History of the String/QCD puzzle	Back to QCD	AdS/QCD models	QGP
00000	0000	000000	000000000000000000000000000000000000000

Introduction to AdS/QCD

Anastasia Golubtsova,^a

(a) JINR BLTP

DIAS Summer School, Dubna 2016

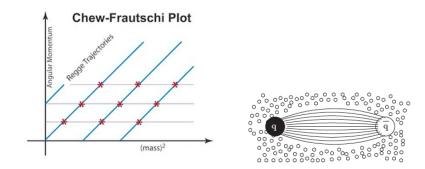
History of the String/QCD puzzle	Back to QCD	AdS/QCD models	QGP
00000	0000	000000	000000000000000000000000000000000000000
Outline			

- History of the String/QCD puzzle
 - Motivation
 - From QCD to Strings
- 2 Back to QCD
 - The AdS/CFT conjecture
 - Holographic dictionary-I
- 3 AdS/QCD models
 - Top-down approach
 - Bottom-up approach
 Improved HQCD model
- 4 QGP
 - Multiplicity
 - Holographic Wilson Loops
 - WL in time-dependent backgrounds.

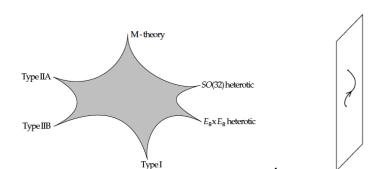
History of the String/QCD puzzle	Back to QCD	AdS/QCD models	QGP
●○○○○	0000		000000000000000000000000000000000000
Motivation			

- At strong coupling perturbative methods are inapplicable
- The lattice formulation of QCD does not work, since we have to study real-time phenomena.
- This has provided a motivation to try to understand the dynamics of QCD through the gauge/string duality
 - Wilson loops (interquark potential)
 - β -function, RG-flow
 - Thermalization

• First classical string theory was born from hadronic phenomenology



History of the String/QCD puzzle	Back to QCD	AdS/QCD models	QGP
○○●○○	0000		000000000000000000000000000000000000
Strings and anoth	er objects		



А

В

Figure: A:All string theories, and M-theory, as limits of one theory; B:A D-brane with one attached open string; Pics.from Polchinski

Dp-branes: extended objects on which open strings ends

Dp-branes carry a charge with respect to Ramond-Ramond fields, which geometrically are $p+1\mbox{-}{\rm forms.}$

Back to QCD

AdS/QCD models

Low energy limit $(l_s \ll R) \Rightarrow$ SUGRA II B

Action for SUGRA IIB

$$\begin{split} S_{IIB} &= S_{NG} + S_R + S_{CS}, \\ S_{NS} &= \frac{1}{2k_{10}^2} \int d^{10}x (-G)^{1/2} e^{-2\Phi} \left(R + 4\partial_\mu \Phi \partial^\mu \Phi - \frac{1}{2} |H_3|^2 \right), \\ S_R &= -\frac{1}{4k_{10}^2} \int d^{10}x (-G)^{1/2} \left(|F_1|^2 + |\tilde{F}_3|^2 + \frac{1}{2} |\tilde{F}_5|^2 \right), \\ S_{CS} &= -\frac{1}{4k_{10}^2} \int C_4 \wedge H_3 \wedge F_3, \\ \tilde{F}_3 &= F_3 - C_0 \wedge H_3, \quad \tilde{F}_5 = F_5 - \frac{1}{2}C_2 \wedge H_3 + \frac{1}{2}B_2 \wedge F_3 \end{split}$$

The Einstein equaitons

$$\begin{split} R_{MN} &+ 2\nabla_M \nabla_N \phi + \frac{1}{4} g_{MN} A = \frac{1}{4} H_{MAB} H_N^{AB} + \frac{1}{2e^{2\phi}} F_M F_N + \frac{1}{4} e^{2\phi} \tilde{F}_{MAB} \tilde{F}_N^{AB} \\ &+ \frac{1}{44!} e^{2\phi} \tilde{F}_{MABCD} \tilde{F}_N^{ABCD}, \\ A &= e^{2\phi} \partial_M \chi \partial^M \chi + \frac{1}{3!} e^{2\phi} \tilde{F}_{ABC} A \tilde{B} C + \frac{1}{25!} e^{2\phi} \tilde{F}_{ABCDE} \tilde{F}^{ABCDE}. \\ &+ \text{EOM for dilaton + Bianchi identities} \end{split}$$

History of the String/QCD puzzle	Back to QCD	AdS/QCD models	QGP
○○○○●	0000		000000000000000000000000000000000000
D3-branes			

The D3-brane metric

$$ds^2 = (1 + R^2/r^4)^{-1/2} (dx^i)^2 + (1 + R^4/r^4)^{1/2} (dr^2 + r^2 d\Omega_5^2)$$

 $x^i, i = 1, \ldots, 4$ – coordinates along the world-volume of the D3-branes, and Ω_5 and r are spherical coordinates.

Near-horizon limit

$$ds^{2} = R^{2} \frac{(dx^{i})^{2} + dy^{2}}{y^{2}} + R^{2} \Omega_{5}^{2}, \quad y = \frac{R^{2}}{r}.$$

- We obtain: the $AdS_5 \times S^5$ space with boundary located at y = 0.
- N D-branes on top of each other the gauge symmetry is enlarged to U(N).

History of the String/QCD puzzle	Back to QCD	AdS/QCD models	QGP 000000000000000000000000000000000000
Outline			

- - Motivation
 - From QCD to Strings
- 2 Back to QCD
 - The AdS/CFT conjecture
 - Holographic dictionary-I
- - Top-down approach
 - Bottom-up approach Improved HQCD model
- - Multiplicity
 - Holographic Wilson Loops
 - WL in time-dependent backgrounds.

Back to QCD

AdS/QCD models

Back to QCD

Back to QCD

AdS/QCD models

Back to QCD: the AdS/CFT conjecture

The AdS/CFT correspondence

Maldacena'98

The AdS/CFT conjecture claims exact equivalence between the theory in the bulk, which is a low energy approximation to D=10 IIB string theory on $AdS_5\times S^5$ the theory defined on the boundary, which is $\mathcal{N}=4$ supersymmetric Yang-Mills with gauge group $SU(N_C)$ at large N_C .

• The strong coupling regime of one theory reflects the weak coupling regime of the other one

Gubser, Klebanov, Polyakov, Witten'98

$$Z_4[\phi_0(x)] = \int \mathcal{D} \exp\{iS_4 + \int_{x^4} \phi_0 \mathcal{O}\}, \quad S_4 = \int d^4 x \mathcal{L}$$

Back to QCD

AdS/QCD models

Back to QCD: the AdS/CFT conjecture

The AdS/CFT correspondence

Maldacena'98

The AdS/CFT conjecture claims exact equivalence between the theory in the bulk, which is a low energy approximation to D=10 IIB string theory on $AdS_5\times S^5$ the theory defined on the boundary, which is $\mathcal{N}=4$ supersymmetric Yang-Mills with gauge group $SU(N_C)$ at large N_C .

