

Nuclotron-based Ion Collider fAcility

Production and reconstruction of the short-lived resonances at NICA-MPD

D. Ivanishchev, D. Kotov, E. Kryshen, M. Malaev, V. Riabov, Yu. Ryabov

This work was supported by RFBR according to the research project № 18-02-40038

Outline

- Motivation for resonance studies in heavy-ion collisions
- Predictions for resonance properties in heavy-ion collisions at NICA energies
- Feasibility studies for resonance reconstruction at NICA-MPD
- Conclusions

Resonances in heavy-ion collisions

ρ(7	70) K*(892	c) ⁰ K*(892) ⁺	φ(1020) Σ	E(1385)± /	A(1520) E(153	(0)
uū ,	$\frac{d\bar{d}}{\sqrt{2}}$ ds	us	SS	uus dds	uds uss	
Γ	Particle	Mass (MeV/c ²)	Width (MeV/ c^2)	Decay	BR (%)	
	ρ ⁰	770	150	π+π	100	
	$K^{\star \pm}$	892	50.3	π±Ks	33.3	
	K*0	896	47.3	πK+	66.7	
	ф	1019	4.27	K+K-	48.9	
	Σ^{\star_+}	1383	36	π+Λ	87	
	$\Sigma^{\star_{-}}$	1387	39.4	πΛ	87	
	Λ(1520)	1520	15.7	K-p	22.5	
	Ξ^{*0}	1532	9.1	π+Ξ-	66.7	

- Wide variety of resonances in the PDG, most popular are listed on the top
- Vacuum properties of these particles are well defined (m, cτ, BR etc.)
- Copiously produced in heavy-ion collisions at ~ GeV energies
 → relatively easy to measure in hadronic decay channels
- Probe reaction dynamics and particle production mechanisms vs. system size and $\sqrt{s_{NN}}$:
 - \checkmark hadron chemistry and strangeness production
 - \checkmark reaction dynamics and particle p_{T} spectra
 - \checkmark lifetime and properties of the hadronic phase

✓ ...

✓ flow, comparison with e^+e^- measurements, jet quenching, background for other analyses, etc.

Strangeness enhancement in pp, p-A and A-A

- Observed in heavy-ion collisions at AGS, SPS, RHIC and LHC
- For the first time observed in pp and p-A collisions by ALICE at the LHC
- Observed for ground-state hadrons and resonances $(\phi/\pi, \Sigma^*/\pi, \Xi^*/\pi)$
- Origin of the strangeness enhancement in small/large systems is still debated
- Strangeness production in A-A collisions is reproduced by statistical hadronization models
- Canonical suppression models reproduce results in pp and p-A except for ϕ
- ϕ with hidden strangeness is not subject to canonical suppression $\rightarrow \phi$ is a key observable !!!

Hadronization at intermediate momenta

- Baryon puzzle increased baryon-to-meson (p/ π , Λ/K_s^0 , Λ_c^+/D) ratios in heavy-ion collisions at RHIC and the LHC
- Driving force of enhancement is not yet fully understood:
 - ✓ particle mass (hydrodynamic flow)?
 - ✓ quark count (baryons vs. mesons)?
- \$\overline and K^{*0}\$ are well suited for tests as mesons with masses very close to that of a proton:
- $\checkmark \Delta m_{\phi} \sim 80 \text{ MeV}/c^2$, $\Delta m_{K^*0} \sim -45 \text{ MeV}/c^2$

Hadronic phase and medium modifications

increasing lifetime									
	ρ(770)	K [*] (892)	Λ(1520)	Ξ(1530)	φ(1020)				
cτ (fm/c)	1.3	4.2	12.7	21.7	46.2				
σ _{rescatt}	$\sigma_{\pi}\sigma_{\pi}$	$\sigma_{\pi}\sigma_{K}$	$\sigma_K \sigma_p$	$\sigma_{\pi}\sigma_{\Xi}$	$\sigma_{\rm K}\sigma_{\rm K}$				

