Introduction to AdS/QCD

Anastasia Golubtsova, ${ }^{a}$

(a) JINR BLTP

DIAS Summer School, Dubna 2016

Outline

(1) History of the String/QCD puzzle

- Motivation
- From QCD to Strings
(2) Back to QCD
- The AdS/CFT conjecture
- Holographic dictionary-I
(3) AdS/QCD models
- Top-down approach
- Bottom-up approach
- Improved HQCD modelQGP
- Multiplicity
- Holographic Wilson Loops
- WL in time-dependent backgrounds.
- At strong coupling perturbative methods are inapplicable
- The lattice formulation of QCD does not work, since we have to study real-time phenomena.
- This has provided a motivation to try to understand the dynamics of QCD through the gauge/string duality
- Wilson loops (interquark potential)
- β-function, RG-flow
- Thermalization

From QCD to Strings

- First classical string theory was born from hadronic phenomenology

Strings and another objects

Figure: A:All string theories, and M-theory, as limits of one theory; B:A D-brane with one attached open string; Pics.from Polchinski

Dp-branes: extended objects on which open strings ends

Dp-branes carry a charge with respect to Ramond-Ramond fields, which geometrically are $p+1$-forms.

Low energy limit $\left(l_{s} \ll R\right) \Rightarrow$ SUGRA II B

Action for SUGRA IIB

$$
\begin{aligned}
S_{I I B} & =S_{N G}+S_{R}+S_{C S} \\
S_{N S} & =\frac{1}{2 k_{10}^{2}} \int d^{10} x(-G)^{1 / 2} e^{-2 \Phi}\left(R+4 \partial_{\mu} \Phi \partial^{\mu} \Phi-\frac{1}{2}\left|H_{3}\right|^{2}\right), \\
S_{R} & =-\frac{1}{4 k_{10}^{2}} \int d^{10} x(-G)^{1 / 2}\left(\left|F_{1}\right|^{2}+\left|\tilde{F}_{3}\right|^{2}+\frac{1}{2}\left|\tilde{F}_{5}\right|^{2}\right), \\
S_{C S} & =-\frac{1}{4 k_{10}^{2}} \int C_{4} \wedge H_{3} \wedge F_{3}, \\
& \tilde{F}_{3}=F_{3}-C_{0} \wedge H_{3}, \quad \tilde{F}_{5}=F_{5}-\frac{1}{2} C_{2} \wedge H_{3}+\frac{1}{2} B_{2} \wedge F_{3}
\end{aligned}
$$

The Einstein equaitons

$$
\begin{aligned}
R_{M N} & +2 \nabla_{M} \nabla_{N} \phi+\frac{1}{4} g_{M N} A=\frac{1}{4} H_{M A B} H_{N}^{A B}+\frac{1}{2 e^{2 \phi}} F_{M} F_{N}+\frac{1}{4} e^{2 \phi} \tilde{F}_{M A B} \tilde{F}_{N}^{A B} \\
& +\frac{1}{44!} e^{2 \phi} \tilde{F}_{M A B C D} \tilde{F}_{N}^{A B C D}, \\
A & =e^{2 \phi} \partial_{M} \chi \partial^{M} \chi+\frac{1}{3!} e^{2 \phi} \tilde{F}_{A B C} A \tilde{B} C+\frac{1}{25!} e^{2 \phi} \tilde{F}_{A B C D E} \tilde{F}^{A B C D E} .
\end{aligned}
$$

+ EOM for dilaton + Bianchi identities

D3-branes

The D3-brane metric

$$
d s^{2}=\left(1+R^{2} / r^{4}\right)^{-1 / 2}\left(d x^{i}\right)^{2}+\left(1+R^{4} / r^{4}\right)^{1 / 2}\left(d r^{2}+r^{2} d \Omega_{5}^{2}\right)
$$

$x^{i}, i=1, \ldots, 4$ - coordinates along the world-volume of the $D 3$-branes, and Ω_{5} and r are spherical coordinates.

Near-horizon limit

$$
d s^{2}=R^{2} \frac{\left(d x^{i}\right)^{2}+d y^{2}}{y^{2}}+R^{2} \Omega_{5}^{2}, \quad y=\frac{R^{2}}{r}
$$

- We obtain: the $\operatorname{AdS} S_{5} \times S^{5}$ space with boundary located at $y=0$.
- N D-branes on top of each other - the gauge symmetry is enlarged to $U(N)$.

Outline

(1) History of the String/QCD puzzle

- Motivation
- From QCD to Strings
(2) Back to QCD
- The AdS/CFT conjecture
- Holographic dictionary-I
(3) AdS/QCD models
- Top-down approach
- Bottom-up approach
- Improved HQCD model
(4) QGP
- Multiplicity
- Holographic Wilson Loops
- WL in time-dependent backgrounds.

Back to QCD

Back to QCD: the AdS/CFT conjecture

The AdS/CFT correspondence Maldacena'98

The AdS/CFT conjecture claims exact equivalence between the theory in the bulk, which is a low energy approximation to $D=10$ IIB string theory on $A d S_{5} \times S^{5}$ the theory defined on the boundary, which is $\mathcal{N}=4$ supersymmetric Yang-Mills with gauge group $S U\left(N_{C}\right)$ at large N_{C}.

- The strong coupling regime of one theory reflects the weak coupling regime of the other one

Gubser, Klebanov,Polyakov, Witten'98

$$
Z_{4}\left[\phi_{0}(x)\right]=\int \mathcal{D} \exp \left\{i S_{4}+\int_{x^{4}} \phi_{0} \mathcal{O}\right\}, \quad S_{4}=\int d^{4} x \mathcal{L}
$$

Back to QCD: the AdS/CFT conjecture

The AdS/CFT correspondence
 Maldacena'98

The AdS/CFT conjecture claims exact equivalence between the theory in the bulk, which is a low energy approximation to $D=10$ IIB string theory on $A d S_{5} \times S^{5}$ the theory defined on the boundary, which is $\mathcal{N}=4$ supersymmetric Yang-Mills with gauge group $S U\left(N_{C}\right)$ at large N_{C}.

- The strong coupling regime of one theory reflects the weak coupling regime of the other one

Gubser,Klebanov,Polyakov, Witten'98

$$
\begin{gathered}
Z_{4}\left[\phi_{0}(x)\right]=\int \mathcal{D} \exp \left\{i S_{4}+\int_{x^{4}} \phi_{0} \mathcal{O}\right\}, \quad S_{4}=\int d^{4} x \mathcal{L} \\
Z_{5}\left[\phi_{0}(x)\right]=\int_{\substack{\phi(x, \varepsilon)=\phi_{0}(x) \\
Z_{4}=Z_{5}}} \mathcal{D}[\phi] e^{i S_{5}[\phi]}
\end{gathered}
$$

Generating functional[4d sources $\left.\phi_{0}(x)\right]=$ Effective action $\left[f i e l d s \phi_{0}(x)\right]$

Deviation from conformal symmetry

Lattice calculations show that QCD exhibits a quasi-conformal behavior at temperatures $T>300 \mathrm{MeV}$ and the equation of state $\sim E=3 P$ (a traceless conformal energy-momentum tensor).