• The strong coupling regime of one theory reflects the weak coupling regime of the other one

Gubser, Klebanov, Polyakov, Witten'98

$$egin{aligned} Z_4[\phi_0(x)] &= \int \mathcal{D} \exp\{iS_4 + \int\limits_{x^4} \phi_0 \mathcal{O}\}, \quad S_4 = \int d^4 x \mathcal{L} \ &Z_5[\phi_0(x)] = \int \mathcal{D}[\phi] e^{iS_5[\phi]} \end{aligned}$$

$$\begin{aligned}
J \\
\phi(x,\varepsilon) &= \phi_0(x) \\
Z_4 &= Z_5
\end{aligned}$$

Generating functional[4d sources $\phi_0(x)$] = Effective action[fields $\phi_0(x)$]

Deviation from conformal symmetry

Lattice calculations show that QCD exhibits a quasi-conformal behavior at temperatures T > 300 MeV and the equation of state $\sim E = 3P$ (a traceless conformal energy-momentum tensor).

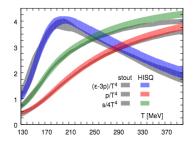


Figure: The comparison of the ${\rm HISQ}/{\rm tree}$ and stout results for the trace anomaly, the pressure, and the entropy density

Pic. from Bazavov et al.'14

History of the String/QCD puzzle	Back to QCD 00●0	AdS/QCD models	QGP 000000000000000000000000000000000000
Finite temperatur	е		

$T \neq 0$,

Witten'98

Finite temperature Yang-Mills theory in 4d dual to a $AdS_5\times S^5$ set up with a black hole(Schawrzschild- $AdS_5\times S^5$)

$$ds^{2} = \frac{1}{z^{2}} \left[-f(z)dt^{2} + (dx^{i})^{2} + \frac{dz^{2}}{f(z)} \right], \quad f(z) = 1 - \left(\frac{z}{z_{h}}\right)^{4}.$$

• The temperature of the the Yang-Mills theory is identified with the Hawking temperature of the black hole.

History of	the	String/	QCD	puzzl	e
00000					

Back to QCD

AdS/QCD models

boundary: field theory	bulk: gravity
energy momentum tensor T^{ab}	metric field g_{ab}
global internal symmetry current J^a	Maxwell field A_a
order parameter/scalar operator \mathcal{O}_b	scalar field ϕ
fermionic operator \mathcal{O}_f	Dirac field ψ
conformal dimension of the operator	mass of the field
global space symmetry	global isometry
temperature	Hawking temperature
chemical potential/charge density	boundary values
phase transition	instability of black holes

History of the String/QCD puzzle	Back to QCD	AdS/QCD models	QGP
00000	0000	000000	000000000000000000000000000000000000000
Outline			

- History of the String/QCD puzzle
 - Motivation
 - From QCD to Strings
- Back to QCD
 The AdS/CFT conjecture
 - Holographic dictionary-I
- 3 AdS/QCD models
 - Top-down approach
 - Bottom-up approach
 Improved HQCD model
- 4 QGP
 - Multiplicity
 - Holographic Wilson Loops
 - WL in time-dependent backgrounds.

Back to QCD

AdS/QCD models

AdS/QCD model: CONSTRUCTING

Back to QCD

AdS/QCD models

Top-down approach: Sakai-Sugimoto model

Top-down approach: low-energy approximation of string theory (supergravity model) trying to find a gravitational background with features similar to QCD

Sakai-Sugimoto: $D4 - D8 - \overline{D8}$ 5d theory with chiral quarks

	0	1	2	3	4	5	6	7	8	9
D4	Х	Х	Х	Х	Х					
$D8 - \overline{D8}$	Х	Х	Х	Х		Х	Х	Х	Х	Х

- a D4 brane with one direction wrapped on a circle
- quarks are included by including separated D8 and $ar{D8}$ branes
- the key feature is chiral symmetry breaking

$$\begin{split} ds^2 &= \left(\frac{u}{R}\right)^{3/2} (dx_4^2 + f(u)d\tau^2) + \left(\frac{R}{u}\right)^{3/2} \left(\frac{du^2}{f(u)} + u^2 d\Omega_4^2\right), \\ f(u) &\equiv 1 - \left(\frac{u_{KK}}{u}\right)^3. \end{split}$$

- - $\bullet\,$ Mesons correspond to fluctuations of the D8 brane solutions in the D4 background

The Dirac-Born-Infeld (DBI) action for the embedding of D8

$$S_{DBI} = Vol(S^4) \int d^4x \int z \frac{2}{3} g_s u_{kk}^5 \left(\frac{R}{u_{KK}}\right)^{3/2} (1+z^2)^{2/3} \\ \times \sqrt{1 + \frac{9}{4u_{KK}^2}} (\frac{u_{KK}}{R})^3 z^2 (1+z^2)^{1/3} \tau'(z)^2},$$

where $1+z^2=\frac{u_{KK}}{u}$, τ is periodic, $\delta\tau=\frac{4\pi}{3}\frac{R^{3/2}}{u_{KK}^{1/2}}$

Back to QCD

AdS/QCD models

Bottom-up approach: the hard wall AdS/QCD model

Effective 5D theory (gravity + matter); hadrons \equiv the normalizable modes of the 5d fields.

Erlich et al. PRL'05

The theory in the bulk

$$S = \int d^5x \sqrt{g} Tr \left\{ |DX|^2 + 3|X|^2 - \frac{1}{4g_5^2} \left(F_L^2 + F_R^2\right) \right\},\$$

with $D_{\mu}X = \partial_{\mu}X - iA_{L_{\mu}}X + iXA_{R\mu}$, $A_{L,R} = A^{a}_{L,R}t^{a}$, $m^{2}_{5} = 3$ $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} - i[A_{\mu}, A_{\nu}]$, defined on the AdS background

$$ds^{2} = \frac{1}{z^{2}} \left(\eta_{\mu\nu} dx^{\mu} dx^{\nu} + dz^{2} \right)$$

The geometry is cutted by two "branes" z = 0: "UV-brane", $z = z_{max}$:"IR-brane" (Polchinski&Strassler'02) scaling $x \to \lambda x$, $z \to \lambda z$: if x is the length scale to which physics is examined, low values of x correspond to low values of z (UV brane) large distances correspond to large z (IR) ($z_{max} \sim 1/\Lambda_{QCD}$)

Back to QCD

AdS/QCD models

Bottom-up approach: the hard wall AdS/QCD model

4d: $\mathcal{O}(x)$	$5d:\phi(x,z)$	p	$\triangle_{\mathcal{O}}$	$(m_5)^2$
$\bar{q}_L \gamma^\mu t^a q_L$	$A^a_{L\mu}$	1	3	0
$\bar{q}_R \gamma^\mu t^a q_R$	$A^a_{R\mu}$	1	3	0
$\bar{q}^{lpha}_R q^{eta}_L$	$(2/z)X^{\alpha\beta}$	0	3	-3
		-	6 17	

The expectation value of X:

$$X_0(z) = 1/2Mz + 1/2\Sigma z^3,$$

defined as the classical solutions of the field equations with BC in the $UV\,$

$$(2/\epsilon)X(\epsilon) = M$$

M is the quark mass matrix (Explicit chiral breaking), Σ is chiral condensate, M, Σ are fixed from experimental data (free parameters).