- Resonances have small lifetimes of $c\tau \sim 1 45$ fm, part of them decays in the fireball
- Reconstructed resonance yields in heavy ion collisions are defined by:
 - \checkmark resonance yields at chemical freeze-out
 - ✓ hadronic processes between chemical and kinetic freeze-outs:
 rescattering: daughter particles undergo elastic scattering or pseudo-elastic scattering through a different resonance → parent particle is not reconstructed → loss of signal

regeneration: pseudo-elastic scattering of decay products ($\pi K \rightarrow K^{*0}$, KK $\rightarrow \phi$ etc.) \rightarrow increased yields

- SPS/RHIC/LHC results for resonance yields support the existence of a hadronic phase that lives long enough to cause a significant reduction of the reconstructed yields of short lived resonances
- Lower limit for the lifetime of the hadronic phase, $\tau > 2$ fm/c*

^{*} G. Torrieri and J. Rafelski, J. Phys.G 28, 1911 (2002); C. Markert et al., arXiv:hep-ph/0206260v2 (2002)

Model predictions for resonances at NICA

- UrQMD, PHSD, PLUTO, AMPT, EPOS ...
- General predictions:
 - \checkmark resonances are still copiously produced and can be used to study physics of heavy-ion collisions
 - ✓ models predict enhanced production of particles with strangeness and different interplay of mechanisms responsible for shaping of the particle p_T spectra.

 Eventually, model predictions (integrated yields, <p_T>, particle ratios etc.) should be compared to data to differentiate different model assumptions

Hadronic phase and particle ratios

- Models with hadronic cascades (UrQMD, PHSD, AMPT) \rightarrow properties of hadronic phase
- Models predict centrality dependent ρ/π , K^{*}/K, Λ^*/Λ and ϕ/K ratios in AuAu@11
- Ratios are suppressed going from peripheral to central collisions for resonances with small cτ
- Results are qualitatively similar to those obtained at SPS/RHIC/LHC

Hadronic phase and particle ratios

Modifications occur at low momentum as expected for hadronic phase effects

- Models predict yield modifications for resonances qualitatively similar to those observed at higher collision energies:
 - \checkmark lifetime and density of the hadronic phase are high enough
 - ✓ modification of particle properties in the hadronic phase should be taken into account when model predictions for different observables are compared to data
 - \checkmark resonances can be used as a tool to tune hadronic phase simulations

CA MPD experiment, Phase 1

- Phase 1: TPC, TOF, FFD, FCAL u ECAL
- Detector is ideologically and constructively close to STAR and ALICE
- Startup in 2021-2022

Feasibility studies, framework

- Simulated minbias AuAu@11 collisions using UrQMD 3.4 with default settings
- Tracked simulated particles through the MPD Phase-I detector using *mpdroot*
- Analysis cuts were optimized for higher signal significance (no p_T variation)
 - Event selection:
 - ✓ $|Z_{vrtx}|$ < 50 cm, realistic distribution
 - Basic track selections:
 - ✓ number of TPC hits > 24
 - $\checkmark \quad |\eta| < 1.0$
 - \checkmark p_T > 50 MeV/c
 - ✓ TPC-TOF combined PID, probability > 0.5 (*mpdpid* class by A. Mudrokh)
 - \checkmark TPC-refit for kaons and protons based on track PID hypothesis
 - Primary tracks:
 - $\checkmark \quad \left| \mathsf{DCA}(x,y,z) \right| \, < 2\sigma$
 - V0 & cascades:
 - ✓ topology cuts for weakly decaying secondary particles ($K_s \rightarrow \pi\pi, \Lambda \rightarrow p\pi, \Xi \rightarrow \Lambda\pi$)
 - Combinatorial background:
 - event mixing $(|\Delta_{Zvrtx}| \le 2 \text{ cm}, |\Delta_{Mult}| \le 20, N_{ev} = 10)$

Feasibility study, $\phi(1020)$

- $\phi(1020) \rightarrow K^+K^-, BR = 48.9 \%$
- Acceptance x reconstruction efficiency: $A \cdot \in = N_{rec}(\phi \rightarrow K^+K^-) / N_{gen}(\phi \rightarrow K^+K^-)$
- Efficiency grows with transverse momentum, nearly zero at $p_T < 200$ MeV/c
- Particles can be reconstructed in the rapidity range, |y| < 1.0