Figure: The comparison of the HISQ/tree and stout results for the trace anomaly, the pressure, and the entropy density

Pic. from Bazavov et al.' 14

Finite temperature

$T \neq 0$,

Finite temperature Yang-Mills theory in 4 d dual to a $A d S_{5} \times S^{5}$ set up with a black hole(Schawrzschild- $\operatorname{Ad} S_{5} \times S^{5}$)

$$
d s^{2}=\frac{1}{z^{2}}\left[-f(z) d t^{2}+\left(d x^{i}\right)^{2}+\frac{d z^{2}}{f(z)}\right], \quad f(z)=1-\left(\frac{z}{z_{h}}\right)^{4} .
$$

- The temperature of the the Yang-Mills theory is identified with the Hawking temperature of the black hole.

Holographic dictionary-I

boundary: field theory	bulk: gravity
energy momentum tensor $T^{a b}$	metric field $g_{a b}$
global internal symmetry current J^{a}	Maxwell field A_{a}
order parameter/scalar operator \mathcal{O}_{b}	scalar field ϕ
fermionic operator \mathcal{O}_{f}	Dirac field ψ
conformal dimension of the operator	mass of the field
global space symmetry	global isometry
temperature	Hawking temperature
chemical potential/charge density	boundary values
phase transition	instability of black holes

Outline

(1) History of the String/QCD puzzle

- Motivation
- From QCD to Strings
(2) Back to QCD
- The AdS/CFT conjecture
- Holographic dictionary-I
(3) AdS/QCD models
- Top-down approach
- Bottom-up approach

```
        - Improved HQCD model
```

(4) QGP

- Multiplicity
- Holographic Wilson Loops
- WL in time-dependent backgrounds.

AdS/QCD model: CONSTRUCTING

Top-down approach: Sakai-Sugimoto model

Top-down approach: low-energy approximation of string theory (supergravity model) trying to find a gravitational background with features similar to QCD

Sakai-Sugimoto: $D 4-D 8-\bar{D} 8$ 5d theory with chiral quarks

	0	1	2	3	4	5	6	7	8	9
D 4	X	X	X	X	X					
$D 8-D 8$	X	X	X	X		X	X	X	X	X

- a D4 brane with one direction wrapped on a circle
- quarks are included by including separated $D 8$ and $\bar{D} 8$ branes
- the key feature is chiral symmetry breaking

$$
\begin{aligned}
d s^{2} & =\left(\frac{u}{R}\right)^{3 / 2}\left(d x_{4}^{2}+f(u) d \tau^{2}\right)+\left(\frac{R}{u}\right)^{3 / 2}\left(\frac{d u^{2}}{f(u)}+u^{2} d \Omega_{4}^{2}\right), \\
f(u) & \equiv 1-\left(\frac{u_{K K}}{u}\right)^{3} .
\end{aligned}
$$

Top-down approach: Sakai-Sugimoto model

- Mesons correspond to fluctuations of the $D 8$ brane solutions in the D4 background
The Dirac-Born-Infeld (DBI) action for the embedding of D8

$$
\begin{aligned}
S_{D B I}=\operatorname{Vol}\left(S^{4}\right) & \int d^{4} x \int z \frac{2}{3} g_{s} u_{k k}^{5}\left(\frac{R}{u_{K K}}\right)^{3 / 2}\left(1+z^{2}\right)^{2 / 3} \\
& \times \sqrt{1+\frac{9}{4 u_{K K}^{2}}\left(\frac{u_{K K}}{R}\right)^{3} z^{2}\left(1+z^{2}\right)^{1 / 3} \tau^{\prime}(z)^{2}}
\end{aligned}
$$

where $1+z^{2}=\frac{u_{K K}}{u}, \tau$ is periodic, $\delta \tau=\frac{4 \pi}{3} \frac{R^{3 / 2}}{u_{K K}^{1 / 2}}$

Bottom-up approach: the hard wall AdS/QCD model

Effective $5 D$ theory (gravity + matter); hadrons \equiv the normalizable modes of the 5d fields.

The hard wall AdS/QCD model
 Erlich et al. PRL'05

The theory in the bulk

$$
S=\int d^{5} x \sqrt{g} \operatorname{Tr}\left\{|D X|^{2}+3|X|^{2}-\frac{1}{4 g_{5}^{2}}\left(F_{L}^{2}+F_{R}^{2}\right)\right\}
$$

with $D_{\mu} X=\partial_{\mu} X-i A_{L_{\mu}} X+i X A_{R \mu}, A_{L, R}=A_{L, R}^{a} t^{a}, m_{5}^{2}=3$ $F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}-i\left[A_{\mu}, A_{\nu}\right]$, defined on the AdS background

$$
d s^{2}=\frac{1}{z^{2}}\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}+d z^{2}\right)
$$

The geometry is cutted by two "branes" $z=0$: "UV-brane", $z=z_{\text {max }}$:"IR-brane" (Polchinski\&Strassler'02) scaling $x \rightarrow \lambda x, z \rightarrow \lambda z$: if x is the length scale to which physics is examined, low values of x correspond to low values of z (UV brane) large distances correspond to large $z(I R)\left(z_{\max } \sim 1 / \Lambda_{Q C D}\right)$

Bottom-up approach: the hard wall AdS/QCD model

$4 d: \mathcal{O}(x)$	$5 d: \phi(x, z)$	p	$\triangle_{\mathcal{O}}$	$\left(m_{5}\right)^{2}$
$\bar{q}_{L} \gamma^{\mu} t^{a} q_{L}$	$A_{L \mu}^{a}$	1	3	0
$\bar{q}_{R} \gamma^{\mu} t^{a} q_{R}$	$A_{R \mu}^{a}$	1	3	0
$\bar{q}_{R}^{\alpha} q_{L}^{\beta}$	$(2 / z) X^{\alpha \beta}$	0	3	-3

The expectation value of X :

$$
X_{0}(z)=1 / 2 M z+1 / 2 \Sigma z^{3},
$$

defined as the classical solutions of the field equations with BC in the $U V$

$$
(2 / \epsilon) X(\epsilon)=M
$$

M is the quark mass matrix (Explicit chiral breaking), Σ is chiral condensate, M, Σ are fixed from experimental data (free parameters).

