

Testing pixel detectors with X–Rays Measurements of the mini–MALTA prototype Kaloyan Metodiev 12/09/2019

OUTLINE

- Overview of CMOS technology for ATLAS
- Part I: X-Ray testbeam at Diamond Light source
- Part II: New method for estimating detector efficiency for MIPs using Diamond Light Source

n-type silicon Depletion region p-type silicon

- external applied voltage

Kaloyan Metodiev

12/09/2019

Kaloyan Metodiev

Particle

CMOS DETECTORS

CMOS

Known technology (e.g in ATLAS)

Bump bonding is expensive

Cheaper process

Novel technology in HEP \rightarrow R&D

CMOS EFFORT FOR ATLAS

AMS

LFoundry

TowerJazz

- AtlasPix
- H35Demo
- H18

Kaloyan Metodiev

• CCPDv(1-4)

LF Monopix

- CPIX
- CCPD_LF

- Mini-MALTA
- MALTA
- TJ Monopix
- Investigator (1-2)

CMOS EFFORT FOR ATLAS

AMS

LFoundry

TowerJazz

- AtlasPix
- H35Demo
- H18
- CCPDv(1-4)

LF Monopix

- CPIX
- CCPD_LF

- Mini-MALTA
- MALTA
- TJ Monopix
- Investigator (1-2)

HISTORY

- Radiation hardness: 10¹³ 1 MeV n_{eq} /cm²
- Using standard TowerJazz 180nm process
- Evolved into ALPIDE for ALICE ITS

INVESTIGATOR 1

- Radiation hardness: 10¹⁵ 1 MeV n_{eq} /cm²
- Using modified TowerJazz 180nm process
- Modified design allows full depletion of the epitaxial layer

HISTORY

- Minimal readout electronics on chip
- Many different combinations of chip parameters, such as:
 - Pixel pitch
 - Collection diode size
 - Transistor size and position
 - Reset circuit type
- Evolved to MALTA / TJ-Monopix (different front-ends)

HISTORY

- MALTA chip
 - Full sized demonstrator
 - 2x2 cm²
 - 36.4 x 36.4 μ m² pixel pitch
 - Asynchronous readout for high hit rates

Standard MALTA design

Extra-deep p-well

Gap in n-layer

Part I: X–Ray Testbeam at Diamond Light Source

	MIP testbeam	X-ray testbeam
Energy deposition	MIP leaves track of e/h pairs	e/h pairs produced in one location
Beam	Can see single particle tracks in telescope planes	Only approx. 30% of photons stop in the active silicon (for our setup)

	MIP testbeam	X-ray testbeam
Energy deposition	MIP leaves track of e/h pairs	e/h pairs produced in one location
Beam	Can see single particle tracks in telescope planes	Only approx. 30% of photons stop in silicon
Position reconstruction	Reconstructed form clustering & tracks	Move device wrt small beam spot (2 µm)

	MIP testbeam	X-ray testbeam
Energy deposition	MIP leaves track of e/h pairs	e/h pairs produced in one location
Beam	Can see single particle tracks in telescope planes	Only approx. 30% of photons stop in silicon
Position reconstruction	Reconstructed form clustering & tracks	Move device wrt small beam spot (2 µm)
Sensitivity	Absolute efficiency wrt telescope planes	High resolution images of pixels \rightarrow response to photons

SETUP

- B16 beamline at Diamond Light Source
- X-ray beam:
 - Energy: 8 keV
 - Beam spot: 2 μm
- Setup on motion stage:
 - Raster scan
 - Step size: 2 μm

QUESTION 1: HOW DOES RESPONSE CHANGE WITH IRRADIATION?

ANALYSIS

- Plot hits for one pixel
- Find pixel centre
- Normalisation
- Error estimation
- Average over pixel area
 → Relative photon response

Sample	Radiation	MALTA response (%)	P-well response (%)	N-gap response (%)	
W2R11	0	89.3 ± 2.4	91.2 ± 2.2	91.6 ± 2.2	Decrease with
W2R9	5e14 (p)	82.8 ± 2.8	87.6 ± 4.2	89.0 ± 3.8	irradiation for
W2R1	1e15 (n)	76.7 ± 3.8	91.1 ± 2.8	90.0 ± 3.1	↓ MALTA
W5R9	5e14 (p)	81.5 ± 2.8	89.8 ± 2.5	89.9 ± 2.2	
W4R9	7e13 (p)	79.6 ± 2.6	90.5 ± 2.3	90.8 ± 2.3	

Increase in response for new designs

PIXEL MAPS

- Plotting results for multiple pixels
- Sum efficiency maps
- Pixel profile
- Charge sharing
 - Charge collected by two pixels
 - >100% response

RESULTS: MALTA

12/09/2019

RESULTS: P-WELL

No change in response

12/09/2019

RESULTS: N-GAP

No change in response

12/09/2019

QUESTION 1: HOW DOES RESPONSE CHANGE WITH IRRADIATION?