φ(1020), reconstructed peaks

- Mixed-event combinatorial background is scaled to foreground at high mass and subtracted
- Distribution is fit to Voigtian function + constant (p0)
- Signal can be reconstructed at $p_T > 0.2$ GeV/c, ~ 90% of the total yield in this range for ϕ
- High-p_T reach is limited by available statistics

$\phi(1020)$, reconstruction

- Monte Carlo Closure Test
- Full chain reconstruction at |y| < 1.0
- Reconstructed spectrum matches the generated one within uncertainties
- Measurements are possible at $p_T > 0.2$ GeV/c, 90% of the total yield

Feasibility study, $\rho(770)^0$

- $\rho(770)^0 \rightarrow \pi^+ \pi^-, BR \sim 100 \%$
- Acceptance x reconstruction efficiency: $A \in N_{rec}(\rho \to \pi^+ \pi^-) / N_{gen}(\rho \to \pi^+ \pi^-)$
- Efficiency grows with transverse momentum
- Particles can be reconstructed in the rapidity range, |y| < 1.0

$\rho(770)$, reconstructed peaks

 Mixed-event combinatorial background is scaled to foreground at high mass and subtracted

• "Known" contributions from K_s , ω , K^* are subtracted (need to be measured in advance); f0, f2 are missing in simulation

 Distribution is fit to BW function + pol2, mass resolution is of no importance

- Signal can be reconstructed from zero momentum
- High-p_T reach is limited by available statistics

$\rho(770)$, signal extraction – practice tests

Phys.Rev. C99 (2019) no.6, 064901

Fig. 1: (Color online) Invariant mass distributions for $\pi^+\pi^-$ pairs after subtraction of the like-sign background. Plots on the left and right are for the low and high transverse momentum intervals, respectively. Examples are shown for minimum bias pp, 0–20% and 60–80% central Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV. Solid red curves represent fits to the function described in the text. Colored dashed curves represent different components of the fit function, which includes a smooth remaining background as well as contributions from K_S^0 , ρ^0 , $\omega(782)$, $K^*(892)^0$, $f_0(980)$ and $f_2(1270)$. See text for details.

$\rho(770)$, reconstruction

- Monte Carlo Closure Test
- Full chain reconstruction at |y| < 1.0
- Reconstructed spectrum matches the generated one within uncertainties
- Measurements are possible at $p_T > 0$ GeV/c

Feasibility study, K^{*}(892)⁰

- $K^*(892)^0 \to \pi^{\pm}K^{\pm}, BR = 66.7 \%$
- Acceptance x reconstruction efficiency: $A \in N_{rec}(K^* \to \pi K) / N_{gen}(K^* \to \pi K)$
- Efficiency grows with transverse momentum
- Particles can be reconstructed in the rapidity range, |y| < 1.0

K*(892)⁰, reconstructed peaks

- Mixed-event combinatorial background is scaled to foreground at high mass and subtracted
- Fit to Voigtian + pol2 (p0-p2)
- Signal can be reconstructed from zero momentum
- High-p_T reach is limited by available statistics

K^{*}(892)⁰, reconstruction

- Monte Carlo Closure Test
- Full chain reconstruction at |y| < 1.0
- Reconstructed spectrum matches the generated one within uncertainties
- Measurements are possible at $p_T > 0$ GeV/c

Feasibility study, K^{*}(892)[±]

- $K^*(892)^{\pm} \rightarrow \pi^{\pm}K_s (K_s \rightarrow \pi^+\pi^-)$
- Decay chain includes weak decay of $K_s \rightarrow V0$ vertex
- Acceptance x reconstruction efficiency: $A \in N_{rec}(K^* \to \pi K_s) / N_{gen}(K^* \to \pi K_s)$
- Efficiency is lower, increases with transverse momentum
- Particles can be reconstructed in the rapidity range, |y| < 1.0

