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Greens Function transforms in a specific manner under the
variation of a gauge: (LKF-transformations in QED)

Landau-Khalatnikov-Fradkin transformations Ward-Fradkin-Green-Takahashi identities
(LKFT) (WFGTI)

Non perturbative in nature Non perturbative in nature

Govern the behavior of a Relate different Greens functions under
single Green function when variation of local gauge transformations.
covariant gauge parameter is performed.

WFGTI holds in one gauge, then if the Green functions
iInvolved are transformed to another gauge under LKFT, the
WFGTI in that other gauge will be satisfied.



LKF transformations (Field Dependent gauge transformations)
for the photon propagator are

Dyy(2,A) = Dyy(2,0) + 9,0, A(2)
and for the fermion propagator, these become

S(z,A) = S(z. 0)e—Aa(0)—Aa(x)]
Related to particular choice of gauge ﬁxing
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Ward-Takahashi Identity and Bare Vertex

Relate Fermion propagator with gauge boson vertex

q9.T*(k,p) = Sg' (k) — S&'(p)

.

Replace with bare vertex ~*

K p Mk M(p?)

=70 " T F(R) T Fp)

It can not be ex,oected to be sa’cisﬁed in all gauges. In Landau Gauge F( k2) = F( p’) =1

above equa‘cion gives

M(p*) = M(k?)

———

This equation does not hold true except for k?and p* — 0, where
this mass function is constant.



WTI and Longitudinal Vertex

A Straight forward conclusion from WTI is that
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\ F(p®)

S
Kinematical smgu an‘cy Fp) = $— M(p?)
K —_ 1 ﬂ " 'A/t(k:2 I
() = s (7~ 7O~ P | 4

Let k* — p* without demanding k — p
1 [ K 4 ]

—

k? —p* |F(k%) F(p?)

Ball and Chiu noticed that we can decompose the full non-
perturbative vertex into two comp.; Longitudinal and Transverse



Qu T(kp =0

' (k,p) = I';( k;-{'-FT (k,p) \

By deﬁniﬁon, this is vmspecgcied on WTI.

BC made a crucial assumption, that the vertex should be ﬁree ﬁrom kinematical singularity. This led to the Unique

form of the [ongitudinal part of the vertex.

This can be taken care of if we start with k — p i.e., WTI goes to WI

dSE (p)
- ['# ,
o (p, p)

) 1 1 o1 1 (k)RR P
Ip(k,p) = 2 | F(k?) + F(p’)]7 +2 [F(kQ) F(pz)] k? — p?
MK M(P’)] (k+ p)*

F(k?)  F(p?) | k? — p?

Free ﬁrom Kinematical Singularity.




The Transverse Vertex

Again BC has made an important contribution:

3- Four Vectors —’ v, k4 pF
Four Lorentz Scalars —l 1, K P KD

v, K, Y,
12 Independent vectors — k*,  Kk*,  pk*, | K B k*

R R B Coeficient

identically

v, (k+ o (k4 Bk + D)

The remaining 8 has to satisfy —> T =0

I3 (k,p) = ):r.(kz,p ¢*)TF(k, p)

=1



In Perturbation theory WFGTI and LKFT are satisfied at
every order of approximation.

This is fine for the QED.

The gauge theory whose non-perturbative understanding
IS relevant to the fundamental interactions in the SM is

QCD.

Slavnov-Tayolr Identities (STI) relate the Greens functions

in QCD. Play a key role in the gauge renormalizability of
QCD.



Generalized LKFT for the QCD were missing in literature.

Purpose is to derive LKFT for the quark propagator.

First we derive them in a general SU(N) gauge theory.

Setting the color factors we can specialize them to QCD
and even to QED.



Local SU(N) transformations for the quark field

wi(x) = wi(x) = e Taly, (x)

The quark Green Function (propagator in Coordinate
space) iSE (x,x') = iSF, = (T{yi(x)i;(x)})

Under Local SU(N) transformations

iSF(x, x') — (T{e/¥:#eTelys, () (&) e~ sl

lsg(x,xj) S l.SO.F(x,x")<T{Ci[gs‘/’a(-x.)Ta]c_i[gs‘/’b(-r,.)Tb])

1]

Green Function for quark in Landau Gauge



In Abelian approximation of QCD
; 55 (x, X)=i S?jF (x, xX) cgf Crlidp(x=x")=iAg(0)]
This matches with the QED.

