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1. Prologue

Dispersion relations are a powerful non-perturbative tool which have originated in classical
electrodynamics in the theory of Kramers-Kronig dispersion relations. Analytic properties
follow from causality and the use of Cauchy’s theorem allows to obtain the physical amplitude
from the knowledge of the singularities which are often physical and better accessible. This
is the idea of the S-matrix program from the fifties and sixties. Dispersion relations are
sparsely discussed in modern textbooks as the focus is on other aspects of Quantum Field
Theory (QFT). There are some excellent older textbooks on analyticity e.g. [1,2], some modern
textbooks devote some chapters to the topic e.g. [3,4] and parts of these lectures with more
emphasis on application can be found in [5]. T would hope that a student who has followed an
introductory course on QFT or has read some chapters of a QFT textbook would be able to
largely follow the presentation below.

2. Introduction

In the fifties and sixties QFT has found a big success in describing quantum electrodynamics
(QED) thanks to the successful renormalisation program carried out by Dyson, Feynman,
Schwinger, Tomonaga and others [6]. The description of the strong force with QFT proved to
be difficult and there was some prejudice that a solution outside field theory had to be found.
Two such approaches are dispersion theory using analytic properties [1] (Heisenberg, Chew,
..) and Wilson’s operator product expansion [7]. As Weinberg remarks in his book [4] both
of these approaches later became a part of QFT! By analytic properties we mean analyticity



Figure 1: Schematic diagram for 2 — 2 scattering.

in the external momenta which in QFT have their roots in describing particles through fields
(second quantisation).

A primary goal of particle physics is to describe scattering of n-particles via the so-called
S-matrix. For the scattering of 2 — 2 particles this reads (cf. Fig.1)

out<p17p2‘q1q2>in = 0ut<p1ap2|5|q1q2>out y (1)

where we have assumed the particles to be of spin 0. In the case where they are all of equal
mass this implies the following on-shell conditions: p? = p3 = ¢? = ¢5 = m?. Hence one might
wonder how analytic properties come into play. The answer is through the celebrated Lehman-
Symmanzik-Zimmermann (LSZ) formula whose derivation can be found in most textbooks
e.g. [3]. For our case it reads

out{P1, P2|q1G2)in = —(iZ1/2)4/ emilaroite e prn Pl g KK, K, X

Z1,22,Y1,Y2

(To(x1)p(x2)0" (y1)d' (y1)) + disconnected terms (2)

where [ = [d*z, T is the time ordering, (..) is the vacuum expectation value (VEV), the
quanta are assumed to carry a charge (complex conjugation for outgoing particle), K is the
Klein-Gordon operator K, +m? — —(¢? — m?) and the Z factor results from the asymptotic
condition,

(Olé(@)lar) = 220 din(outy (2)la1) . (3)

The asymptotic condition is the key idea of the LSZ-approach. Namely that when the
particle are well separated from each other all that remains is the self-interaction which is
parameterised by the renormalisation factor Z. The field ¢ is what is known as an interacting
field whereas ¢i,(our) are free fields in which case the right-hand side of the equation above
equals \/Z/(27m)3e~%* 23 The disconnected part correspond, for example, to the case where
particle g1 — p1 and go — po without any interaction which is of no interest to us.

From (2) we conclude that

2 The LSZ formalism, in its elegancy and efficiency, also allows for the description of composite particles. For
example for a pion of SU(2)-isospin quantum number a may be described by ¢ — ¢® = ¢gT"*ysq in the
sense that (0]p?|7?) = g.0%°. In such a case @ is referred to as an interpolating field.

31t is crucial that this condition is only imposed on the matrix element (weak topology) as otherwise one runs
into Haag’s theorem.



a) The scattering of n-particles (n = ni, +noyt) is described by n-point functions (or n-point
correlators). The study of the latter is therefore of primary importance.

b) The n-point correlators are functions of the external momenta e.g. piQ,qu, p1 - P2, ...
First and foremost they are defined for real values or more precisely for real values with a
small imaginary part e.g. p? = Re[p?] +i0.* From there they can analytically continued
into the complex plane. Hence it is the second quantisation, describing particles with
fields, that allows to go off-shell.’

The course consists of three parts. Analytic properties of 2-point functions (section 3),
which comes with definite answer in terms of the non-perturbative Kéllén-Lehmann spectral
representation. Applications of 2-point function in section 4. Last a short discussion of the
analytic properties of higher point function in perturbation theory (PT) e.g. Landau equations
and Cutkosky rules in section 5.