- Confinement - good :)
- Realizes the chiral symmetry breaking - good:)
- The resulting mass spectra for the exited mesons are contrary to the experimental data,a good Lagrangian - a bad wall :(

Bottom-up approach: the soft wall AdS/QCD model

- Effective $5 D$ gravity theory (+ matter), break conformal inv. of CFT: introducton of QCD $\Lambda_{Q C D}$

The soft wall AdS/QCD model, Karch et al. PRD'06

The meson action

$$
S=\int d^{5} \sqrt{g} e^{-\Phi(z)} \operatorname{Tr}\left[|D X|^{2}+3|X|^{2}-\frac{1}{4 g_{5}}\left(F_{L}^{2}+F_{R}^{2}\right)\right],
$$

with $D_{\mu} X=\partial_{\mu} X-i A_{L \mu} X+i X A_{R \mu}, A_{L, R}^{M}=A_{L, R}^{M a} t^{a}$,
$\operatorname{Tr}\left[t^{a} t^{b}\right]=\delta^{a b} / 2, g_{5}=\frac{12 \pi^{2}}{N_{c}}, N_{c}-$ a number of colors.

$$
d s^{2}=e^{2 A(z)}\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}+d z^{2}\right), \quad A(z)=-\ln (z / L)
$$

Confinement: soft cutoff of AdS space - running dilaton $e^{-\Phi(z)}$, $\Phi(z)=\kappa^{2} z^{2}$.

The bulk fields X are decomposed into the scalar and pseudoscalar mesons, the chiral fields A_{L} and A_{R} - the vector and axial-vector mesons.

Bottom up approach: the soft wall AdS/QCD model

ρ-meson vecor field $V=\frac{A_{L}+A_{R}}{2}$ The classical EOM:

$$
\partial_{M}\left(\sqrt{q} e^{-\Phi}\left[\partial^{M} V^{N}-\partial^{N} V^{M}\right]\right)=0 .
$$

$V_{\mu}(x, z)=\epsilon_{\mu} e^{i q x} \psi(x), \Rightarrow-\psi^{\prime \prime}+V(z) \psi=m_{n}^{2} \psi(z)$ Soft-wall AdS/QCD model

- describes the linear confinement:)
- desired mass spectra for the excited vector mesons $m_{n}^{2} \sim J(L)$ (Regge behavior) :)
- can't consistently realize the chiral symmetry breaking (but seems to be sovable)

Improved HQCD model

Improved holographic QCD model Gursoy, Kiritis Nitti

$$
S_{5}=-\frac{1}{16 \pi G_{5}} \int d x^{5} \sqrt{-g}\left[R+\frac{d(d-1)}{L^{2}}-\frac{4}{3}(\partial \Phi)^{2}+V\left(\Phi_{s}\right)\right] .
$$

The metric is given by

$$
d s^{2}=e^{2 A(z)}\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}+d z^{2}\right)
$$

$g_{\mu \nu}$ is dual to $T_{\mu \nu}, \phi$ is dual to $\operatorname{tr}\left[F^{2}\right]$

- The potential can be tuned to reproduce the beta-function
- For asymptotically AdS UV $V=V_{0}+v_{1} \lambda+v_{2} \lambda^{2}+\ldots(\lambda \rightarrow 0)$
- For confinement in the IR $V \sim \lambda^{4 / 3} \sqrt{\lambda}(\lambda \rightarrow \infty)$
- Confinement - finite-T transition between thermal gas and BH
- Reproduces an asymptotically-linear glueball spectrum
- With an appropriate tuning of two parameters in V the model describes well both $T=0$ properties (spectra) as well as thermodynamics

Outline

(1) History of the String/QCD puzzle

- Motivation
- From QCD to Strings
(2) Back to QCD
- The AdS/CFT conjecture
- Holographic dictionary-I
(3) AdS/QCD models
- Top-down approach
- Bottom-up approach
- Improved HQCD model

4) QGP

- Multiplicity
- Holographic Wilson Loops
- WL in time-dependent backgrounds.

The quark-gluon plasma (2005)

- A new state of matter produced in Heavy-lon collisions at RHIC and LHC
- Deconfined quarks, antiquarks, and gluons at high temperature (nuclear matter \rightarrow deconfined phase).
- QGP does not behave like a weakly coupled gas of quarks and gluons, but a strongly coupled fluid.
- Highly anisotropic at the early stage of its evolution

The quark-gluon plasma (2005)

$\tau_{\text {therm }}(0.1 \mathrm{fm} / \mathrm{c})<\tau_{\text {hydro }}<\tau_{\text {hard }}(10 \mathrm{fm} / \mathrm{c})<\tau_{f}(20 \mathrm{fm} / \mathrm{c})$

Figure: Picture from: P.Sorensen, C.Shen

The quark-gluon plasma (2005)

- Multiptlicity
- Thermalization
- Observables (Correlators, Wilson loops, etc)

We have to "mimic" the heavy ions collision

Models:

- shock waves collision in AdS
- infalling shell (Vaidya solutions)

Holographic dictionary- II

- $4 d$ Multiplicity in $\mathrm{HIC}=\mathrm{BH}$ entropy in $A d S_{5}$ Gubster et al.' ${ }^{\prime} 08$

The quark-gluon plasma (2005)

- Multiptlicity
- Thermalization
- Observables (Correlators, Wilson loops, etc)

We have to "mimic" the heavy ions collision

Models:

- shock waves collision in AdS
- infalling shell (Vaidya solutions)

Holographic dictionary- II

- $4 d$ Multiplicity in $\mathrm{HIC}=\mathrm{BH}$ entropy in $A d S_{5}$ Gubster et al.' ${ }^{\text {'08 }}$
- Thermalization time in $\mathcal{M}^{1,3}=\mathrm{BH}$ formation time in $\operatorname{AdS} S^{5}$

The quark-gluon plasma (2005)

- Multiptlicity
- Thermalization
- Observables (Correlators, Wilson loops, etc)

We have to "mimic" the heavy ions collision

Models:

- shock waves collision in AdS
- infalling shell (Vaidya solutions)

Holographic dictionary- II

- $4 d$ Multiplicity in $\mathrm{HIC}=\mathrm{BH}$ entropy in $A d S_{5}$ Gubster et al.' ${ }^{\text {'08 }}$
- Thermalization time in $\mathcal{M}^{1,3}=\mathrm{BH}$ formation time in $\operatorname{AdS} S^{5}$
- two point correlators $=$ geodesics

The quark-gluon plasma (2005)

- Multiptlicity
- Thermalization
- Observables (Correlators, Wilson loops, etc)

We have to "mimic" the heavy ions collision

Models:

- shock waves collision in AdS
- infalling shell (Vaidya solutions)

Holographic dictionary- II

- $4 d$ Multiplicity in $\mathrm{HIC}=\mathrm{BH}$ entropy in $A d S_{5}$ Gubster et al.' ${ }^{\text {'08 }}$
- Thermalization time in $\mathcal{M}^{1,3}=\mathrm{BH}$ formation time in $\operatorname{AdS} S^{5}$
- two point correlators = geodesics
- Wilson loops = 2-dimensional minimal surfaces

