

Comparison of AZ and VR reconstruction of ECal

- Results of different clusterizations
- $\boldsymbol{\theta}$ correction for the Urqmd events

Yan Huang, Victor Riabov, Boyana Dabrowska, Igor Tyapkin and Yi Wang

Scale of the reconstructed energy loss

- Box Gen Single γ
- Energy: 200, 300, 500MeV, 1GeV, 2GeV
- $32^{\circ} < \theta < 146^{\circ}$ $0^{\circ} < \phi < 360^{\circ}$
- Z = 0 cm
- Cut: |y|<0.5
- 1 primary track reconstructed

Average energy loss reconstructed as a function of generated energy

Distribution of the reconstructed energy loss

Energy generated(black line) and energy with scale(red line) for Box generator(Left) and Urqmd generator(right)

Energy non-linearity

- Urqmd Gen Gamma
- Au + Au $\sqrt{s} = 11 GeV$ b<3fm
- Cut: |y|<0.5, |Zvert|<50cm
- $\frac{E_{rec}}{E_{gen}} > 0.5$ • $\frac{\Delta E}{E_{gen}} > 3\sigma$ $\sigma = \frac{0.06}{\sqrt{E_{gen}}}$

Red circle: AZ Urqmd

Blue square: AZ Single

Red square: VR Urqmd

2%-5% low energy for AZ <2% for VR

Energy Resolution

Red circle: AZ Urqmd

Blue square: AZ Single γ

Red square: VR Urqmd

Black circle: VR Single γ

A little smaller Small statistics for high Energy (1000 Evts)

Spatial Resolution

Photon Efficiency

- Efficiency with basic cuts:
 - \checkmark Events: UrQMD, |z-vertex| < 20 cm
 - ✓ Photons: |y| < 0.5, T < 2 ns, $N_{towers} \ge 2$ (the latter two have marginal effect on efficiency)

Pi0 centrality(b<3fm)

• Urqmd Gen π^0

- $Au + Au \quad \sqrt{s} = 11 GeV$ b<3fm
- Cut: |y|<0.5, |Zvert|<50cm

• E>0

136-140MeV/c VR

0.015-0.025 MeV/c AZ 0.009-0.012 MeV/c VR

Pi0 peripheral (10<b<15fm)

134-140Mev/c AZ 132-134MeV/c VR

Pi0 minbias(b<15fm)

140-142Mev/c AZ 133-138MeV/c VR

0.012-0.02 MeV/c AZ 0.008-0.011 MeV/c VR

Pi0 Efficiency minbias

- \checkmark Events: UrQMD, |z-vertex| \leq 50 cm
- ✓ Photons: T < 2 ns, $N_{towers} \ge 2$, $E_{\gamma} > 0$ MeV
- ✓ Pairs: |y| < 0.5
 - T<15ns
- $\Delta m < 3\sigma(0.02)$

Theta Correction

- Box Gen
- EvtNum 1m
- Energy: 0-2GeV
- $0^{\circ} < \theta < 180^{\circ}$ $0^{\circ} < \phi < 360^{\circ}$
- Z = 0cm $D_Z = 50cm$

Fit function from Boyana

No Correction

• Urqmd Gen

• $Au + Au \quad \sqrt{s} = 11 GeV$ b<3fm

The reconstruction results is little affected by the correction

2-photon mass

2-photon mass

2-photon mass

Fit function from distribution

Summary

- ✓ The non-linearity of AZ clusterization is 2%-5% and is smaller than 2% for VR clusterization.
- ✓ The energy resolution is 5-15%, the resolution of AZ clusterization is a little larger than VR for low energy.
- ✓ The results of reconstruction of π^0 of AZ clustrization is worsen than VR.
- ✓ Theta correction not works for Urqmd events, more precise correction is needed.
- ✓ Theta correction is not so important for the reconstruction of π^0 of Urqmd.

Thanks for your attention!

BackUp

Number of hits reconstructed per event

Occupancy

18

Correction by Z

	V 0		Z < 0	Z > 0
-50	0	50	V0 + step*z[cm]	
1.968	2.29722	0.197007	-0.0065844	-0.04200426
-0.1953	-0.201742	-0.0501478	0.00012884	0.003031884
0.006799	0.00608788	1.42E-03	1.42224E-05	-0.000093298
-9.19E-05	-8.08E-05	-2.44E-05	-2.20546E-07	1.128294E-06
5.51E-07	4.85E-07	1.83E-07	1.32842E-09	-0.00000006
-1.25E-09	-1.07E-09	-4.63E-10	-3.49E-12	1.222122E-11
	-50 1.968 -0.1953 0.006799 -9.19E-05 5.51E-07 -1.25E-09	V0-5001.9682.29722-0.1953-0.2017420.0067990.00608788-9.19E-05-8.08E-055.51E-074.85E-07-1.25E-09-1.07E-09	V0-5001.9682.297220.197007-0.1953-0.201742-0.05014780.0067990.006087881.42E-03-9.19E-05-8.08E-05-2.44E-055.51E-074.85E-071.83E-07-1.25E-09-1.07E-09-4.63E-10	V0 Z < 0 -50 0 50 V0 + ste 1.968 2.29722 0.197007 -0.0065844 -0.1953 -0.201742 -0.0501478 0.00012884 0.006799 0.00608788 1.42E-03 1.42224E-05 -9.19E-05 -8.08E-05 -2.44E-05 -2.20546E-07 5.51E-07 4.85E-07 1.83E-07 1.32842E-09 -1.25E-09 -1.07E-09 -4.63E-10 -3.49E-12