- Confinement good :)
- Realizes the chiral symmetry breaking good:)
- The resulting mass spectra for the exited mesons are contrary to the experimental data, a good Lagrangian a bad wall :(

History of the String/QCD puzzle Back to QCD AdS/QCD models QGP

Bottom-up approach: the soft wall AdS/QCD model

• Effective 5D gravity theory (+ matter), break conformal inv. of CFT: introducton of QCD Λ_{QCD}

The soft wall AdS/QCD model, Karch et al. PRD'06

The meson action

$$S = \int d^5 \sqrt{g} e^{-\Phi(z)} Tr \left[|DX|^2 + 3|X|^2 - \frac{1}{4g_5} \left(F_L^2 + F_R^2 \right) \right],$$

with $D_{\mu}X = \partial_{\mu}X - iA_{L\mu}X + iXA_{R\mu}$, $A^{M}_{L,R} = A^{Ma}_{L,R}t^{a}$, $Tr[t^{a}t^{b}] = \delta^{ab}/2$, $g_{5} = \frac{12\pi^{2}}{N_{c}}$, N_{c} - a number of colors.

$$ds^{2} = e^{2A(z)}(\eta_{\mu\nu}dx^{\mu}dx^{\nu} + dz^{2}), \quad A(z) = -\ln(z/L)$$

Confinement: soft cutoff of AdS space – running dilaton $e^{-\Phi(z)}$, $\Phi(z)=\kappa^2 z^2.$

The bulk fields X are decomposed into the scalar and pseudoscalar mesons, the chiral fields A_L and A_R – the vector and axial-vector mesons.

Bottom up approach: the soft wall AdS/QCD model

 $\rho\text{-meson}$ vecor field $V=\frac{A_L+A_R}{2}$ The classical EOM:

$$\partial_M \left(\sqrt{q} e^{-\Phi} \left[\partial^M V^N - \partial^N V^M \right] \right) = 0.$$

 $V_{\mu}(x,z)=\epsilon_{\mu}e^{iqx}\psi(x), \Rightarrow -\psi''+V(z)\psi=m_n^2\psi(z)$ Soft-wall AdS/QCD model

- describes the linear confinement :)
- desired mass spectra for the excited vector mesons $m_n^2 \sim J(L)$ (Regge behavior) :)
- can't consistently realize the chiral symmetry breaking (but seems to be sovable)

Improved HQCD model

Improved holographic QCD model

Gursoy, Kiritis Nitti

$$S_5 = -\frac{1}{16\pi G_5} \int dx^5 \sqrt{-g} \left[R + \frac{d(d-1)}{L^2} - \frac{4}{3} \left(\partial \Phi \right)^2 + V(\Phi_s) \right].$$

The metric is given by

$$ds^{2} = e^{2A(z)} (\eta_{\mu\nu} dx^{\mu} dx^{\nu} + dz^{2}).$$

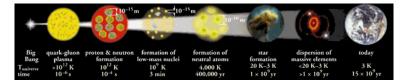
 $g_{\mu\nu}$ is dual to $T_{\mu\nu}$, ϕ is dual to $tr[F^2]$

- The potential can be tuned to reproduce the beta-function
 - For asymptotically AdS UV $V = V_0 + v_1\lambda + v_2\lambda^2 + \dots (\lambda \to 0)$
 - For confinement in the IR $V\sim\lambda^{4/3}\sqrt{\lambda}~(\lambda\rightarrow\infty)$
- Confinement finite-T transition between thermal gas and BH
- Reproduces an asymptotically-linear glueball spectrum
- With an appropriate tuning of two parameters in V the model describes well both T = 0 properties (spectra) as well as thermodynamics

History of the String/QCD puzzle	Back to QCD	AdS/QCD models	QGP
Outline	0000	000000	

- History of the String/QCD puzzle
 - Motivation
 - From QCD to Strings
- 2 Back to QCD
 - The AdS/CFT conjecture
 - Holographic dictionary-I
- 3 AdS/QCD models
 - Top-down approach
 - Bottom-up approach
 Improved HQCD model
- 4 QGP
 - Multiplicity
 - Holographic Wilson Loops
 - WL in time-dependent backgrounds.

- A new state of matter produced in Heavy-Ion collisions at **RHIC** and **LHC**
- Deconfined quarks, antiquarks, and gluons at high temperature (nuclear matter \rightarrow deconfined phase).
- QGP does not behave like a weakly coupled gas of quarks and gluons, but a strongly coupled fluid.
- Highly anisotropic at the early stage of its evolution



History of the String/QCD puzzle Back to QCD AdS/QCD models QGP

The quark-gluon plasma (2005)

 $\tau_{therm}(0.1fm/c) < \tau_{hydro} < \tau_{hard}(10fm/c) < \tau_f(20fm/c)$

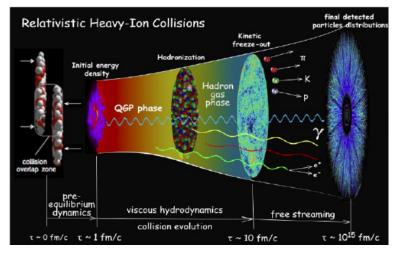


Figure: Picture from: P.Sorensen, C.Shen

Back to QCD

AdS/QCD models

QGP

The quark-gluon plasma (2005)

- Multiptlicity
- Thermalization
- Observables (Correlators, Wilson loops, etc)

We have to "mimic" the heavy ions collision

Models:

- shock waves collision in AdS
- infalling shell (Vaidya solutions)

Holographic dictionary- II

• 4d Multiplicity in HIC = BH entropy in AdS_5 Gubster et al.'08

Back to QCD

AdS/QCD models

QGP

The quark-gluon plasma (2005)

- Multiptlicity
- Thermalization
- Observables (Correlators, Wilson loops, etc)

We have to "mimic" the heavy ions collision

Models:

- shock waves collision in AdS
- infalling shell (Vaidya solutions)

- 4d Multiplicity in HIC = BH entropy in AdS_5 Gubster et al.'08
- Thermalization time in $\mathcal{M}^{1,3} = \mathsf{BH}$ formation time in AdS^5

Back to QCD

AdS/QCD models

QGP

The quark-gluon plasma (2005)

- Multiptlicity
- Thermalization
- Observables (Correlators, Wilson loops, etc)

We have to "mimic" the heavy ions collision

Models:

- shock waves collision in AdS
- infalling shell (Vaidya solutions)

- 4d Multiplicity in HIC = BH entropy in AdS_5 Gubster et al.'08
- Thermalization time in $\mathcal{M}^{1,3} = \mathsf{BH}$ formation time in AdS^5
- two point correlators = geodesics

Back to QCD

AdS/QCD models

The quark-gluon plasma (2005)