The quark-gluon plasma (2005)

- Multiptlicity
- Thermalization
- Observables (Correlators, Wilson loops, etc)

We have to "mimic" the heavy ions collision

Models:

- shock waves collision in AdS
- infalling shell (Vaidya solutions)

Holographic dictionary- II

- $4 d$ Multiplicity in HIC $=\mathrm{BH}$ entropy in $A d S_{5}$ Gubster et al.'08
- Thermalization time in $\mathcal{M}^{1,3}=\mathrm{BH}$ formation time in $\operatorname{AdS} S^{5}$
- two point correlators = geodesics
- Wilson loops = 2-dimensional minimal surfaces
- Entenglament entropy $=3$-dimensional minimal surfaces
- $D=4$ Multiplicity is proportional to entrodv of $D=5 \mathrm{BH}$ Gubser'08

> Experiment:
> $S_{d a t a}=\mathbf{s}_{N N}^{0.155}$
> ALICE collaboration'15

Modified AdS:

$$
S_{d a t a}=\mathbf{s}_{N N}^{0.12}
$$

Kiritis \& Taliotis'11

Modified AdS+ ghosts:

$$
S_{d a t a}=\mathbf{s}_{N N}^{0.16}
$$

Aref'eva et al.'14

ALICE collaboration'15

> Broken scaling
> $S_{d a t a}=\mathbf{s}_{N N}^{0.16}$
> Aref'eva \& A.G.'14

Anisotropic duals

The AdS/CFT correspondence:
The Field Theory

- the conformal group $S O(D, 2)$ of a D-dimensional CFT

$$
\left(t, x_{i}\right) \rightarrow\left(\lambda t, \lambda x_{i}\right), i=1, . ., d-1
$$

The Gravitational Background

- the group of isometries
of $A d S_{D+1}$
$d s^{2}=r^{2}\left(-d t^{2}+d \vec{x}_{d-1}^{2}\right)+\frac{d r^{2}}{r^{2}}$

Anisotropic duals

The AdS/CFT correspondence:
The Field Theory

- the conformal group $S O(D, 2)$
of a D-dimensional CFT
$\left(t, x_{i}\right) \rightarrow\left(\lambda t, \lambda x_{i}\right), i=1, . ., d-1$

The Gravitational Background

- the group of isometries
of $A d S_{D+1}$
$d s^{2}=r^{2}\left(-d t^{2}+d \vec{x}_{d-1}^{2}\right)+\frac{d r^{2}}{r^{2}}$

Generalizations?

Anisotropic duals

The AdS/CFT correspondence:
The Field Theory

- the conformal group $S O(D, 2)$
of a D-dimensional CFT
$\left(t, x_{i}\right) \rightarrow\left(\lambda t, \lambda x_{i}\right), i=1, . ., d-1$

The Gravitational Background

- the group of isometries
of $A d S_{D+1}$
$d s^{2}=r^{2}\left(-d t^{2}+d \vec{x}_{d-1}^{2}\right)+\frac{d r^{2}}{r^{2}}$

Generalizations?

Anisotropic duals

The AdS/CFT correspondence:

The Field Theory

The Gravitational Background

- the group of isometries
of $A d S_{D+1}$

$$
d s^{2}=r^{2}\left(-d t^{2}+d \vec{x}_{d-1}^{2}\right)+\frac{d r^{2}}{r^{2}}
$$

Generalizations?

$$
\begin{aligned}
& \text { Lifshitz scaling: } t \rightarrow \lambda^{\nu} t, \quad \vec{x} \rightarrow \lambda \vec{x}, \quad r \rightarrow \frac{1}{\lambda} r, \\
& \text { where } \quad \nu \quad \text { is the Lifshitz dynamical exponent } \\
& \text { Lifshitz metric: } d s^{2}=-r^{2 \nu} d t^{2}+\frac{d r^{2}}{r^{2}}+r^{2} d \vec{x}_{d-1}^{2} \\
& \text { Kachru, Liu, Millgan '08 }
\end{aligned}
$$

Lifshitz-like spacetimes for holography

- Lifshitz-like metrics

$$
\begin{aligned}
& d s^{2}=r^{2 \nu}\left(-d t^{2}+d x^{2}\right)+r^{2} d y_{1}^{2}+r^{2} d y_{2}^{2}+\frac{d r^{2}}{r^{2}} \\
&(t, x, y, r) \rightarrow\left(\lambda^{\nu} t, \lambda^{\nu} x, \lambda y_{1}, \lambda y_{2}, \frac{r}{\lambda}\right), \mathrm{M} . \text { Taylor'08, Pal'09. }
\end{aligned}
$$

The 5d Lifshitz-like metrics, $z=\frac{1}{r^{\nu}}$
Type - (1, 2) $\quad d s^{2}=L^{2}\left[\frac{\left(-d t^{2}+d x^{2}\right)}{z^{2}}+\frac{\left(d y_{1}^{2}+d y_{2}^{2}\right)}{z^{2 / \nu}}+\frac{d z^{2}}{z^{2}}\right]$.
Type $-(\mathbf{2}, \mathbf{1}) \quad d s^{2}=L^{2}\left(\frac{\left(-d t^{2}+d x_{1}^{2}+d x_{2}^{2}\right)}{z^{2}}+\frac{d y^{2}}{z^{2 / \nu}}+\frac{d z^{2}}{z^{2}}\right)$.

Type IIB SUGRA, D3 - D7-branes: Anisotropic QGP

$\mathcal{M}=M_{5} \times X_{5}: M_{5}$ is a $5 d$ Lifshitz-like metric, X_{5} is an Einstein manifold.

Type IIB SUGRA, D3 - D7-branes: Anisotropic QGP

$\mathcal{M}=M_{5} \times X_{5}: M_{5}$ is a $5 d$ Lifshitz-like metric, X_{5} is an Einstein manifold.

D3-D7 system, Azeyanagi et al.'09, Mateos\&Trancanelli'09

$$
\begin{aligned}
d s^{2} & =\tilde{R}^{2}\left[\rho^{2}\left(-d t^{2}+d x^{2}+d y^{2}\right)+\rho^{4 / 3} d w^{2}+\frac{d \rho^{2}}{\rho^{2}}\right]+R^{2} d s_{X_{5}}^{2} . \\
\nu & =3 / 2, \quad r \equiv \rho^{2 / 3}, \quad(t, x, y, w, \rho) \rightarrow\left(\lambda t, \lambda x, \lambda y, \lambda^{2 / 3} w, \frac{\rho}{\lambda}\right)
\end{aligned}
$$

$\mathcal{M}_{5} \times X_{5}$	t	x	y	r	w	s_{1}	s_{2}	s_{3}	s_{4}	s_{5}
D3	\times	\times	\times		\times					
D7	\times	\times	\times			\times	\times	\times	\times	\times

Type IIB SUGRA, D3 - D7-branes: Anisotropic QGP

$\mathcal{M}=M_{5} \times X_{5}: M_{5}$ is a $5 d$ Lifshitz-like metric, X_{5} is an Einstein manifold.