Notation for Green Function associated with scalar field

iAp(x — x')8a = (0| T{@a(x)@s(x’) }|0)

(0|T{ eil9s9a(x)T o] a—ilgs@p (x") T 110)

= <0IT{ [1 + 1959 ()T, + (ig_’") :

(_ig.s')2
2!

(igs)*

(igs)? -
4!

(Pa()Ta)? + -2

(_ig.s')3
3!

(@a(x)To)* +

(Ga(X)To) + - ]

@1 + L )+ o

X [1 —igspp(X')Tp + (p(X)T)* +

We will calculate terms at different orders of 95 .



At 4th order of the strong coupling 9;

_9 [{(iAp(x =) — iAp(0))(BiAp(x — X') — iA(0))} + O()

24 f

Desired term as it leaves the quark condensate of QCD mvartant.

Next to [eading log term in the two loop pertwbaﬁve expansion of the massless quark propagator.

It will be interesting to see what happens at if we make
an expansion to the next order in the strong coupling.



At 6th order of the strong coupling g;

IS’I;(,X, x’) = LS?,F(.X, x’) [QQ%CF[J'AF(X—J&/)—J'AF(O)]

- (;;;gf;;q i (x =) = i8R(O)|Bihp (x = X) = iBp O)]}[1 + GEC(iBp(x — ) = iAr(0))]
6 2
+5 !f‘(‘ﬁ?zcz'?m iAp(x — %) — iAp(0)][8(iAF (x — ¥))2 = T(iA(x — ¥))(1Ar(0)) + (iAF(0))2] + O(g})

This expression suggest that a possible new next log series at O(¢?)

iS{';.(x, X) = iS?f (x,x) o CrliAr(x—x ) =iAF(0))

4
gSC C o / . . . - i xex)—i
~ GG WA =) = iApO)]Bidrp(x - x') - iAp(0)] e Gttt iarO)
g2CrC;

[iAp(x—x') = iAp(0)][8(iAp(x — X'))* = T(iAp(x — x')) (iAF(0)) + (iAF(0))*] + O(g5)

@B



Key remarks regarding LKFT in QCD

For QED:Cr =1, g, = e, C4, = 0. We can get back the LKFT
for the electron propagator.

We find closed expression for the perturbative series in the
color factor in fundamental representation, i.e. C% . This is
not the case for the color factor in adjoint representation ..

Recall the definition of chiral condensate:

<l[-/l[/>§ - —TI‘:SF(X, x,)].x’—x
= —Tr[$%" (x, X))o = W)

This is manifestly gauge invariant quantity in any SU(N) theory. To the best of our knowledge this is

ﬁrs‘c ﬁeld theoretical calculation in Q(;D which indicates that the chiral condensate is gauge invariant.



To the order we have carried out the calculations, we have
observed the following factors:

1 . :
Cy = TOTIT BiAp(x —X') — iAg(0)],
1

Ci = EIGIEE B{iAp(x—x')}* + {iAr(0)}?

— HiAp(x = x") H{iAp(0)}].

We verified that the first of this secures at O(¢%) and O(g;), and

we conjecture it to become a coefficient of ¢ Crlidr(x=x")-iAx(0)]

The local gauge transfovmaﬁon fov the quark propagator has veviﬁa’o le consequences to all orders in the

pertw/oaﬁon theovy e.g., It implies Multi}olicaﬁve Renovmalizabili‘cy of the massless quavk propagator.



Implications of LKFT

Multiplicative Renormalizability: We rescale the fields, masses and
couplings of theory to make the GF finite.

p? p?
F(p?/A*) =1+4+ad; In= +a’4s1n® — + ...