- Multiptlicity
- Thermalization
- Observables (Correlators, Wilson loops, etc)

We have to "mimic" the heavy ions collision

Models:

- shock waves collision in AdS
- infalling shell (Vaidya solutions)

- 4d Multiplicity in HIC = BH entropy in AdS_5 Gubster et al.'08
- Thermalization time in $\mathcal{M}^{1,3} = \mathsf{BH}$ formation time in AdS^5
- two point correlators = geodesics
- Wilson loops = 2-dimensional minimal surfaces

Back to QCD

AdS/QCD models

The quark-gluon plasma (2005)

- Multiptlicity
- Thermalization
- Observables (Correlators, Wilson loops, etc)

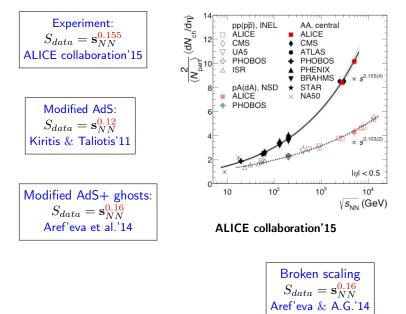
We have to "mimic" the heavy ions collision

Models:

- shock waves collision in AdS
- infalling shell (Vaidya solutions)

- 4d Multiplicity in HIC = BH entropy in AdS_5 Gubster et al.'08
- Thermalization time in $\mathcal{M}^{1,3} = \mathsf{BH}$ formation time in AdS^5
- two point correlators = geodesics
- Wilson loops = 2-dimensional minimal surfaces
- Entenglament entropy = 3-dimensional minimal surfaces

• D = 4 Multiplicity is proportional to entropy of D = 5 BH Gubser'08



Back to QCD

AdS/QCD models

Anisotropic duals

The AdS/CFT correspondence: The Field Theory

• the conformal group SO(D,2)

of a D-dimensional CFT

$$(t, x_i) \rightarrow (\lambda t, \lambda x_i)$$
, $i = 1, .., d - 1$

The Gravitational Background

• the group of isometries

of AdS_{D+1}

$$ds^{2} = r^{2} \left(-dt^{2} + d\vec{x}_{d-1}^{2} \right) + \frac{dr^{2}}{r^{2}}$$

Back to QCD

AdS/QCD models

Anisotropic duals

The AdS/CFT correspondence: The Field Theory

• the conformal group SO(D,2)

of a D-dimensional CFT

$$(t, x_i) \rightarrow (\lambda t, \lambda x_i)$$
, $i = 1, .., d - 1$

The Gravitational Background

• the group of isometries

of AdS_{D+1}

$$ds^{2} = r^{2} \left(-dt^{2} + d\vec{x}_{d-1}^{2} \right) + \frac{dr^{2}}{r^{2}}$$

Generalizations?

Back to QCD

AdS/QCD models

Anisotropic duals

The AdS/CFT correspondence: The Field Theory

- the conformal group SO(D,2)
- of a D-dimensional CFT

$$(t, x_i) \rightarrow (\lambda t, \lambda x_i)$$
, $i = 1, .., d - 1$

The Gravitational Background

• the group of isometries

of AdS_{D+1}

$$ds^{2} = r^{2} \left(-dt^{2} + d\vec{x}_{d-1}^{2} \right) + \frac{dr^{2}}{r^{2}}$$

Generalizations?

Back to QCD

AdS/QCD models

Anisotropic duals

The AdS/CFT correspondence: The Field Theory

- the conformal group SO(D,2)
- of a D-dimensional CFT

 $(t, x_i) \rightarrow (\lambda t, \lambda x_i)$, i = 1, ..., d-1

• the group of isometries

of AdS_{D+1}

$$ds^{2} = r^{2} \left(-dt^{2} + d\vec{x}_{d-1}^{2} \right) + \frac{dr^{2}}{r^{2}}$$

Generalizations?

Lifshitz-like spacetimes for holography

Lifshitz-like metrics

$$ds^{2} = r^{2\nu} \left(-dt^{2} + dx^{2} \right) + r^{2} dy_{1}^{2} + r^{2} dy_{2}^{2} + \frac{dr^{2}}{r^{2}},$$

 $\begin{array}{l} (t,x,y,r) \rightarrow (\lambda^{\nu}t,\lambda^{\nu}x,\lambda y_{1},\lambda y_{2},\frac{r}{\lambda}), \mbox{ M. Taylor'08, Pal'09.} \end{array}$ The 5d Lifshitz-like metrics, $z=\frac{1}{r^{\nu}}$

$$\begin{split} \mathsf{Type} &-(\mathbf{1},\mathbf{2}) \quad ds^2 = L^2 \left[\frac{\left(-dt^2 + dx^2 \right)}{z^2} + \frac{\left(dy_1^2 + dy_2^2 \right)}{z^{2/\nu}} + \frac{dz^2}{z^2} \right].\\ \mathsf{Type} &-(\mathbf{2},\mathbf{1}) \quad ds^2 = L^2 \left(\frac{\left(-dt^2 + dx_1^2 + dx_2^2 \right)}{z^2} + \frac{dy^2}{z^{2/\nu}} + \frac{dz^2}{z^2} \right). \end{split}$$

Type IIB SUGRA, D3 - D7-branes: Anisotropic QGP

 $\mathcal{M} = M_5 \times X_5$: M_5 is a 5d Lifshitz-like metric, X_5 is an Einstein manifold.

Type IIB SUGRA, D3 - D7-branes: Anisotropic QGP

 $\mathcal{M} = M_5 \times X_5$: M_5 is a 5d Lifshitz-like metric, X_5 is an Einstein manifold.

D3-D7 system, Azeyanagi et al.'09, Mateos&Trancanelli'09

Type IIB SUGRA, D3 - D7-branes: Anisotropic QGP

 $\mathcal{M} = M_5 \times X_5$: M_5 is a 5d Lifshitz-like metric, X_5 is an Einstein manifold.

D3-D7 system, Azeyanagi et al.'09, Mateos&Trancanelli'09

AdS/CFT: D3-probes in D3-background $AdS_5 \times S^5 \Rightarrow \mathcal{N} = 4$ SYM.

Type IIB SUGRA, D3 - D7-branes: Anisotropic QGP

 $\mathcal{M} = M_5 \times X_5$: M_5 is a 5d Lifshitz-like metric, X_5 is an Einstein manifold.