D3-D7 system, Azeyanagi et al.'09, Mateos\&Trancanelli'09

$$
\begin{aligned}
d s^{2} & =\tilde{R}^{2}\left[\rho^{2}\left(-d t^{2}+d x^{2}+d y^{2}\right)+\rho^{4 / 3} d w^{2}+\frac{d \rho^{2}}{\rho^{2}}\right]+R^{2} d s_{X_{5}}^{2} . \\
\nu & =3 / 2, \quad r \equiv \rho^{2 / 3}, \quad(t, x, y, w, \rho) \rightarrow\left(\lambda t, \lambda x, \lambda y, \lambda^{2 / 3} w, \frac{\rho}{\lambda}\right)
\end{aligned}
$$

$\mathcal{M}_{5} \times X_{5}$	t	x	y	r	w	s_{1}	s_{2}	s_{3}	s_{4}	s_{5}
D3	\times	\times	\times		\times					
D7	\times	\times	\times		\times	\times	\times	\times	\times	

$A d S / C F T: D 3$-probes in $D 3$-background $A d S_{5} \times S^{5} \Rightarrow \mathcal{N}=4 \mathrm{SYM}$.
$\mathcal{M}=M_{5} \times X_{5}: M_{5}$ is a $5 d$ Lifshitz-like metric, X_{5} is an Einstein manifold.

D3-D7 system, Azeyanagi et al.'09, Mateos\&Trancanelli'09

$$
\begin{aligned}
d s^{2} & =\tilde{R}^{2}\left[\rho^{2}\left(-d t^{2}+d x^{2}+d y^{2}\right)+\rho^{4 / 3} d w^{2}+\frac{d \rho^{2}}{\rho^{2}}\right]+R^{2} d s_{X_{5}}^{2} \\
\nu & =3 / 2, \quad r \equiv \rho^{2 / 3}, \quad(t, x, y, w, \rho) \rightarrow\left(\lambda t, \lambda x, \lambda y, \lambda^{2 / 3} w, \frac{\rho}{\lambda}\right)
\end{aligned}
$$

$\mathcal{M}_{5} \times X_{5}$	t	x	y	r	w	s_{1}	s_{2}	s_{3}	s_{4}	s_{5}
D 3	\times	\times	\times		\times					
D 7	\times	\times	\times			\times	\times	\times	\times	\times

$A d S / C F T: D 3$-probes in D3-background $A d S_{5} \times S^{5} \Rightarrow \mathcal{N}=4$ SYM. $D 7$-probes in $D 3$-background $L i f_{I R} / A d S_{5, U V} \times X_{5} \Rightarrow$ deformed SYM. Jet quenching, drag force, potentials... see Giataganas et al.'12

Possible models

$$
S=\frac{1}{16 \pi G_{5}} \int d^{5} x \sqrt{|g|}\left(R[g]+\Lambda-\frac{1}{2} \partial_{M} \phi \partial^{M} \phi-\frac{1}{4} e^{\lambda \phi} F_{(2)}^{2}\right),
$$

Λ is negative cosmological constant.
The Einstein equations
$R_{m n}=-\frac{\Lambda}{3} g_{m n}+\frac{1}{2}\left(\partial_{m} \phi\right)\left(\partial_{n} \phi\right)+\frac{1}{4} e^{\lambda \phi}\left(2 F_{m p} F_{n}^{p}\right)-\frac{1}{12} e^{\lambda \phi} F^{2} g_{m n}$.
The scalar field equation

$$
\square \phi=\frac{1}{4} \lambda e^{\lambda \phi} F^{2}, \quad \text { with } \quad \square \phi=\frac{1}{\sqrt{|g|}} \partial_{m}\left(g^{m n} \sqrt{|g|} \partial_{n} \phi\right)
$$

The gauge field

$$
D_{m}\left(e^{\lambda \phi} F^{m n}\right)=0 .
$$

Gravity duals: black brane and infalling shell

The Lifshitz-like black brane

$$
d s^{2}=e^{2 \nu r}\left(-f(r) d t^{2}+d x^{2}\right)+e^{2 r}\left(d y_{1}^{2}+d y_{2}^{2}\right)+\frac{d r^{2}}{f(r)},
$$

where $f(r)=1-m e^{-(2 \nu+2) r}$. Aref'eva,AG, Gourgoulhon'16.

$$
\nu=4, \lambda= \pm \frac{2}{\sqrt{3}}, \Lambda=90, \mu q^{2}=240 .
$$

The Vaidya solution in Lifshitz background

$$
\begin{gathered}
d s^{2}=-z^{-2} f(z) d v^{2}-2 z^{-2} d v d z+z^{-2} d x^{2}+z^{-2 / \nu}\left(d y_{1}^{2}+d y_{2}^{2}\right) \\
f=1-m(v) z^{2 / \nu+2}, v<0-\text { inside the shell, } v>0-\text { outside } \\
d v=d t+\frac{d z}{f(z)}, \quad z=\frac{1}{r^{\nu}}
\end{gathered}
$$

Def.
Thermalization time at scale l is the time at which the tip of the geodesic with endpoints $(-l / 2)$ and $(l / 2)$ grazes the middle of the shell.
The Lagrangian of the pointlike probe
$\mathcal{L}=\sqrt{-\frac{f(z)}{z^{2}} \frac{d v}{d \tau} \frac{d v}{d \tau}-\frac{2}{z^{2}} \frac{d v}{d \tau} \frac{d z}{d \tau}+\frac{1}{z^{2}} \frac{d x}{d \tau} \frac{d x}{d \tau}+\frac{1}{z^{2 / \nu}}\left(\sum \frac{d y_{i}}{d \tau} \frac{d y_{i}}{d \tau}\right)}$
$\tau=x$ or $\tau=y_{i}, i=1,2$.

Holographic Thermalization

The thermalization time $t_{\text {therm }}$ at scale l along x

$$
\ell=2 z_{*} \int_{0}^{1} \frac{w d w}{\sqrt{f\left(z_{*} w\right)\left(1-w^{2}\right)}}, \quad t_{\text {therm }}=z_{*} \int_{0}^{1} \frac{d w}{f\left(z_{*} w\right)}
$$

where $w=\frac{z}{z_{*}}, z_{*}$ is the turning point.
The thermalization time $t_{\text {therm }}$ at scale l along y

$$
\ell=2 z_{*}^{1 / \nu} \int_{0}^{1} \frac{w^{-1+2 / \nu} d w}{\sqrt{f\left(w z_{*}\right)\left(1-w^{2 / \nu}\right)}}, \quad, \quad t_{\text {therm }}=z_{*} \int_{0}^{1} \frac{d w}{f\left(z_{*} w\right)}
$$

Holographic Thermalization

Figure: Thermalization along the longitudinal direction with $m=0.5$ and $m=0.1$. All lines coincide.
$\tau[f m]$

Figure: Thermalization along the transversal direction, $\nu=1$ (orange), $\nu=2$ (brown), $\nu=3$ (blue) and $\nu=4$ (gray).