3. 2-point function

3.1. Dispersion relation from 1%-principles : Kéillén-Lehmann
representation

Let us define the Fourier transform of the 2-point correlator as follows
D) =i [ €7 (To(a)o!(0). (4)

What determines the analytic structure of I'(p?)? By analytic structure we mean the sin-
gularities e.g. poles, branch points and the associated branch cuts. The Kallén-Lehmann
representation [8,9] gives a very definite answer to this question. The presentation is straight-
forward and can be found in most textbooks e.g. [4].

The 2-point function in the free and interacting can be written as

() m = —Ap(p?,m?) free 5
p)= .
% + f(\ p?) interacting

The function Z(A) and f(), p?), where )\ is the coupling constant e.g. Liny = A¢> + h.c., obey
203, fog) S, (6)

in order to obey the smooth free field theory limit. In what follows it is our goal to determine
the properties of f(\,p?) more precisely. At the end of this section we are going to make
remarks about the possible ranges of the Z(\)-function. The first lesson to be learnt from the
free field theory case is that it is the mass (i.e. the spectrum) which determines the analytic
properties cf. Fig. 2(left). As we shall see this generalises to the interacting case.

4When doing perturbation the reality of the momenta is implicitly used when doing the shift of momenta when
completing the squares for example.

5In it’s most standard formulation string theory is first quantised and does not allow this analytic continuation.
String field theory does exist but is less developed than first quantised string theory for technical reasons.



qree
g
(m')I e ¢
T A e

Figure 2: (left) analytic structure for free field theory propagator with spectral function underneath
(right) idem for an interacting theory with a stable 1-particle state and a multiparticle-
threshold

For technical reason it is advantageous to first study the positive frequency distribution

d'p _—ip=x 5t(p2 —m2) f
5 (p* —m*) free

(%) interacting

A+($2’ m2) = f

(@(a)¢'(0)) =

where 6+ (p? —m?) = §(p? —m?)O(po) assures that energies are positive and that the momenta
are on the mass-shell. It is the quantity (x) that we intend to study. First we use the formal
decomposition of the identity into a complete set of states 1 = ) |n)(n| which follow from
unitarity. Inserting this relation and using translation invariance one gets

(%) = En: =] 019 (0)n(pn)) - (8)
=fn

Further using 1 = ﬁ fp e~ [ ¢ and interchanging the Y, and the [ © leads to

() = / e = 3" 50— pa)lful? | (9)

~

(2m)~3p(»*)O(po)

where p(p?) is known as the spectral function, (27)~2 a convenient normalisation factor and
©(po) assures positive energies which come from the positive energy condition on the exter-
nal momentum. Upon using [, F(p) = [, [ dsd(s — p?)F(s) and exchanging the ds and d*p
integration one finally gets

()= [ dsps)aitas) (10)

a spectral representation.

5We will come back to these interchanges which are ill-defined when there are UV-divergences.



From (5) and (7) it seems plausible that this spectral representation generalises to the time
ordered 2-point function as follows

E

q. (11) is most referred to as the Kdllén-Lehmann (spectral) representation.

p(s)

r67) = [ asplo)-ars?) = [ s (1)

At this stage we can make many relevant comments.

1.

The analytic properties of I'(p?) are in one-to-one correspondence with the spectrum of
the theory which is the answer to the question what determines the analytic properties
of the 2-point function. Hence for the 2-point function there are no other singularities
on the first sheet (known as the physical s.heet)7 other than on the positive real axis
determined by the spectrum. The analytic structure is depicted in Fig. 2(right).

. The spectral function p(s) > 0 is positive definite as a direct consequence of unitarity. [As

a homework question you could try to show that for a non-unitary theory with negative
normed states (i.e. (gh|gh) = —1 where “gh” stands for ghost) p(s) is looses positive
definiteness.|

. Often the spectral function is decomposed into a pole part®

p(s) = Z5(s —m?) + O(s — s0)a(s) (12)

and continuum part o(s). The latter is the concrete realisation of the function f(A,s) in
(5). In many applications fy, the residue of the lowest state,

\fo|2

L(p?) = pR—— _ZO (13)

m2 — 2 — 0
S0 m?2 — p? —zO

is the non-perturbative quantity that is aimed to be extracted. The left-hand side is
computed and the o-part is then either estimated or suppressed by applying an operation
to the equation. This technique is the basis of QCD sum rules [10] and lattice QCD. In
the former case the o-part is suppressed by a Borel-transformation and in lattice QCD
the latter decay exponentially since euclidian correlation function are used.

The Kallén-Lehmann representation straightforwardly applies to the case of a non-
diagonal correlation function e.g. <¢>A(ZL’)§Z5TB(O)> but clearly positive definiteness is, in
general, lost since |f,|? — f2(fB)*.