D3-D7 system, Azeyanagi et al.'09, Mateos&Trancanelli'09

$$ds^{2} = \tilde{R}^{2} \left[\rho^{2} \left(-dt^{2} + dx^{2} + dy^{2} \right) + \rho^{4/3} dw^{2} + \frac{d\rho^{2}}{\rho^{2}} \right] + R^{2} ds^{2}_{X_{5}}.$$

$$\nu = 3/2, \quad r \equiv \rho^{2/3}, \quad (t, x, y, w, \rho) \rightarrow \left(\lambda t, \lambda x, \lambda y, \lambda^{2/3} w, \frac{\rho}{\lambda} \right)$$

$\mathcal{M}_5 \times X_5$	t	x	y	r	w	s_1	s_2	s_3	s_4	s_5	
D3	×	×	\times		×						
D7	×	\times	\times			×	×	\times	×	×	

AdS/CFT: D3-probes in D3-background $AdS_5 \times S^5 \Rightarrow \mathcal{N} = 4$ SYM. D7-probes in D3-background $Lif_{IR}/AdS_{5,UV} \times X_5 \Rightarrow$ deformed SYM. Jet quenching, drag force, potentials... see Giataganas et al.'12

History of the String/QCD puzzle	Back to QCD	AdS/QCD models	QGP
00000	0000	000000	000000000000000000000000000000000000000
Possible models			

$$\begin{split} S &= \frac{1}{16\pi G_5} \int d^5 x \sqrt{|g|} \left(R[g] + \Lambda - \frac{1}{2} \partial_M \phi \partial^M \phi - \frac{1}{4} e^{\lambda \phi} F_{(2)}^2 \right), \\ \Lambda \quad \text{is negative cosmological constant.} \end{split}$$

The Einstein equations

$$R_{mn} = -\frac{\Lambda}{3}g_{mn} + \frac{1}{2}(\partial_m \phi)(\partial_n \phi) + \frac{1}{4}e^{\lambda\phi} \left(2F_{mp}F_n^p\right) - \frac{1}{12}e^{\lambda\phi}F^2g_{mn}.$$

The scalar field equation

$$\Box \phi = \frac{1}{4} \lambda e^{\lambda \phi} F^2, \quad \text{with} \quad \Box \phi = \frac{1}{\sqrt{|g|}} \partial_m (g^{mn} \sqrt{|g|} \partial_n \phi).$$

The gauge field

$$D_m\left(e^{\lambda\phi}F^{mn}\right) = 0.$$

Back to QCD

AdS/QCD models

Gravity duals: black brane and infalling shell

The Lifshitz-like black brane

$$\begin{split} ds^2 &= e^{2\nu r} \left(-f(r) dt^2 + dx^2 \right) + e^{2r} \left(dy_1^2 + dy_2^2 \right) + \frac{dr^2}{f(r)}, \\ \text{where} \quad f(r) &= 1 - m e^{-(2\nu + 2)r}. \quad \text{Aref'eva,AG, Gourgoulhon'16}. \end{split}$$

$$\nu = 4, \ \lambda = \pm \frac{2}{\sqrt{3}}, \ \Lambda = 90, \ \mu q^2 = 240.$$

The Vaidya solution in Lifshitz background

$$\begin{split} ds^2 &= -z^{-2} f(z) dv^2 - 2z^{-2} dv dz + z^{-2} dx^2 + z^{-2/\nu} (dy_1^2 + dy_2^2), \\ f &= 1 - m(v) z^{2/\nu+2}, v < 0 - \text{inside the shell}, v > 0 - \text{outside}, \\ dv &= dt + \frac{dz}{f(z)}, \quad z = \frac{1}{r^{\nu}}. \end{split}$$

Holographic Thermalization

Def.

Thermalization time at scale l is the time at which the tip of the geodesic with endpoints (-l/2) and (l/2) grazes the middle of the shell.

The Lagrangian of the pointlike probe

$$\mathcal{L} = \sqrt{-\frac{f(z)}{z^2}\frac{dv}{d\tau}\frac{dv}{d\tau} - \frac{2}{z^2}\frac{dv}{d\tau}\frac{dz}{d\tau} + \frac{1}{z^2}\frac{dx}{d\tau}\frac{dx}{d\tau} + \frac{1}{z^{2/\nu}}\left(\sum\frac{dy_i}{d\tau}\frac{dy_i}{d\tau}\right)}$$

 $\tau = x \text{ or } \tau = y_i, \ i = 1, 2.$

Back to QCD

AdS/QCD models

Holographic Thermalization

The thermalization time t_{therm} at scale l along x

$$\ell = 2z_* \int_0^1 \frac{w dw}{\sqrt{f(z_*w)(1-w^2)}}, \quad t_{\rm therm} = z_* \int_0^1 \frac{dw}{f(z_*w)},$$

where $w = \frac{z}{z_*}$, z_* is the turning point.

The thermalization time t_{therm} at scale l along y

$$\ell = 2 z_*^{1/\nu} \int_0^1 \frac{w^{-1+2/\nu} dw}{\sqrt{f(wz_*)(1-w^{2/\nu})}}, \quad t_{\text{therm}} = z_* \int_0^1 \frac{dw}{f(z_*w)}.$$

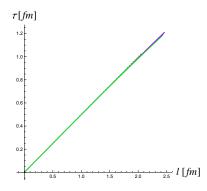
History	of	the	String/QCD	puzzle
00000				

Back to QCD

AdS/QCD models

QGP

Holographic Thermalization



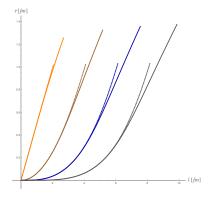


Figure: Thermalization along the longitudinal direction with m = 0.5 and m = 0.1. All lines coincide.

Figure: Thermalization along the transversal direction, $\nu = 1$ (orange), $\nu = 2$ (brown), $\nu = 3$ (blue) and $\nu = 4$ (gray).

Back to QCD

AdS/QCD models

Holographic Wilson Loops

• The expectation value of WL in the fundamental representation calculated on the gravity side: Maldacena et.al.'98

$$W[C] = \langle \operatorname{Tr}_F e^{i \oint_C dx_\mu A_\mu} \rangle = e^{-S_{string}[C]},$$

where C in a contour on the boundary, F – the fundamental representation, S is the minimal action of the string hanging from the contour C in the bulk. The Nambu-Goto action is

$$S_{string} = \frac{1}{2\pi\alpha'} \int d\sigma^1 d\sigma^2 \sqrt{-\det(h_{\alpha\beta})},\tag{1}$$

with the induced metric of the world-sheet $h_{lphaeta}$ given by

$$h_{\alpha\beta} = g_{MN} \partial_{\alpha} X^M \partial_{\beta} X^N, \quad \alpha, \beta = 1, 2,$$
⁽²⁾

 g_{MN} is the background metric, $X^M=X^M(\sigma^1,\sigma^2)$ specify the string, $\sigma^1,\,\sigma^2$ parametrize the worldsheet.