Holographic Wilson Loops

- The expectation value of WL in the fundamental representation calculated on the gravity side:

$$
W[C]=\left\langle\operatorname{Tr}_{F} e^{i \oint_{C} d x_{\mu} A_{\mu}}\right\rangle=e^{-S_{s t r i n g}[C]}
$$

where C in a contour on the boundary, F - the fundamental representation, S is the minimal action of the string hanging from the contour C in the bulk. The Nambu-Goto action is

$$
\begin{equation*}
S_{\text {string }}=\frac{1}{2 \pi \alpha^{\prime}} \int d \sigma^{1} d \sigma^{2} \sqrt{-\operatorname{det}\left(h_{\alpha \beta}\right)}, \tag{1}
\end{equation*}
$$

with the induced metric of the world-sheet $h_{\alpha \beta}$ given by

$$
\begin{equation*}
h_{\alpha \beta}=g_{M N} \partial_{\alpha} X^{M} \partial_{\beta} X^{N}, \quad \alpha, \beta=1,2, \tag{2}
\end{equation*}
$$

$g_{M N}$ is the background metric, $X^{M}=X^{M}\left(\sigma^{1}, \sigma^{2}\right)$ specify the string, σ^{1}, σ^{2} parametrize the worldsheet.

- The potential of the interquark interaction

$$
W(T, X)=\left\langle\operatorname{Tr} e^{i \oint_{T \times X} d x_{\mu} A_{\mu}}\right\rangle \sim e^{-V(X) T} .
$$

Holographic spatial Wilson loops

Holographic Wilson Loops

A similar operator to probe QCD is the spatial rectangular Wilson loop of size $X \times Y$ (for large Y)

$$
W(X, Y)=\left\langle\operatorname{Tr} e^{i \oint_{X \times Y} d x_{\mu} A_{\mu}}\right\rangle=e^{-\mathcal{V}(X) Y}
$$

defines the so called pseudopotential \mathcal{V} :

$$
\mathcal{V}(X)=\frac{S_{\text {string }}}{Y} .
$$

The spatial Wilson loops obey the area law at all temperature, i.e.

$$
\mathcal{V}(X) \sim \sigma_{s} X
$$

where σ_{s} defines the spatial string tension

$$
\sigma_{s}=\lim _{X \rightarrow \infty} \frac{\mathcal{V}(X)}{X}
$$

Spatial WL in Lifshitz-like backgrounds

Rectangular WL in the spatial planes $x y_{1}$ (or $x y_{2}$) and $y_{1} y_{2}$. Possible configurations:

- a rectangular loop in the $x y_{1}$ (or $x y_{2}$) plane with a short side of the length ℓ in the longitudinal x direction and a long side of the length $L_{y_{1}}$ along the transversal y_{1} direction

$$
x \in\left[0, \ell<L_{x}\right], \quad y_{1} \in\left[0, L_{y_{1}}\right]
$$

- a rectangular loop in the $x y_{1}$ plane with a short side of the length ℓ in the transversal y_{1} direction and a long side of the length L_{x} along the longitudinal x direction:

$$
x \in\left[0, L_{x}\right], \quad y_{1} \in\left[0, \ell<L_{y_{1}}\right] ;
$$

- a rectangular loop in the transversal $y_{1} y_{2}$ plane with a short side of the length ℓ in one of transversal directions (say y_{1}) and a long side of the length $L_{y_{2}}$ along the other transversal direction y_{2}

$$
y_{1} \in\left[0, \ell<L_{y_{1}}\right], \quad y_{1} \in\left[0, L_{y_{2}}\right] .
$$

Static WL. Case 1: $\sigma^{1}=x, \sigma^{2}=y_{1}, z=z(x), v=v(x)$.
The renormalized Nambu-Goto action
$S_{x, y_{1(\infty)}, r e n}=\frac{L_{y_{1}}}{2 \pi \alpha^{\prime}} \frac{1}{z_{*}^{1 / \nu}} \int_{0}^{1} \frac{d w}{w^{1+1 / \nu}}\left[\frac{1}{\sqrt{f\left(z_{*} w\right)\left(1-w^{2+2 / \nu}\right)}}-1\right]-\frac{\nu}{z_{*}^{1 / \nu}}$,
where $w=z / z_{*}$. The length scale is

$$
\frac{\ell}{2}=2 z_{*} \int_{z_{0} / z_{*}}^{1} \frac{w^{1+1 / \nu} d w}{f\left(z_{*} w\right)\left(1-w^{2+2 / \nu}\right)}
$$

Then pseudopotential $\mathcal{V}_{x, y_{1(\infty)}}=\frac{S_{x, y_{1(\infty)}, \text { ren }}}{L_{y_{1}}}$.
For small ℓ - the deformed Coulomb part

$$
\mathcal{V}_{x, y_{1(\infty)}}(\ell, \nu) \underset{\ell \sim 0}{\sim}-\frac{\mathcal{C}_{1}(\nu)}{\ell^{1 / \nu}} .
$$

For large ℓ

$$
\mathcal{V}_{x, y_{1(\infty)}}(\ell, \nu) \underset{\ell \rightarrow \infty}{\sim} \sigma_{s, 1}(\nu) \ell
$$

Static WL. Case 1: $\sigma^{1}=x, \sigma^{2}=y_{1}, z=z(x), v=v(x)$.

(a)

(b)

(c)

Figure: $\mathcal{V}_{x, y_{1(\infty)}}$ as a function of $\ell, \nu=2,3,4((\mathrm{a}),(\mathrm{b}),(\mathrm{c}))$. The temperature $T=30,100,150,200 \mathrm{MeV}$ (from down to top) for all. In (d): $\mathcal{V}_{x, y_{1(\infty)}}$ for $\nu=1,2,3,4$ (from top to down) at $T=100 \mathrm{MeV}$.