. As promised we return to the issue of interchanging various sums and integrals. This is

of no consequence as long as there are no UV-divergences. As is well-known most field
theories show UV-divergences so care has to be taken. UV-divergences demand regulari-
sations and a prescription to renormalise the ambiguities which arise from removing the

"More precisely the 2-point function is at first defined for real p? + 0 with p? > 0. Analytic continuation
proceeds from the upper half-plane to the left and passes below zero for negative p? into the lower half-
plane.

8When the particle becomes unstable and acquires a width then the pole wanders on the second sheet since
the principle that there are no singularities on the first sheet holds up e.g. [1]. This would have been an
interesting additional topic which we can unfortunately not cover in these short lectures.



infinities. There two ways to write it. First, assuming a logarithmic divergence, we may
amend (11) as N
2 o p(s)

F(p)—/o dss—pQ—i0+A’ (14)
where the so-called subtraction constant is adjusted to cancel the logarithmic divergence
coming form the integral: A = AgIn(A%y/ud)+A; with po being some arbitrary reference
scale. The constant A; has either to be taken from experiment in the case where T'(p?)
is physical (which implies scheme-independence) or is dependent on the scheme. The
dependence in the latter case has to disappear when physical information is extracted
from T'(p?). A more elegant way, in our opinion, is to handle the problem with a once
subtracted dispersion

p(s)

—i0)(s — p3)
It is observed that the integral is now convergent due to the extra 1/(s — p2) factor. The
same remarks apply to I'(p3) as for the previously discussed A;.

P6R) =TGR + 0P ) [ s (15)

6. Imposing the canonical commutation relation [0;¢'(x), $(0)]zo=0 = —id(F) leads to the
sum rule

)
/0 dsp(s) =1, (16)
from where one deduces that:
- Z =1 for a free theory
- 0 < Z <1 for an interacting theory
- Z =0if ¢ is a confined field

The last case does not follow directly from (16) but is an important result due to Wein-
berg. An example is given by the quark propagator for which we do not expect a residue
since it is a confined (coloured) particle. The fact that Zqyark 7 0 in each order in PT is
a sign that the latter is not suited to describe the phenomenon of confinement.

7. By using causality, i.e. {[¢(z),¢!(0)]) = 0 for 22 < 0 spacelike, it follows that p(s) = p(s)
where p(s) is the antiparticle spectral function associated with A_ (22, m?) = (¢'(x)$(0)).
This is a special case of the CPT theorem. Related to this matter it was Gell-Mann,
Goldberger and Thirring [11] in 1954 who derived analyticity properties from causality,
for v+ N — v+ N, justifying dispersion relations from a non-perturbative viewpoint.

3.2. Dispersion relation and Cauchy theorem

It is our goal to characterise the spectral function p(s) in other ways than through the spectrum.
In preparation to the general case we are going to recite the optical theorem in for the S-matrix.
The S-matrix (1) is conveniently parameterised as

S=1+iT, (17)

where T is the non trivial part of the scattering operator. From the unitarity of the S-matrix
it follows that
1=8ST=1+4(T -T"+|T]?, (18)
N——

—2Im[T]



Figure 3: Standard sketch of optical theorem. The right-hand side is the sum over all intermediate
states. It is a particular case of the cutting rules to be discussed in section 5.3.
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Figure 4: (left) Integration contour for 2-point function dispersion representation. (right) 2-point func-
tion in ¢ theory in perturbation theory.

if and only if

2Im(T] = |T]> =TT " |n)(n|Ta?> . (19)

Eq. (19) is the celebrated the optical theorem depicted in Fig. 3.

The right-hand side of the equation above is reminiscent of the spectral function in the case
where T is associated with ¢ which in principle could be the case. Hence the expectation
that p(s) is related to an imaginary part is not unexpected form the viewpoint of the optical
theorem. Below we are going to see that this is the case on very general grounds.

To do so we first take a little detour to discuss integral representations of arbitrary analytic
functions by the use of Cauchy’s theorem. Let f(p?) be analytic functions then by Cauchy’s
theorem the following integral representation holds

f6R) = = /7 ds J(5) (20)

- 2mi s—0p

provided that i) p? is inside the contour of 7 , ii) the contour of v does not cross any singularities.

Applying this techniques to 2-point function in QFT one makes use of the knowledge of the
analytic structure and chooses a contour vg as in Fig. 4. Taking R — oo and assuming that
the arc at infinity does not contribute, which may or may not result in polynomial subtraction



terms which we parameterise with P(p?), the integral can then be written as

R e e
= ;M/STOW+P@2)=3T/:OW+P@2), (21)

where the second line is the definition of what is called the discontinuity along the branch cut.
The last equality follows from 2:Im[I'(s)] = disc[['(s)]. This formula is known to practitioners
of PT but can be justified on general grounds by the Schwartz reflection principle (cf. appendix
A). In summary we then have that the spectral function is related to the the imaginary part
and the discontinuity by

p(s) = %Im[l“(s)] - %m,disc[l“(s)] . (22)

This equation follows from equating (11) and (21) and the knowledge that the subtraction
constant are the same in both cases since they originate from UV divergences. Hence eliminat-
ing the contributions from the arc may result in UV-divergences and subtraction constants.

