origin: enhanced vacuum fluctuations of some (almost) free
quantum field

Flatness of scalar power spectrum may be a consequence of
a symmetry: SO(4,1) in inflationary theory or

SO(4,2)→ SO(4,1) in conformal models.

More options:

Matter bounce, Finelli, Brandenberger’ 01.

Negative exponential potential, Lehners et. al.’ 07;

Buchbinder, Khouri, Ovrut’ 07; Creminelli, Senatore’ 07.

Lifshitz scalar, Mukohyama’ 09

Only very basic things are known for the time being.

To tell, we need to discover

more intricate properties of cosmological perturbations



Primordial tensor modes = gravitational waves

Sizeable amplitude, (almost) flat power spectrum predicted by
simplest (and hence most plausible) inflationary models
but not alternatives to inflation

Together with scalar and tensor tilts =⇒ properties of
inflation

Non-trivial correlation properties of density perturbations
(non-Gaussianity) =⇒ potential discriminator between
scenarios. Very small in single field inflation.

Shape of non-Gaussianity: three-point function of

invariants~k2
1,~k2

2, (~k1 ·~k2).

Statistical anisotropy =⇒ anisotropic pre-hot epoch.

Shape of statistical anisotropy =⇒ specific anisotropic
model

Admixture of entropy perturbations =⇒ generation of dark
matter and/or matter-antimatter asymmetry before the hot
epoch.



At the eve of new physics

LHC ⇐⇒ dedicated CMB polarization experiments,
data and theoretical understanding
of structure formation ...

chance to learn

what preceded the hot Big Bang epoch

Barring the possibility that Nature is dull
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