• The potential of the interquark interaction

$$W(T,X) = \langle \operatorname{Tr} e^{i \oint_{T \times X} dx_{\mu} A_{\mu}} \rangle \sim e^{-V(X)T}$$

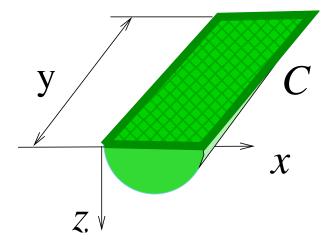
History of	the	String/QCD	puzzle
00000			

Back to QCD

AdS/QCD models

QGP

Holographic spatial Wilson loops



Back to QCD

AdS/QCD models

Holographic Wilson Loops

A similar operator to probe QCD is the spatial rectangular Wilson loop of size $X \times Y$ (for large Y)

$$W(X,Y) = \langle \mathsf{T} r e^{i \oint_{X \times Y} dx_{\mu} A_{\mu}} \rangle = e^{-\mathcal{V}(X)Y}$$

defines the so called pseudopotential $\ensuremath{\mathcal{V}}$:

$$\mathcal{V}(X) = \frac{S_{string}}{Y}.$$

The spatial Wilson loops obey the area law at all temperature, i.e.

$$\mathcal{V}(X) \sim \sigma_s X,$$

where σ_s defines the spatial string tension

$$\sigma_s = \lim_{X \to \infty} \frac{\mathcal{V}(X)}{X}.$$

Back to QCD

AdS/QCD models

Spatial WL in Lifshitz-like backgrounds

Rectangular WL in the spatial planes xy_1 (or xy_2) and y_1y_2 . Possible configurations:

• a rectangular loop in the xy_1 (or xy_2) plane with a short side of the length ℓ in the longitudinal x direction and a long side of the length L_{y_1} along the transversal y_1 direction

$$x \in [0, \ell < L_x], \quad y_1 \in [0, L_{y_1}];$$

• a rectangular loop in the xy_1 plane with a short side of the length ℓ in the transversal y_1 direction and a long side of the length L_x along the longitudinal x direction:

$$x \in [0, L_x], \quad y_1 \in [0, \ell < L_{y_1}];$$

• a rectangular loop in the transversal y_1y_2 plane with a short side of the length ℓ in one of transversal directions (say y_1) and a long side of the length L_{y_2} along the other transversal direction y_2

$$y_1 \in [0, \ell < L_{y_1}], \quad y_1 \in [0, L_{y_2}].$$

History of the String/QCD puzzle Back to QCD AdS/QCD models QGP Concentration of the String/QCD puzzle Back to QCD AdS/QCD models QGP Concentration of the String/QCD puzzle Back to QCD AdS/QCD models QGP Concentration of the String/QCD puzzle Back to QCD AdS/QCD models QGP Concentration of the String/QCD puzzle Back to QCD AdS/QCD models QGP Concentration of the String/QCD puzzle Back to QCD AdS/QCD models QGP Concentration of the String/QCD puzzle Back to QCD AdS/QCD models QGP Concentration of the String/QCD puzzle Back to QCD AdS/QCD models QGP Concentration of the String/QCD puzzle Back to QCD AdS/QCD models QGP Concentration of the String/QCD puzzle Back to QCD AdS/QCD models QGP Concentration of the String/QCD puzzle Back to QCD AdS/QCD models QGP Concentration of the String/QCD puzzle Back to QCD AdS/QCD models QGP Concentration of the String/QCD puzzle Back to QCD AdS/QCD models QGP Concentration of the String/QCD puzzle Back to QCD AdS/QCD models QGP Concentration of the String/QCD puzzle Back to QCD AdS/QCD models QGP Concentration of the String/QCD puzzle Back to QCD AdS/QCD models QGP Concentration of the String/QCD puzzle Back to QCD AdS/QCD models QGP Concentration of the String/QCD puzzle Back to QCD AdS/QCD models QGP Concentration of the String/QCD puzzle Back to QCD AdS/QCD models QGP Concentration of the String/QCD puzzle Back to QCD AdS/QCD models QGP Concentration of the String/QCD puzzle Back to QCD AdS/QCD models QGP Concentration of the String/QCD puzzle Back to QCD AdS/QCD models QGP Concentration of the String/QCD puzzle Back to QCD AdS/QCD models QGP Concentration of the String/QCD puzzle Back to QCD AdS/QCD models QGP Concentration of the String/QCD puzzle Back to QCD AdS/QCD Ads/QCD

The renormalized Nambu-Goto action

$$S_{x,y_{1(\infty)},ren} = \frac{L_{y_1}}{2\pi\alpha'} \frac{1}{z_*^{1/\nu}} \int_0^1 \frac{dw}{w^{1+1/\nu}} \left[\frac{1}{\sqrt{f(z_*w)\left(1-w^{2+2/\nu}\right)}} - 1 \right] - \frac{\nu}{z_*^{1/\nu}},$$

where $w = z/z_*$. The length scale is

$$\frac{\ell}{2} = 2z_* \int_{z_0/z_*}^1 \frac{w^{1+1/\nu} \, dw}{f(z_*w)(1-w^{2+2/\nu})}$$

Then pseudopotential $\mathcal{V}_{x,y_{1(\infty)}} = \frac{S_{x,y_{1(\infty)},ren}}{L_{y_1}}.$ For small ℓ – the deformed Coulomb part

$$\mathcal{V}_{x,y_{1(\infty)}}(\ell,
u) \underset{\ell \sim 0}{\sim} - rac{\mathcal{C}_1(
u)}{\ell^{1/
u}}$$

For large ℓ

$$\mathcal{V}_{x,y_{1(\infty)}}(\ell,\nu) \underset{\ell \to \infty}{\sim} \sigma_{s,1}(\nu) \ell.$$

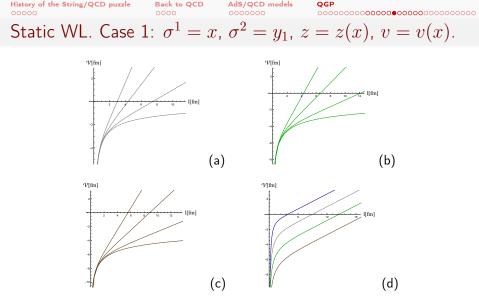


Figure: $\mathcal{V}_{x,y_{1(\infty)}}$ as a function of ℓ , $\nu = 2, 3, 4((a), (b), (c))$. The temperature T = 30, 100, 150, 200 MeV (from down to top) for all. In (d): $\mathcal{V}_{x,y_{1(\infty)}}$ for $\nu = 1, 2, 3, 4$ (from top to down) at T = 100 MeV.

The renormalized Nambu-Goto action

$$S_{y_1, x_{(\infty)}, ren} = \frac{L_x}{2\pi\alpha'} \frac{1}{z_*} \int_{z_0/z_*}^1 \frac{dw}{w^2} \left[\frac{1}{\sqrt{f(z_*w)\left(1 - w^{2+2/\nu}\right)}} - 1 \right] - \frac{1}{z_*}.$$

The length scale is

$$\ell = 2z_*^{1/\nu} \int_0^1 \frac{w^{2/\nu} dw}{f(z_*w) \left(1 - w^{2+2/\nu}\right)}$$

The pseudopotential $\mathcal{V}_{y_1, x_{(\infty)}} = \frac{\mathcal{S}_{y_1, x_{(\infty)}, ren}}{L_x}$. For small ℓ – the deformed Coulomb part

$$\mathcal{V}_{y_1, x_{(\infty)}} \underset{\ell \sim 0}{\sim} - \frac{\mathcal{C}_2(\nu)}{\ell^{\nu}}.$$

For large ℓ

$$\mathcal{V}_{y_1, x_{(\infty)}}(\ell, \nu) \underset{\ell \to \infty}{\sim} \sigma_{s, 2}(\nu) \ell$$

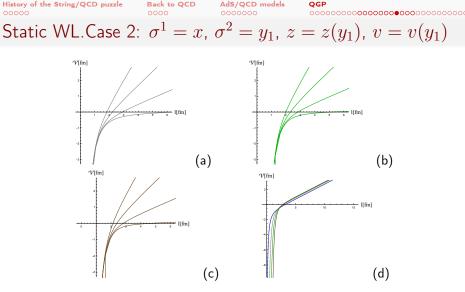


Figure: $\mathcal{V}_{y_1, x_{(\infty)}}$ as a function of ℓ for $\nu = 2, 3, 4$ ((a),(b),(c)). T = 30, 100, 150, 200 MeV from down to top, respectively, for all. In (d) \mathcal{V} for $\nu = 1, 2, 3, 4$ (from left to right, respectively) at T = 100 MeV.