3.3. Dispersion relation in perturbation theory

This sections aims to illustrate (22) from the viewpoint of PT. In order to do PT one needs
to specify a theory for which we may think of Liyy = A¢> + h.c.. The pole contribution is
then just the propagator and the first non-trivial interaction is generated by the diagram in
Fig. 4(right) and when computed leads to a term

Z(\)

2
2\ _ 2 p

and the corresponding imaginary part divided by 7 must be the spectral function
(
p(p?)

The propagator term is a pole singularity with a delta function in the spectral function and
the logarithm corresponds to a branch cut singularity resulting in a ©-function part. By the
spectral representation (33) this branch cut must correspond to some physical intermediate
state. This state is a 2-particle state starting at the minimum centre of mass energy 4m?
ranging all the way up to infinity. The precise value depends on the corresponding momentum
configuration. For example let the two particle momenta be parameterised by

2 Zimlr(?) 2 200802 - ) + XAl — 4m?) + . 24

P12 = ( m2 + 1'2,0,0, :|:$) ) x>0 ) p%,Q = m2 3 p2 = (pl +p2)2 = 4m2 + 4.%'2 (25)

and therefore 422 = p? — 4m? which can be satisfied for any (arbitrarily large) p? > 4m?.

4. Application of 2-point functions

There are numerous applications of 2-point functions and dispersion relations. For exam-
ple deep-inelastic scattering, QCD sum rules which we have alluded to in and below (13),



ete” — hadrons and inclusive b — X, .fv decays with the additional assumption of analytic
continuation to Minkowski-space.” We choose to present to Weinberg sum rules (WSR).

4.1. Weinberg sum rules

The Weinberg sum rules are an ingenious construction involving a few ideas. They were
proposed in 1967 by Weinberg [12] in the pre-QCD era but we are going to present them
from the viewpoint of QCD e.g. [5,13]. One considers the correlation function of left and
right-handed current with two massless quark flavours

; / At (T ()T (2)) = (quay — ) T (6P) | (26)

where

Jﬁ’(L’R) = qI"uaLr (27)

with qr r = Prrq, PLr = 1/2(1 F v5), T® being an SU(2)-generator (Pauli-matrix). The
Lorentz-decomposition in (26) is valid in the limit of massless quarks. According to the previous
sections the function Hiﬁ(—éf), with —¢? = Q2 > 0 satisfies a dispersion relation of the form

° ds Im [T
T R (28)

where A is a subtraction constant due to the potential logarithmic divergence which may arise
since HaL’Pb{ is of mass dimension zero.

The peculiarity of the WSR relies on the absence of lower order corrections to the OPE. This
can be seen in an elegant manner using group theory, that is the say representation theory of
SU(2). We denote by 1, F and A the trivial, fundamental and adjoint representation of SU(2)
which are of dimension 1,2 and 3. The correlation function is in the (A,A)-representation
of the (SU(2)r,SU(2)r) global flavour symmetry. Unless the contribution match this global
flavour symmetry they their respective contribution has to vanish.

One considers Wilson OPE in momentum space, valid for Q? = —¢? > AéCD

—a, B c L.a 1R, 8
Hiﬁ(—@?):01<Q2><1>+cqq<Q2><<qu%W+cJJ<Q2><J“ Q‘Z“ >+o<Ag;D> - (29)

The functions C(Q?) are known as Wilson coefficients and carry logarithmic correction in QCD.
As can be seen from the formula above the condensate terms of dimension d are suppressed
by 1/Q% relative to the identity term. The condensates, i.e. VEVs of operators, are non-
perturbative objects and (1) corresponds to PT. The latter is in (1, 1)-representation and
therefore absent.'® A quark bilinear term is in the (F, F)-representation and absent for the
same reason. The dimension six operator, is somewhat trivially, in the (A, A)-representation
and therefore the leading term at 1/Q%. Therefore the 1/Q? and 1/Q*-terms have to vanish

SWithout going into any details let us mention that it is in particular inclusive decay rate and amplitudes
of exclusive decays which are amenable to a dispersive treatment. It is the amplitude and not the rate
which has the simple analytic properties. The inclusive case is special in that the rate can be written as an
amplitude!