Static WL. Case 2: $\sigma^{1}=x, \sigma^{2}=y_{1}, z=z\left(y_{1}\right), v=v\left(y_{1}\right)$
The renormalized Nambu-Goto action

$$
S_{y_{1}, x(\infty), \text { ren }}=\frac{L_{x}}{2 \pi \alpha^{\prime}} \frac{1}{z_{*}} \int_{z_{0} / z_{*}}^{1} \frac{d w}{w^{2}}\left[\frac{1}{\sqrt{f\left(z_{*} w\right)\left(1-w^{2+2 / \nu}\right)}}-1\right]-\frac{1}{z_{*}} .
$$

The length scale is

$$
\ell=2 z_{*}^{1 / \nu} \int_{0}^{1} \frac{w^{2 / \nu} d w}{f\left(z_{*} w\right)\left(1-w^{2+2 / \nu}\right)}
$$

The pseudopotential $\mathcal{V}_{y_{1}, x_{(\infty)}}=\frac{S_{y_{1}, x_{(\infty)}, \text { ren }}}{L_{x}}$.
For small ℓ - the deformed Coulomb part

$$
\mathcal{V}_{\left.y_{1}, x_{(\infty)}\right)} \underset{\ell \sim 0}{\sim}-\frac{\mathcal{C}_{2}(\nu)}{\ell^{\nu}} .
$$

For large ℓ

$$
\mathcal{V}_{y_{1}, x_{(\infty)}}(\ell, \nu) \underset{\ell \rightarrow \infty}{\sim} \sigma_{s, 2}(\nu) \ell .
$$

Static WL.Case 2: $\sigma^{1}=x, \sigma^{2}=y_{1}, z=z\left(y_{1}\right), v=v\left(y_{1}\right)$

(b)

Figure: $\mathcal{V}_{y_{1}, x_{(\infty)}}$ as a function of ℓ for $\nu=2,3,4$ ((a),(b),(c)). $T=30,100,150,200 \mathrm{MeV}$ from down to top, respectively, for all. \ln (d) \mathcal{V} for $\nu=1,2,3,4$ (from left to right, respectively) at $T=100 \mathrm{MeV}$.

Static WL. Case 3: $\sigma^{1}=y_{1}, \sigma^{2}=y_{2}, z=z\left(y_{1}\right), v=v\left(y_{1}\right)$
The renormalized Nambu-Goto action
$S_{y_{1} y_{2(\infty)}, \text { ren }}=\frac{L_{y_{2}}}{2 \pi \alpha^{\prime}} \frac{1}{z_{*}^{1 / \nu}} \int_{\frac{z_{0}}{z_{*}}}^{1} \frac{d w}{w^{1+1 / \nu}}\left[\frac{1}{\sqrt{f\left(z_{*} w\right)\left(1-w^{4 / \nu}\right)}}-1\right]-\frac{\nu}{z_{*}^{1 / \nu}}$.
The length scale is

$$
\ell=z_{*}^{1 / \nu} \int \frac{d w}{w^{1-3 / \nu} \sqrt{f\left(z_{*} w\right)\left(1-w^{4 / \nu}\right)}} .
$$

The pseudopotential $\mathcal{V}_{y_{1}, y_{2(\infty)}}=\frac{S_{y_{1}, y_{2(\infty)}}}{L_{y_{2}}}$.
For small ℓ -

$$
\mathcal{V}_{y_{1}, y_{2}(\infty)} \underset{\ell \rightarrow 0}{\sim}-\frac{\mathcal{C}_{3}(\nu)}{\ell} .
$$

For large ℓ

$$
\mathcal{V}_{y_{1}, y_{2(\infty)}}(\ell, \nu) \underset{\ell \rightarrow \infty}{\sim} \sigma_{s, 3}(\nu) \ell .
$$

(a)

(b)

Figure: $\mathcal{V}_{y_{1}, y_{2(\infty)}}$ as a function of ℓ for $\nu=2,3,4$ ((a),(b),(c), respectively). We take $T=30,100,150,200 \mathrm{MeV}$ from down to top, for (a),(b) and (c). In (d) $\mathcal{V}_{y_{1}, y_{2(\infty)}}$ for $\nu=1,2,3,4$ (from left to right) at $T=100 \mathrm{MeV}$.

Static WL. Spatial string tension

Figure: The dependence of the spatial string tension $\sqrt{\sigma_{s}}$ on orientation and temperature. The solid lines corresponds to the rectangular Wilson loop with a short extent in the x-direction, while the dashed lines correspond to a short extent in the y-direction. The dotted lines correspond to the rectangular Wilson loop in the transversal $y_{1} y_{2}$ plane. (a) Blue line corresponds to $\nu=1$, gray lines correspond to $\nu=2$, green lines correspond to $\nu=3$ and the brown ones correspond to $\nu=4$. (b) The spatial string tension $\sqrt{\sigma_{s}}$ for different orientations for $\nu=4$.

Alanen et al.'09,A. Dumitru et al.'13-14

WL in time-dependent backgrounds. Case 1

$$
S_{x, y_{1}(\infty)}=\frac{L_{y}}{2 \pi \alpha^{\prime}} \int \frac{d x}{z^{1+1 / \nu}} \sqrt{1-f(z, v) v^{\prime 2}-v^{\prime} z^{\prime}}, \quad 1 \equiv \frac{d}{d x} .
$$

The corresponding equations of motion are

$$
\begin{aligned}
v^{\prime \prime} & =\frac{1}{2} \frac{\partial f}{\partial z} v^{\prime 2}+\frac{(\nu+1)}{\nu z}\left(1-f v^{\prime 2}-2 v^{\prime} z^{\prime}\right), \\
z^{\prime \prime} & =-\frac{\nu+1}{\nu} \frac{f}{z}+\frac{\nu+1}{\nu} \frac{f^{2} v^{\prime 2}}{z}-\frac{1}{2} \frac{\partial f}{\partial v} v^{\prime 2}-\frac{1}{2} f v^{\prime 2} \frac{\partial f}{\partial z}-v^{\prime} z^{\prime} \frac{\partial f}{\partial z}, \\
& +2 \frac{(\nu+1)}{\nu z} f v^{\prime} z^{\prime} .
\end{aligned}
$$

The boundary conditions $z(\pm \ell)=0, v(\pm \ell)=t$. The initial conditions $z(0)=z_{*}, v(0)=v_{*}, z^{\prime}(0)=0, v^{\prime}(0)=0$. The pseudopotential is

$$
\mathcal{V}_{x, y_{1(\infty)}}=\frac{S_{x, y_{1(\infty)}, \text { ren }}}{L_{y_{1}}}
$$

Figure: $\mathcal{V}_{x, y_{1(\infty)}}$ as a function of ℓ at fixed values of t for $\nu=1,2,3,4$ ((a),(b),(c),(d), respectively). Different curves correspond to time $t=0.1,0.5,0.9,1.4,2$ (from down to top, respectively).

$$
\delta \mathcal{V}_{1}(x, t)=\mathcal{V}_{x, y_{1(\infty)}}(x, t)-\mathcal{V}_{x, y_{1(\infty)}}\left(x, t_{f}\right)
$$

Figure: The time dependence of $-\delta \mathcal{V}_{1}(x, t)$, for different values of the length ℓ, $\nu=2,3,4((\mathrm{a}),(\mathrm{b}),(\mathrm{c})$, respectively). Different curves correspond to $\ell=0.7,1.2,1.5,1.7,2$ (from down to top, respectively). In (d) we have shown $-\delta \mathcal{V}_{1}(x, t)$ as a function of t at $\ell=2$ for $\nu=1,2,3,4$ (from top to down).