History of the String/QCD puzzle Back to QCD AdS/QCD models QGP Static WL. Case 3: $\sigma^1 = y_1$, $\sigma^2 = y_2$, $z = z(y_1)$, $v = v(y_1)$

The renormalized Nambu-Goto action

$$S_{y_1y_{2(\infty)},ren} = \frac{L_{y_2}}{2\pi\alpha'} \frac{1}{z_*^{1/\nu}} \int\limits_{\frac{z_0}{z_*}}^1 \frac{dw}{w^{1+1/\nu}} \left[\frac{1}{\sqrt{f(z_*w)\left(1-w^{4/\nu}\right)}} - 1 \right] - \frac{\nu}{z_*^{1/\nu}}.$$

The length scale is

$$\ell = z_*^{1/\nu} \int \frac{dw}{w^{1-3/\nu} \sqrt{f(z_*w) \left(1 - w^{4/\nu}\right)}}.$$

The pseudopotential $\mathcal{V}_{y_1, y_{2(\infty)}} = \frac{S_{y_1, y_{2(\infty)}}}{L_{y_2}}.$ For small ℓ –

$$\mathcal{V}_{y_1, y_{2(\infty)}} \underset{\ell \to 0}{\sim} - \frac{\mathcal{C}_3(\nu)}{\ell}$$

For large ℓ

$$\mathcal{V}_{y_1, y_{2(\infty)}}(\ell, \nu) \underset{\ell \to \infty}{\sim} \sigma_{s,3}(\nu) \ell$$

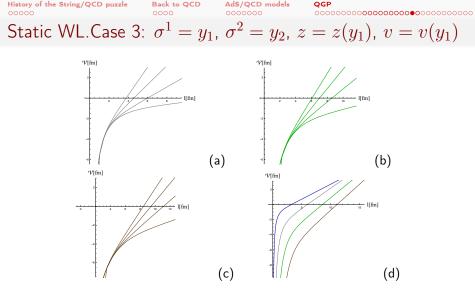


Figure: $\mathcal{V}_{y_1, y_2(\infty)}$ as a function of ℓ for $\nu = 2, 3, 4$ ((a),(b),(c), respectively). We take T = 30, 100, 150, 200 MeV from down to top, for (a),(b) and (c). In (d) $\mathcal{V}_{y_1, y_2(\infty)}$ for $\nu = 1, 2, 3, 4$ (from left to right) at T = 100 MeV.

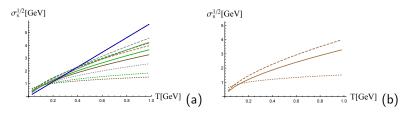


Figure: The dependence of the spatial string tension $\sqrt{\sigma_s}$ on orientation and temperature. The solid lines corresponds to the rectangular Wilson loop with a short extent in the *x*-direction, while the dashed lines correspond to a short extent in the *y*-direction. The dotted lines correspond to the rectangular Wilson loop in the transversal y_1y_2 plane. (a) Blue line corresponds to $\nu = 1$, gray lines correspond to $\nu = 2$, green lines correspond to $\nu = 3$ and the brown ones correspond to $\nu = 4$. (b) The spatial string tension $\sqrt{\sigma_s}$ for different orientations for $\nu = 4$.

Alanen et al.'09, A. Dumitru et al.'13-14

Back to QCD

AdS/QCD models

WL in time-dependent backgrounds.Case 1

$$S_{x,y_{1(\infty)}} = \frac{L_y}{2\pi\alpha'} \int \frac{dx}{z^{1+1/\nu}} \sqrt{1 - f(z,v)v'^2 - v'z'}, \quad I \equiv \frac{d}{dx}$$

The corresponding equations of motion are

$$\begin{split} v'' &= \frac{1}{2} \frac{\partial f}{\partial z} v'^2 + \frac{(\nu+1)}{\nu z} (1 - fv'^2 - 2v'z'), \\ z'' &= -\frac{\nu+1}{\nu} \frac{f}{z} + \frac{\nu+1}{\nu} \frac{f^2 v'^2}{z} - \frac{1}{2} \frac{\partial f}{\partial v} v'^2 - \frac{1}{2} fv'^2 \frac{\partial f}{\partial z} - v'z' \frac{\partial f}{\partial z}, \\ &+ 2 \frac{(\nu+1)}{\nu z} fv'z'. \end{split}$$

The boundary conditions $z(\pm \ell) = 0$, $v(\pm \ell) = t$. The initial conditions $z(0) = z_*$, $v(0) = v_*$, z'(0) = 0, v'(0) = 0. The pseudopotential is

$$\mathcal{V}_{x,y_{1(\infty)}} = \frac{S_{x,y_{1(\infty)},ren}}{L_{y_1}}$$

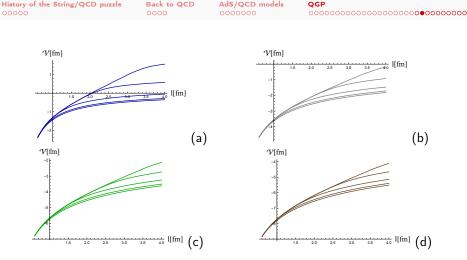


Figure: $\mathcal{V}_{x,y_{1(\infty)}}$ as a function of ℓ at fixed values of t for $\nu = 1, 2, 3, 4$ ((a),(b),(c),(d), respectively). Different curves correspond to time t = 0.1, 0.5, 0.9, 1.4, 2 (from down to top, respectively).

History of	the	String/QCD	puzzle
00000			

AdS/QCD models

$$\delta \mathcal{V}_1(x,t) = \mathcal{V}_{x,y_{1(\infty)}}(x,t) - \mathcal{V}_{x,y_{1(\infty)}}(x,t_f).$$

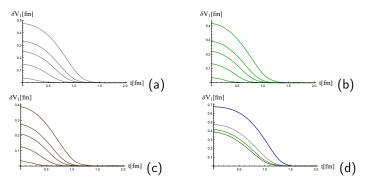


Figure: The time dependence of $-\delta V_1(x, t)$, for different values of the length ℓ , $\nu = 2, 3, 4$ ((a),(b),(c), respectively). Different curves correspond to $\ell = 0.7, 1.2, 1.5, 1.7, 2$ (from down to top, respectively). In (d) we have shown $-\delta V_1(x, t)$ as a function of t at $\ell = 2$ for $\nu = 1, 2, 3, 4$ (from top to down).