10The practitioner will notice the absence of PT from P Pr = 0 which necessarily arises in the a perturbative
computation in the massless quark limit.



and this leads to constraints. The latter can be obtained by expanding the denominator in
inverse powers of 2,

1 1 1 1 s §2

TR @@ @ g g (30)

The exact sum rules on the spectral function

/ dsTI%E () = 0, / ds T2 (s)s = 0 (31)

1 1

known as the first and second Weinberg sum rule follow.

Note the absence of the perturbative term means in particular that there is no UV-divergence
and hence A = 0. Since the convergence is even a power higher (2nd WSR) one often speaks
of a superconvergent dispersion relation in this context.

The WSR (31) are a powerful non-perturbative constraint. We present the original appli-
cation pursued by Weinberg. First we notice that the left-right correlator can be written as a
difference of the vector and axial correlator

() = (I (5) - I34(9)) (52

where J,Y (Aa qT%vu(v5)q. Taking into account the lowest lying particles 7, p and a; in
the narrow width approximation and assuming isospin symmetry (i.e. global SU(2)y -flavour
symmetry) one arrives at!!

() = T[] (s) = 6200 —m?) + ©(s — s1)ov)
() = TmIIEA)(s) = 6°(720(s) + FA0(s —m2) + O(s —si)on),  (33)

m,p and a; . The functions oy 4 contain any higher states and multiparticle states. If one
assumes that around s; perturbation theory is valid then prr(s) = 0 for s > s; which in turn
implies oy = 04

Hence using (33) the two WSR (31) read

2 2 2 2 2 2 2
fp:f7r+fa17 mpfp:mal al ? (34)

where the decay constant are defined as
(plaa )’ ()|T} A110) = 6% nu (D) mgfar) Fofar] » (PO

with 1 being the polarisation vector.
In his original paper Weinberg used the KSFR relation fp2 = 22 which then leads to m,, =

0) = 6pufr . (35)

v/2m,. This relation is reasonably satisfied experimentally: m,, /m, ~ 1.63 ~ 1.15v/2.
Let us end this section with mentioning two further application of this reasoning.

HNote since we work in the massless limit the pion is massless as it is the goldstone boson of broken chiral
symmetry SU(2)r ® SU(2)r — SU(2)v. The spin parity quantum numbers J* of the particles are as follows
07,1%,1~ for the 7, p and a; respectively.

10



- Being related to chirality the WSR, or the II;r function, is a measure of contributions

to electroweak precision measurement in the case of physics beyond the standard model
coupling to new fermions. The WSR serve to estimate the contribution of strongly
coupled extension of the standard model such as technicolor and the composite Higgs
model.

The inverse moments of the spectral function, with pion pole subtracted, is related to the
low energy constant Lg of chiral perturbation theory. Note, chiral perturbation theory is
an expansion in @2, and not 1/Q? as the OPE, and thus leads to inverse moments rather
than moments themselves. It is not the WSR per se which is important in this respect
but the onset of the duality threshold of PT-QCD which allows to estimate Lig in terms
of fr pa - The estimate of L1y obtained is in reasonable agreement with experiment.

5. Analytic properties of higher point functions

There are many motivations to study higher point functions and their analytic structure
amongst which we quote the following

2)
b)

b)

As seen in the introduction they describe the scattering of n-particles.

From the discussion in section 3.2 it is clear that to write down dispersion relations one
needs to know first and foremost the analytic structure of the amplitude in question.

3-point functions are relevant for the study of form factors. Consider for example the
B — 7 form factor, relevant for the determination of the CKM-element |V;;| defined by

(7 |VulB(pB)) = (0B)uf ¥ 7" (@*) + .. (36)

where the dots stand for the other Lorentz structure and V, = E’yuu is the weak current
(the axial part does not contribute in QCD by parity conservation). Then the form
factor can be extracted from the following 3-point function, by using a double dispersion
relation (dispersion relation in the pQB and p?-variable)

L p%,¢°) = / e~ B TP (T T () T (y)V,u(0))
€,y

le' fB ffﬁw((ﬁ)
= (o ((sz TZ) R — )

where “higher” stands for higher contributions in the spectrum (the analogue of o(s) in
(12)) and

+ higher> +..., (37)

JB:Cﬁ’YE)b, <B‘JB’0>:fBa

Jr = qivsq, (OlJzlm) = fr, (38)
play the role of the interpolating operators of the LSZ-formalism cf. footnote 2. As
previously mentioned the key is then to compute I'(p?, sz, ¢?) in some formalism and to

find ways to either estimate or suppress the higher states in order to extract the form
factor where f; and fp are assumed to be known quantities.

11



In fact if we were able to compute I'(p?, pQB, q?) with arbitrary precision then the function
would assume the form in (37) and we could simply extract the form factor from the
limiting expression

B*)Tl’(q2) _

1 .
Y im  (pk —mB)(P* — ML, pB, %) , (39)

 frfB pRomd prom2

which makes the connection to the LSZ-formalism (2) apparent. Unfortunately at present
we cannot hope to do so and therefore we have to resort to the approximate techniques
alluded to above.