- Decrease in response with irradiation on MALTA
- P-well and n-gap designs perform better
- No decrease in response with irradiation for p-well and n-gap

QUESTION 2: HOW DOES RESPONSE CHANGE WITH BIASING VOLTAGE?

DIFFERENT VOLTAGE – MALTA

Kaloyan Metodiev

12/09/2019

Higher backside voltage - modified process

Magdalena Munker, Pixel 2018

Electrostatic potential:

Two different effects:

- Higher backside voltage results in smaller potential variations along lateral pixel dimension:
 –> Electric field lines less bend towards collection electrode –> longer drift path
- <u>2. Higher backside voltage results in larger potential variations along sensor depth</u>:
 —> Enhanced electric field and faster drift along sensor depth

Electrostatic potential and drift path

-> Constant potential at pixel border results in electric field minimum (\bigstar)

-> Additional implant & gap in n-layer create larger potential difference in lateral pixel dimension

Magdalena Munker, Pixel 2018

DIFFERENT VOLTAGE – NGAP

Kaloyan Metodiev

12/09/2019

DIFFERENT VOLTAGE – PWELL

Kaloyan Metodiev

12/09/2019

QUESTION 2: HOW DOES RESPONSE CHANGE WITH BIASING VOLTAGE?

- Decrease in response with increased biasing voltage
- For all three designs
- Pixel edges seem sharper

QUESTION 3: WHAT IS THE PIXEL SHAPE?

PIXEL SHAPE

- Irradiated (1e15 n/cm²) MALTA sector
- Asymmetric pixel shape
- Double-column structure
- Due to p-well cutout

Overlay of raster scan and p-well shape

QUANTIFYING THE PIXEL ASYMMETRY

- Pixel asymmetry
- Double column structure
- Calculate average response due to charge sharing
- Asymmetry as a ratio:

$$\frac{Response_{high}}{Response_{low}} = \frac{0.69}{0.51} = 1.32$$

Sample	Dose	Asymmetry MALTA	P-well	N-gap	
W2R11	none	1.89 ± 0.10	1.49 ± 0.05	1.43 ± 0.04	Decrease
W2R9	5e14	1.49 ± 0.08	1.11 ± 0.15	0.96 ± 0.14	with
W2R1	1e15	1.16 ± 0.09	1.07 ± 0.13	1.15 ± 0.08	irradiation
W5R9	5e14	1.39 ± 0.08	1.02 ± 0.07	1.12 ± 0.06	
W4R9	7e13	1.22 ± 0.09	1.02 ± 0.08	1.09 ± 0.10	

Decrease for new designs

12/09/2019

QUESTION 3: WHAT IS THE PIXEL SHAPE?

- Asymmetric pixel shape due to p-well cutout
- Asymmetry smaller for new designs
- Asymmetry decreases with irradiation

QUESTION 4: DOES THE CHARGE SHARING CHANGE WITH IRRADIATION?

CHARGE SHARING – BASIC ANALYSIS

- Summed single pixel response
- Get the shape of the charge sharing regions
- + single pixel information

CHARGE SHARING – CLUSTERING ANALYSIS

- Consider 25 ns events
- Check for hits in neighbouring pixels
- Consider only visible pixels in scan
- \rightarrow Remove halo hits and noisy pixels
- Threshold on number of hits
- \rightarrow Remove halo hits in visible pixels
- Just cluster size (no effect of depletion depth or response loss in corners)

Clustering analysis

COMPARISON

Clustering analysis

Our previous analysis

CHARGE SHARING EXTENTS

Sample	Radiation	MALTA charge sharing (µm)	P-well charge sharing (µm)	N-gap charge sharing (µm)
W2R11	0	4.5 ± 1.5	5.4 ± 1.3	4.5 ± 1.8
W2R9	5e14 (p)	2.6 ± 1.8	5.4 ± 2.2	5.5 ± 2.0
W2R1	1e15 (n)	3.2 ± 2.0	6.1 ± 2.0	6.5 ± 2.6
W5R9	5e14 (p)	2.4 ± 2.0	4.5 ± 1.8	3.7 ± 2.7
W4R9	7e13 (p)	2.4 ± 1.9	4.1 ± 1.9	4.6 ± 1.0

Decrease with irradiation for MALTA

No decrease for new designs

QUESTION 4: DOES THE CHARGE SHARING CHANGE WITH IRRADIATION?