. A2 A2
X

Fermion wave function. uv Cut— off
2 3
1 .. 1 P 1 p?
F(p2/‘\2) = 1] — ﬁar‘l] 11’1 ‘\—2 — 5 (er.] 11’1 A_z) — ? (Qfll ln A_2 — ...

2 2 aA1
= exp (aAl In %) = (%)

1’\2 I\2 o
Z;l(uz/i\z) = exp (aAl In —) = ( )

2

2 #_2 FR(pz/uz) = Fgr(l)exp (aAl In p—z)
7
Renormalized Wave function can be expressed as o) ( pz)aA1
AN

In leading Log. approximation in PT:

2.2\ _ af I’2 2
FR(p/p)-1+47T1n[I.2+. FR(pz/pz):[%]

of 4




MR and choice of vertices(e-photon case)

Not all the vertices are expected to satisty MR (Brown and Dorey)

1 af Mk L [k,
=t [ [ ) 400 - )
F(p*) = A(p*)”
Takin
d g 1 _q af [2F(p?) F(AQ)] Does not satisfy
F(p?) 4nv|v+2 L

o _ 1 o oo 3o g |0 12 \
F(p)=1 47WF(A)+16”F(P)[2+27rc0t1w === u+2; |

This does not lead to have
MR.




MR and choice of vertices: Contd

Curtis-Pennington Vertex

T (k,p) = m6(k*, p*)T& (k, p)

Hrle BEG) i
3k*+p 1 ., - o
{ [W—p (F(kz) F(pz))+§(’° — p*)7e(k*,p )] 0(p* - k?)

3k2+p 1 | 3., . .
[ZkZ—pz (F(k?) ) F(pz))+§(’“ - P)me(k”, p )] o(k —p)} .

1 af (AR F(K?)  a /A* dk?

Fip?) = F ()

pz (a§/4m)
F(p*) = [X;]

/

This satisfies the MR.




Step-1: We know what the Fermion propagator is in one
gauge in the momentum space. We carry out the FT to
find the corresponding expression in coordinate space.

Step-2: Using LKFT rule we obtain the expression of the
Fermion propagator in arbitrary gauge in the coordinate
space.

Step-3: We then FT the result back to the momentum
space.



Quark Propagator
F(oopy F(p;¢)
) = = My
§F(x:8) = x-yX(x;8) + Y(x;¢)
Let us start with tree level quark propagator
F(p;0) =1, M(p;0) =0

After transforming the free quark propagator in coordinate space and using
LKFT, we have

IAp(x) = — (4i)2 I}+}' + 2In(ux) + 0(6)] .

IAp(Xmin) — IAp(x) = Aln

loop here and ﬁ
Ca=0 Cu’c—oﬁF

: X2\ v
§"(x:¢) = —222;4 (x : )

ourself to the one

Xmin

We restricted ( 2 ) A=¢&/(4n)?

V= CF“S&/(“’”)




Inverse Fourier Transforms Yield

§F(p; &) = / d*xe”* 5T (x; ).

1 T(1-2)

2ZT(2 +0) (P*Xin)*

xmin :

F(p;&) =

Fr(K*/u* &) F(K*/A%€)

Fr(p® /i’ &) F(p*/A%¢) FR(kz/,uz'f)h” » = |
Sk =p

LKFT ensures the MR of quark propagator and it yields

2 )

Fr(p* /W% &) = (z_z)

General structure of LKFT and MR suggest the foUow'mg fovm of exponents

v = foCra, + f‘fc‘}a.% + deCFCA(l.:zT T



Quark Gluon Vertex and LKFT

Any non-perturbative construction of the quark-gluon vertex must ensure the MR of
the quark propagator.

Vertex Structure a», as, ag, ag MR v
Bare Yu - No

BC LiC =3 ALy — No

CP P =T5C + 74T ag =3 Yes Crat/(4r)
B Oy =T 4 Yic2a680T, ag=—3 ar+ 2(as + ag) = -2 Xes Numerical
QC réc = [EC 4+ 3036k a=ag=0,a; =1/2, ag = -1 Yes Numerical

Our C, =T+ 53657 T ag=+% a,+2(as +ag) =0 Yes Cral/(4r)
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