We have seen that for the 2-point function the analytic structure of the first sheet (physical
sheet) is fully understood through the Kéllén-Lehmann representation. Moreover the singu-
larities on the physical sheet are in one-to-one correspondence with the physical spectrum.
For higher point function less is known in all generality. We refer the reader to the works
of Kéllén-Wightman [14] and Kéllén [15] for some general studies of 3- and 4-point functions
using first principles and the summary by Martin for a comparatively recent survey of rigorous
results [16].12

Hence one has to become immediately more modest! We are going to restrain ourselves to
analyse the singularities in PT for physical (real) momenta. This is done in two major steps:

i) Landau equations: where are the singularities (and on which sheet) cf. section 5.2
ii) Cutkosky rules: how to compute the discontinuity of an amplitude cf. section 5.3

Before analysing these matters in more details let us first consider the so-called normal-
thresholds for higher point functions.

5.1. Normal thresholds: cutting diagrams into two pieces

The so-called normal thresholds are those associated with unitarity in the sense of cutting a
diagram into two pieces. They are a slight generalisation of the case of the optical theorem
in the sense that the diagram can be cut into two unequal pieces. We are going to look at
2,3,4-point functions depicted in Fig. 5. Cutting a diagrams into two pieces is equivalent to
the combinatorial problem of grouping the external momenta into two sets. Tab. 1 provides
the overview of the number of cuts versus number of independent kinematic variables. For the
two lowest functions there are no constraints whereas for all higher point functions there are
constraints due to momentum conservation. For the 4-point functions this constraint is known
as the famous Mandelstam constraint

1
dpi=s+ttu, s=@i+p)’ t=(p+ps)°,u=(p1+p)°. (40)
i=1

The corresponding constraints for 5- and higher point functions are known as the Steinmann
relations. This is already an indication that higher point functions are much more complex

12 Am important topic was the conjecture by Mandelstam of a double dispersion relation for 2 — 2 scattering
(i.e. 4-point function) which was consistent with known results but never proven in all generality not even
in perturbation theory. From this the so-called Froissart bound was derived which states that the scattering
of two particles cannot grow faster than In? s where s is the centre of mass energy.

12



Figure 5: Sketch of generic 2,3, 4-point function.

than the previously studied 2-point function. In addition there are cuts which are not directly
associated with unitarity, so-called anomalous thresholds, associated with cutting the diagram
into more than 2 pieces. We will return to the latter briefly when discussing the Landau
equations and Cutkosky rules.

n-point function ‘ #cuts ‘ #tvariables ‘ #constrains

2 1 1 0
3 3 3 0
4 7 6 1

Table 1: The # (=number) of cuts equals the number of independent variables plus constraints. For
the 2- and 3-point functions there are no constraints whereas for the 4-point function there is
the famous Mandelstam constraint (40).

5.2. Landau equations

Before stating the Landau equations it is useful to look at singularities of a one-variable integral
representation where the integrand has pole singularities as a function of external parameters.
The Landau equations originate form analysing this problem for the integrals of several vari-
ables appearing in PT.

5.2.1. Singularities of one-variable integrals representations

Consider the following integral representation of a analytic function f(z)
1) = [ glzwidu, (41)
Yab

where the integrand g(z,w) contains pole singularities w;(z) which depend on z. The path 7,
ranges from a point a to b and does not cross any singularities for some z = zy as shown in
Fig. 6(left). The analytic properties of f(z) depend on whether or not the path ~,, can be
smoothly deformed not to cross any of those pole singularities.

If 2 is to be deformed smoothly from zy to z; and z; crosses the path 7, as in Fig. 6(middle)
then the path 74, can be smoothly deformed as in Fig. 6(right) and this constitutes an analytic
continuation of the function f(z). There are though instances when this is not possible:

13
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Figure 6: (left) Poles and path at z = 2o (middle) path of poles while deformed by parameter zy to 21

(
(right) deformation of path 7., serves as a legitimate analytic continuation of the function
f

(z) in (41).
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Figure 7: (left) endpoint singularity (right) pinch singularity

a) When a singularity w;(z) approaches one of the endpoints a or b; e.g. w;(zs) = a
Fig. 7(left). This case is known as an endpoint singularity.

b) When two singularities approach each other, w(zs) = wa(zs) from different direction of
the integration path as depicted in Fig. 7(right). This case is known as a pinch singularity.

c) When the path needs to be deformed to infinity (can be reduced to case b).

In PT it is the pinch singularity type that gives rise to the singularity.