WL in time-dependent backgrounds.Case 2

$$S_{y_1, x_{(\infty)}} = \frac{L_x}{2\pi\alpha'} \int dy_1 \frac{1}{z^2} \sqrt{\left(\frac{1}{z^{2/\nu-2}} - f(z, v)(v')^2 - 2v'z'\right)}, \quad \prime \equiv \frac{d}{dy_1}.$$

The corresponding equations of motion are

$$\begin{split} v'' &= \frac{1}{2} \frac{\partial f}{\partial z} v'^2 + \frac{\nu + 1}{\nu z} \left(z^{2-2/\nu} - \frac{2\nu}{(1+\nu)} f v'^2 - 2v' z' \right), \\ z'' &= -\frac{\nu + 1}{\nu} f z^{1-2/\nu} + \frac{2(\nu - 1)z'^2}{\nu} + \frac{2}{\nu} \frac{f^2 v'^2}{z} - \frac{1}{2\nu} \frac{\partial f}{\partial v} v'^2 - \frac{1}{2\nu} f \frac{\partial f}{\partial z} v'^2 \\ &- z' v' \frac{\partial f}{\partial z} + \frac{4}{z} f z' v'. \end{split}$$

The boundary conditions $z(\pm \ell) = 0$, $v(\pm \ell) = t$. The initial conditions $z(0) = z_*$, $v(0) = v_*$, z'(0) = 0, v'(0) = 0. The pseudopotential is

$$\mathcal{V}_{y_1, x_{(\infty)}} = \frac{S_{y_1, x_{(\infty)}, ren}}{L_{y_1}}$$

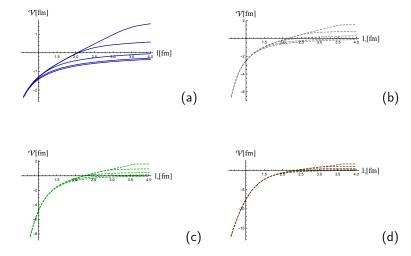


Figure: $\mathcal{V}_{y_1x_{\infty}}$ as a function of ℓ at fixed values of t for $\nu = 1, 2, 3, 4$ ((a),(b),(c),(d), respectively). Different curves correspond to t = 0.1, 0.5, 0.9, 1.4, 2 from down to top.

Back to QCD

AdS/QCD models

WL in time-dependent backgrounds.Case 2

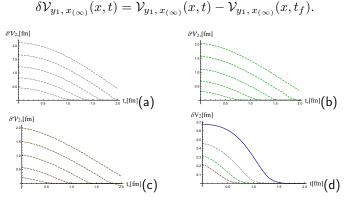


Figure: The time dependence of $-\delta \mathcal{V}_{y_1, x_{(\infty)}}(x, t)$ for different values of the length ℓ , $\nu = 2, 3, 4$ ((a),(b),(c), respectively). Different curves correspond to $\ell = 2, 2.5, 3, 3.5, 4$ (from down to top, respectively). In (d) $-\delta \mathcal{V}_2(x, t)$ as a function of t at $\ell = 2$ for $\nu = 1, 2, 3, 4$ (from top to down, respectively).

Back to QCD

AdS/QCD models

WL in time-dependent backgrounds.Case 3

$$S_{y_1, y_{2,(\infty)}} = \frac{L_{y_2}}{2\pi\alpha'} \int dy_1 \frac{1}{z^{1+1/\nu}} \sqrt{\left(\frac{1}{z^{2/\nu-2}} - f(v')^2 - 2v'z'\right)}.$$

The corresponding equations of motion are

$$v'' = \frac{1}{2} \frac{\partial f}{\partial z} v'^2 + \frac{2}{z\nu} \left(z^{2-2/\nu} - \frac{\nu+1}{2} f v'^2 - 2v'z' \right),$$

$$z'' = -\frac{2}{\nu} f z^{1-2/\nu} + 2 \frac{\nu-1}{\nu} \frac{z'^2}{z} + \frac{\nu+1}{\nu z} f^2 v'^2 - \frac{1}{2} \frac{\partial f}{\partial v} v'^2 - \frac{1}{2} f \frac{\partial f}{\partial z} v'^2$$

$$- z'v' \frac{\partial f}{\partial z} + \frac{2(\nu+1)}{\nu z} f v'z'.$$
(3)

The boundary conditions $z(\pm \ell) = 0$, $v(\pm \ell) = t$. The initial conditions $z(0) = z_*$, $v(0) = v_*$, z'(0) = 0, v'(0) = 0. The pseudopotential is

$$\mathcal{V}_{y_1, y_{2,(\infty)}}(t, \ell) = \frac{S_{y_1, y_{2,(\infty)}, ren}}{L_{y_2}}$$

History of the String/QCD puzzle	Back to QCD	AdS/QCD models	QGP
00000	0000	000000	000000000000000000000000000000000000000
			0

WL in time-dependent backgrounds.Case 3

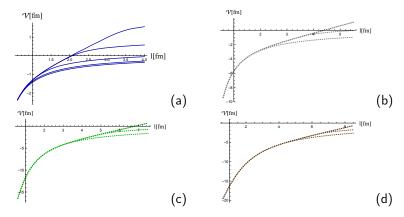


Figure: $\mathcal{V}_{y_1, y_{2,(\infty)}}(l, t)$ as a function of the length ℓ at fixed values of t, $\nu = 1, 2, 3, 4$ ((a),(b),(c),(d)). (a): we take t = 0.1, 0.5, 0.9, 1.4, 2 from down to top, respectively; for plots (b),(c),(d): t = 0.4, 1.5, 2.5, 3.34, 4 from down to top, respectively.

Back to QCD

AdS/QCD models

WL in time-dependent backgrounds.Case 3

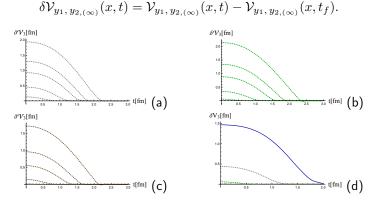


Figure: $-\delta \mathcal{V}_{y_1, y_{2,(\infty)}}(x, t)$ on t for different $\ell, \nu = 2, 3, 4$ ((a),(b),(c)). (a): l = 2.2, 3, 3.85, 4.4, 5.2 from top to down; (b): l = 3, 4.1, 5.2, 6, 7.1 from top to down; (c): l = 3.4, 4.6, 5.9, 6.8, 8 from top to down. In (d): $-\delta \mathcal{V}_3(x, t)$ as a function of t at $\ell = 3$ for $\nu = 1, 2, 3, 4$ (from top to down, respectively).

History	of	the	String/	QCD	puzzle
00000					

Back to QCD

AdS/QCD models

QGP

Thank you for your attention!