- Two methods: I. Pixel response analysis
 II. Clustering analysis
- Charge sharing decreases with irradiation for MALTA
- No decrease with irradiation for p-well and n-gap

Part II: New method for estimating detector efficiency for MIPS using Diamond Light Source

PHOTON VS PROTON TESTBEAM RESULTS

- MALTA SPS testbeam
- \rightarrow Higher efficiencies

Protons

Average: 96% Minimum: 90%

Photons

Average: 89% Minimum: 20%

PHOTON VS PROTON ENERGY DEPOSITION

PHOTON VS PROTON TESTBEAM RESULTS

- Assumption: Low response in the corners with X-rays due to depletion depth
- \rightarrow X-ray map effectively gives us map of depletion depth
- Would a MIP still deposit enough energy to be seen?

 \rightarrow Idea: Get analogue MIP response in centre and scale it to corners

ANALYSIS – ON A SINGLE ANALOGUE PIXEL

- Source measurements an analogue MALTA pixel
- Fe55: Convert mV scale to electrons
- Sr90: Get Landau
- \rightarrow peak: what a MIP would deposit at full depletion

RESULTS

Fe 55 measurement:

Sr 90 measurement:

ANALYSIS

ANALYSIS

- Scale Landau to expected depletion depth
- Check what percentage is above threshold
- → MIP efficiency

- Propagate errors from:
 - Fitting the Landau
 - Pixel threshold
 - Normalisation

MIP DETECTION PERFORMANCE

MALTA sector before irradiation – threshold 250 e

Diamond

MIP DETECTION PERFORMANCE

MALTA sector after irradiation (1e15 n/cm²) – threshold 450e

PosY (µm)

Average: 72%

PosX (µm)

0.2

NEW DESIGNS

Extrapolate MIP efficiencies for new designs after irradiation (1e15 n/cm²) – threshold 200e

CONCLUSIONS

- X-Ray testbeam provides high resolution information about charge collection shape
- New designs perform better than standard MALTA
 - MALTA response decrease by >10% for 1x10¹⁵ n/cm²
 - P-well and n-gap response do not decrease

CONCLUSIONS

- Response decreases as a function of biasing voltage
- Quantified pixel asymmetry for different designs
- Charge sharing with clustering analysis
- Could qualitatively reproduce results from MIP testbeams

Kaloyan Metodiev

Thank you!

ouestions?

Kaloyan Metodiev

Additional slides

CHARGE SHARING PERCENTAGES

Sample	Radiation	MALTA charge	P-well charge sharing (%)	N-gap charge sharing
W2R11	0	15.8	20.3	16.9
	•			
W2R9	5e14 (p)	7.7	17.9	21.18
W2R1	1e15 (n)	7.1	23.6	21.3
W1R9	7e14 (p)	17.8	23.7	25.6
W5R9	5e14 (p)	7.3	14.1	15.4
W4R9	7e13 (p)	8.4	14.9	15.7

Decrease with radiation for MALTA

CHARGE SHARING EXTENTS

Sample	Radiation	MALTA charge sharing (µm)	P-well charge sharing (µm)	N-gap charge sharing (µm)	
W2R11	0	4.5 ± 1.5	5.4 ± 1.3	4.5 ± 1.8	
W2R9	5e14 (p)	2.6 ± 1.8	5.4 ± 2.2	5.5 ± 2.0	
W2R1	1e15 (n)	3.2 ± 2.0	6.1 ± 2.0	6.5 ± 2.6	
W1R9	7e14 (p)	4.8 ± 1.4	6.1 ± 1.3	6.0 ± 3.1	
W5R9	5e14 (p)	2.4 ± 2.0	4.5 ± 1.8	3.7 ± 2.7	
W4R9	7e13 (p)	2.4 ± 1.9	4.1 ± 1.9	4.6 ± 1.0	

Decrease with radiation for MALTA

DIFFERENT BIASING VOLTAGES

Sample	Voltage	MALTA efficiency (%)	P-well efficiency (%)	N-gap efficiency (%)	
W2R1	-1.5V	76.7 ± 6.1	91.1 ± 3.8	90.0 ± 4.9	Decrease with
	-20V	72.2 ± 6.5	86.6 ± 8.2	86.4 ± 4.8	bias voltage

Sample	Voltage	MALTA efficiency (%)	P-well efficiency (%)	N-gap efficiency (%)	
W1R9	-1.5V	90.8 ± 3.6	93.0 ± 2.8	92.6 ± 3.6	No change
	-8V	91.1 ± 3.2	92.9 ± 2.7	93.1 ± 3.1	

SR-90 WAVEFORMS

ERROR ANALYSIS

RADIATION DAMAGE

• Surface damage:

- Total ionising dose (TID) effects
- In units of X-ray equivalent Rad
- Affects electronics in CMOS

• Bulk damage

- Non-ionising energy dose (NIEL) effects
- In units of 1MeV neutron equivalent does (n/cm²)
- E.g. causes crystal defects (displaced atom and vacancy)

MINIMALTA

- CMOS prototype with 36.4 x 36.4 μ m² pixel size
- New designs to improve charge collection in pixel edges