5.2.2. Landau equations = several variable case

Landau [17] and others (cf. for further references [1]) has analysed the problem of singularities,
discussed for a single integral, for the case of several variables. A generic Feynman graph of
L-loop of momenta k; (i = 1..L), N-propagators, external momenta p; (for which we present
one representative in Fig. 8) can be written as follows

l
1
/ Dk . Dk=][d'%:, (42)
=1

— m? + ie)

where ¢; = ¢i(pj, k;) are the rnomenta of the propagators. By the technique of Feynman
parameters (generalisation of (AB)~ fo da(aA+ (1 —a)B)~?) one may rewrite I as follows

1 1 N N
N R
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Figure 8: (left) Generic Feynman diagram aimed to clarify notation used in text (right) bubble graph
discussed in the text

where most crucially the denominator F' reads

F=aig —md). (44)

Is seems worthwhile to emphasise that even though these formulae look rather involved they
are completely straightforward.

We are not going to show the proof but state the result and argue for its plausibility. The
key idea is that there are different type of singularities depending on how many of the N
propagators serving in addition as a classification of the singularities.

Landau equations/conditions There are singularities if and only if

[i)] either ¢? = m? or a; =0, (45)
i) > ai(g)*=0forl=1.L (46)
i€loop(l)

Let us emphasise that the Landau equation neither tell us on which sheet the singularities
are (cf. section 5.2.3 for the refinement in this direction) nor how to compute the discontinuity
relevant for the dispersion relations (cf. Cutkosky rules cf. section 5.3). The first condition
assures that F' = 0 by demanding that each summand is zero in (44). The interpretation
of ql-2 = m?
singularity. Correspondingly «; = 0 means that the corresponding line does not enter the
singularity. In Fig. 9 we give an example of a 3-point function cut. The second condition
(46) has a geometric interpretation. It means that the corresponding singularity surfaces are
parallel to each other and that the hypercontour can therefore not be deformed away from
the singularity surfaces. This is the analogy of the pinch singularity discussed in section 5.2.1.
Eq. (46) can be cast into a more convenient form by contracting the equation by a vector (g;),
which leads to

is of course that the corresponding propagator is on-shell and contributes to the

ii")] Qa=0, (Q)ij=4qi-qj, (@)i=q (47)
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Figure 9: (top) normal threshold cut with reduced graph to the right (bottom) leading Landau
singularity

Terminology of singularity As discussed in section 5.1 the singularities which arise from
putting on-shell (cutting) propagators such that the diagram is cut into two pieces are known
as the normal thresholds. For the 1-loop triangle graph this corresponds to setting two propa-
gators on shell and a for which a reduced graph is associated cf. Fig. 9(top). Clearly one can
also put all three propagators on-shell cf. Fig. 9(bottom). This contribution is known as an
anomalous threshold whose physical interpretation is discussed below.!> They can appear on
the first sheet depending on the momentum configuration and have to be taken into account
in dispersion relations. The singularity with the maximal number of on-shell propagators is
usually referred to as the leading Landau singularity. In the case of the triangle diagram the
anomalous threshold is the leading Landau singularity. It would be very interesting to pursue
the significance of anomalous thresholds further but time does unfortunately not permit.

Physical interpretation of second Landau equations (46,47) In addition the second
Landau equation has a direct physical interpretation due to Norton and Coleman [18] which
states that (46,47) assures that the corresponding diagram can occur as a real process where
a; ~ 7;/m; with 7; is the proper time. This is a very nice and reassuring result in view of
the interpretation of the imaginary part as the discontinuity in connection with the optical
theorem (19). This means when a; = 0 that the corresponding particles does not propagate
at all and gives the reduced graph a more profound meaning at the same time.

5.2.3. An example of Landau equation: 1-loop 2-point function (bubble graph)

Consider the bubble graph depicted in Fig. 8(right) with external momenta p, loop momenta
k and momenta ¢ = k and ¢> = k — p. The first Landau equation (45) tells us that [As a
homework you could ask yourself why the case oy = 0 and ¢3 = m3 is not an option for a

13 Their existence can be deduced from hermitian analyticity [1] which in our case corresponds to the property
that the imaginary part is proportional to the discontinuity.
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singularity] ¢ = m? and ¢ = m3. The second Landau equation (47) can be cast into the form
det@Q =0
2 .
det Q = det < moa qu> =0 <&q1-q==Emime (48)
q1 - q2 may
which we may reinsert back into
PP=(a—@)’=0¢ 20 @+a¢=(mFm)®, (49)
and Hence there are singularities starting at pi = (mq +m2)? and p*> = (m1 — mg)?. This
might surprise us at first since from unitarity we expect there to be a branch point at pi but
the point p? < p%r has no place in this picture. The resolution comes upon recalling that the
Landau equations inform us about the singularities but do not tell us on which sheet they are!
In order to learn more we may solve Q@ = 0 with @ = («, (1 — «))” which gives
ma

ar=—"—= 0<ay<l, a->lora_<0, (50)
mo = my

for mp2 > 0. From this we learn that a4 is within the integration region (recall fol «) and
pQ+ is therefore on the first sheet, wheres a._ is outside the integration region necessitating the
deformation of the a-contour. This indicates that a— may not lay on the first sheet in the case
where the contour crosses singularities in the course of deformation.