WL in time-dependent backgrounds. Case 2

$$
S_{y_{1}, x(\infty)}=\frac{L_{x}}{2 \pi \alpha^{\prime}} \int d y_{1} \frac{1}{z^{2}} \sqrt{\left(\frac{1}{z^{2 / \nu-2}}-f(z, v)\left(v^{\prime}\right)^{2}-2 v^{\prime} z^{\prime}\right)}, \quad \prime \equiv \frac{d}{d y_{1}} .
$$

The corresponding equations of motion are

$$
\begin{aligned}
v^{\prime \prime} & =\frac{1}{2} \frac{\partial f}{\partial z} v^{\prime 2}+\frac{\nu+1}{\nu z}\left(z^{2-2 / \nu}-\frac{2 \nu}{(1+\nu)} f v^{\prime 2}-2 v^{\prime} z^{\prime}\right), \\
z^{\prime \prime} & =-\frac{\nu+1}{\nu} f z^{1-2 / \nu}+\frac{2(\nu-1) z^{\prime 2}}{\nu}+\frac{2}{\nu} \frac{f^{2} v^{\prime 2}}{z}-\frac{1}{2 \nu} \frac{\partial f}{\partial v} v^{\prime 2}-\frac{1}{2 \nu} f \frac{\partial f}{\partial z} v^{\prime 2} \\
& -z^{\prime} v^{\prime} \frac{\partial f}{\partial z}+\frac{4}{z} f z^{\prime} v^{\prime} .
\end{aligned}
$$

The boundary conditions $z(\pm \ell)=0, v(\pm \ell)=t$. The initial conditions $z(0)=z_{*}, v(0)=v_{*}, z^{\prime}(0)=0, v^{\prime}(0)=0$. The pseudopotential is

$$
\mathcal{V}_{y_{1}, x(\infty)}=\frac{S_{y_{1}, x(\infty), \text { ren }}}{L_{y_{1}}}
$$

WL in time-dependent backgrounds. Case 2

(b)

Figure: $\mathcal{V}_{y_{1} x_{\infty}}$ as a function of ℓ at fixed values of t for $\nu=1,2,3,4$ ((a),(b),(c),(d), respectively). Different curves correspond to $t=0.1,0.5,0.9,1.4,2$ from down to top.

WL in time-dependent backgrounds. Case 2

$$
\delta \mathcal{V}_{y_{1}, x_{(\infty)}}(x, t)=\mathcal{V}_{y_{1}, x_{(\infty)}}(x, t)-\mathcal{V}_{y_{1}, x_{(\infty)}}\left(x, t_{f}\right)
$$

Figure: The time dependence of $-\delta \mathcal{V}_{y_{1}, x_{(\infty)}}(x, t)$ for different values of the length $\ell, \nu=2,3,4$ ((a),(b),(c), respectively). Different curves correspond to $\ell=2,2.5,3,3.5,4$ (from down to top, respectively). In (d) $-\delta \mathcal{V}_{2}(x, t)$ as a function of t at $\ell=2$ for $\nu=1,2,3,4$ (from top to down, respectively).

WL in time-dependent backgrounds. Case 3

$$
S_{y_{1}, y_{2}(\infty)}=\frac{L_{y_{2}}}{2 \pi \alpha^{\prime}} \int d y_{1} \frac{1}{z^{1+1 / \nu}} \sqrt{\left(\frac{1}{z^{2 / \nu-2}}-f\left(v^{\prime}\right)^{2}-2 v^{\prime} z^{\prime}\right)} .
$$

The corresponding equations of motion are

$$
\begin{align*}
v^{\prime \prime} & =\frac{1}{2} \frac{\partial f}{\partial z} v^{\prime 2}+\frac{2}{z \nu}\left(z^{2-2 / \nu}-\frac{\nu+1}{2} f v^{\prime 2}-2 v^{\prime} z^{\prime}\right) \\
z^{\prime \prime} & =-\frac{2}{\nu} f z^{1-2 / \nu}+2 \frac{\nu-1}{\nu} \frac{z^{\prime 2}}{z}+\frac{\nu+1}{\nu z} f^{2} v^{\prime 2}-\frac{1}{2} \frac{\partial f}{\partial v} v^{\prime 2}-\frac{1}{2} f \frac{\partial f}{\partial z} v^{\prime 2} \\
& -z^{\prime} v^{\prime} \frac{\partial f}{\partial z}+\frac{2(\nu+1)}{\nu z} f v^{\prime} z^{\prime} . \tag{3}
\end{align*}
$$

The boundary conditions $z(\pm \ell)=0, v(\pm \ell)=t$. The initial conditions $z(0)=z_{*}, v(0)=v_{*}, z^{\prime}(0)=0, v^{\prime}(0)=0$. The pseudopotential is

$$
\mathcal{V}_{y_{1}, y_{2,(\infty)}}(t, \ell)=\frac{S_{y_{1}, y_{2,(\infty)}, r e n}}{L_{y_{2}}}
$$

WL in time-dependent backgrounds. Case 3

Figure: $\mathcal{V}_{\left.y_{1}, y_{2,(\infty)}\right)}(l, t)$ as a function of the length ℓ at fixed values of t, $\nu=1,2,3,4$ ((a),(b),(c),(d)). (a): we take $t=0.1,0.5,0.9,1.4,2$ from down to top, respectively; for plots (b),(c),(d): $t=0.4,1.5,2.5,3.34,4$ from down to top, respectively.

WL in time-dependent backgrounds. Case 3

$$
\delta \mathcal{V}_{y_{1}, y_{2,(\infty)}}(x, t)=\mathcal{V}_{y_{1}, y_{2,(\infty)}}(x, t)-\mathcal{V}_{y_{1}, y_{2,(\infty)}}\left(x, t_{f}\right)
$$

Figure: $-\delta \mathcal{V}_{y_{1}, y_{2,(\infty)}}(x, t)$ on t for different $\ell, \nu=2,3,4$ ((a),(b),(c)). (a): $l=2.2,3,3.85,4.4,5.2$ from top to down; (b): $l=3,4.1,5.2,6,7.1$ from top to down; (c): $l=3.4,4.6,5.9,6.8,8$ from top to down. $\ln (\mathrm{d}):-\delta \mathcal{V}_{3}(x, t)$ as a function of t at $\ell=3$ for $\nu=1,2,3,4$ (from top to down, respectively).

Thank you for your attention!