K^{*}(892)[±], reconstructed peaks

- Mixed-event combinatorial background is scaled to foreground at high mass and subtracted
- K^{*} peak is fit to Voigtian + pol2 (p0-p2)
- Signal can be reconstructed starting from zero momentum
- High-p_T reach is limited by available statistics

NICA-MPD Seminar, 12.09.2019

K^{*}(892)[±], reconstruction

- Monte Carlo Closure Test
- Full chain reconstruction at |y| < 1.0
- Reconstructed spectrum matches the generated one within uncertainties
- Measurements are possible at $p_T > 0$ GeV/c

Feasibility study, $\Lambda(1520)$

• $\Lambda(1520) \rightarrow pK^{-}$

- Acceptance x reconstruction efficiency: $A \cdot \in = N_{rec}(\Lambda^* \to pK^-) / N_{gen}(\Lambda^* \to pK^-)$
- Efficiency increases with transverse momentum
- Particles can be reconstructed in the rapidity range, |y| < 1.0

$\Lambda(1520)$, reconstructed peaks

- Mixed-event combinatorial background is scaled to foreground at high mass and subtracted
- Λ^* peak is fit to Voigtian + pol2 (p0-p2)
- Signal can be reconstructed starting from zero momentum
- High-p_T reach is limited by available statistics

NICA-MPD Seminar, 12.09.2019

$\Lambda(1520)$, reconstruction

- Monte Carlo Closure Test
- Full chain reconstruction at |y| < 1.0
- Reconstructed spectrum matches the generated one within uncertainties
- Measurements are possible at $p_T > 0$ GeV/c

Feasibility study, $\Sigma(1385)^{\pm}$

- $\Sigma(1385)^{\pm} \rightarrow \pi^{\pm} \Lambda (\Lambda \rightarrow p\pi)$
- Decay chain includes weak decay of $\Lambda \rightarrow V0$ vertex
- Acceptance x reconstruction efficiency: $A \in = N_{rec}(\Sigma^* \to \pi^{\pm} \Lambda) / N_{gen}(\Sigma^* \to \pi^{\pm} \Lambda)$
- Efficiency is lower, increases with transverse momentum
- Particles can be reconstructed in the rapidity range, |y| < 1.0

$\Sigma(1385)^{\pm}$, reconstructed peaks

- Mixed-event combinatorial background is scaled to foreground at high mass and subtracted
- Σ^* peak is fit to Voigtian + pol2 (p0-p2)
- Signal can be reconstructed starting from zero momentum
- High-p_T reach is limited by available statistics

$\Sigma(1385)^{\pm}$, reconstruction

- Monte Carlo Closure Test
- Full chain reconstruction at |y| < 1.0
- Reconstructed spectrum matches the generated one within uncertainties
- Measurements are possible at $p_T > 0$ GeV/c

Feasibility study, $\Xi(1530)^0$

- $\Xi(1530)^0 \rightarrow \pi^+\Xi^- (\Xi^- \rightarrow \Lambda \pi^-, (\Lambda \rightarrow p \pi^-))$
- Acceptance x reconstruction efficiency: $A \in N_{rec}(\Xi^* \to \pi^+ \Xi^-) / N_{gen}(\Xi^* \to \pi^+ \Xi^-)$
- Low efficiency, increases with transverse momentum
- Particles can potentially be reconstructed in the rapidity range, |y| < 1.0

$\Xi(1530)^0$, reconstructed peak

p_T > 1.0 GeV/c

- Signal is observed at $p_T > 1 \text{ GeV/c}$
- Statistics hungry analysis

Summary

- \checkmark Resonance study is an important part of the MPD physical program
- ✓ Resonances are expected to be sensitive to properties of the partonic/hadronic medium produced in heavy-ion collisions at NICA energies
- ✓ Resonances can be reconstructed/measured using the MPD detector from zero momentum to ~ 3 GeV/c with 10⁷ minimum bias events sampled, 10⁸ events is needed for multiplicity dependent study → within expectations for year-1 running

BACKUP