Refinement of Landau equations For physical configuration, by which we mean
the real external momenta, the Landau singularities are

- on the first (physical) sheet when «; € [0, 1]

- may or may not lay the first sheet when «; ¢ [0, 1]

For non physical configuration, complex momenta, the situation is far from straightforward
to say the least. The method of choice is often deformation to a case of a physical configuration
and then deform back checking whether or not singularities are crossed in that process. In
the latter case this signals that the singularity is not on the first sheet. Alternatively one can
deform the masses to complex values keeping the «; € [0, 1] and then deform back.

5.3. Cutkosky rules

The question on how to compute the actual singularities for physical configurations is answered
by the cutting rules stated by Cutkosky [19] shortly after the Landau equation were formulated.
This is by no means accidental as they are closely related. The Landau equation tell us that
there is a singularity if either ¢ = m? or a; = 0 (45) and the Cutkosky rules state that the
corresponding singularity can be computed by replacing each on-shell (or cut propagator)

1

Z-mI — —2mid T (g} —m?), (51)
(2 7

%

with the §(p? — m2)* = §(p? — m?)O(pg)-distribution. Before we motivate this rather elegant
and surprisingly simple prescription let us state the result more explicitly.
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The discontinuity of I (42) with propagators i = 1..r < N cut is given by

5t(a? — m2
disc[I] = (—2mi)" /Dk: i= 1 (g7 — ) , (52)
qr—H_ 7"+i)

known as the Cutkosky or cutting rule!

Before trying to make plausible the formula (52) let us state the obvious. The rule (51)
certainly gives the discontinuity of the propagator. The somewhat surprising fact is that this
seems to be the recipe in any diagram. In the book of Peskin and Schréder [20] one can find
the bubble graph evaluated in this way.

In order to motivate the Cutkosky rules we are going to sketch an argument given in the
original paper [19] which is also reproduced in [1]. One considers an integral representation of
the form .

= (53)

m?2 — e
where the variable z is a function of the other momenta external and internal. Let the integrand
F contain a pole wi(z) which approaches m? for some z such that there is going to be a pinch
singularity as shown in Fig.10(left). One then switches to the equivalent configuration where
the contour is deformed below the mass m? at the cost of encircling the singularity m?. In the
next step the latter integral is performed using Cauchy’s theorem which is equivalent to replace
the denominator by 6(k? —m?). This argument falls short in justifying the additional ©[(k1)ol-
rule yet that’s what we expect from the optical theorem. Repeated use of the argument above,
for each propagator gives the celebrated Cutkosky rules.

6. Outlook

Even though dispersion relation are an old subject and a pure dispersive approach to particle
physics proved rather complicated, it is and will remain a powerful tool in QFT as it follows
from first principles and is intrinsically non-perturbative. The latter makes it particularly
useful for hadronic physics but dispersion relation have also seen a major revival in evaluating
perturbative diagrams in the last few years. Furthermore dispersion relation can serve to
proof positivity. For example when a physical quantity can be expressed as an unsubtracted
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dispersion integral with positive integrand (discontinuity). Examples of which are the so-called
c- and a-theorem which characterise the irreversibility of the renormalisation group flows in
2D and 4D. The dispersive proofs are given in [21,22] in two and four dimension by looking at
two an four-point functions respectively.

Last but not least I would like to thank the organisers of the “Strong Fields and Heavy
Quarks” as well as the participants for a stimulating atmosphere. I did really enjoy my trip to
and around Dubna! I’d be grateful in case you note types for writing to me.

A. Schwartz reflection principle

Consider an analytic function f(z) with f(z) € R for z € Ir where IR is an interval on the real
line. Then the following relation holds

flz) = ()", (54)

which can be analytically continued to the entire plane. Note that analytic continuation is
unique from any set with accumulation point for which an interval is a special case. Hence
Eq. (54) implies that

Re[f(2)] = Re[f(z")], Im[f(2)] = —Im[f(z")] . (55)
Choosing z = s 4+ 10 with s € R it then follows that
disc[['(s)] = 2iIm[['(s)] , (56)

which is a result known from experience with 2-point functions and intuitively in accordance
with the optical theorem.
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