Rare B-Decays in the SM and Hints of BSM Physics from Data

Ahmed Ali

DESY, Hamburg

$$
18 \text { - } 30 \text { July, } 2016
$$

Helmholtz International Summer School, JINR, Dubna

Interest in Rare B Decays

- Rare B Decays $\left(b \rightarrow(s, d) \gamma, b \rightarrow(s, d) \ell^{+} \ell^{-}, \ldots\right)$ are Flavour-Changing-Neutral-Current (FCNC) processes $(|\Delta B|=1,|\Delta Q|=0)$; not allowed at the Tree level in the SM
- They are governed by the GIM mechanism, which imparts them sensitivity to higher scales in the SM $\left(m_{t}, m_{W}\right)$
- In the SM, they determine the weak mixing CKM matrix elements $V_{t d}$, $V_{t s}$ and $V_{t b}$
- In principle sensitive to physics beyond the SM (BSM), such as supersymmetry. Precise experiments and theory are needed to establish or definitively rule out BSM effects in Flavor physics
- Rare B-decays have enjoyed great attention in the current \& past experimental programme in flavour physics, with the present frontier being LHC

Rare \boldsymbol{B}-decays in the Standard Model

- SM Lagrangian and the CKM Matrix
- QCD Effects in Weak Decays
- Operator product Expansion
- The Standard Candle in Rare \boldsymbol{B}-Decays: $\mathbf{B} \rightarrow \boldsymbol{X}_{\boldsymbol{s}} \boldsymbol{\gamma}$
- Exclusive Radiative Decays $\mathbf{B} \rightarrow \boldsymbol{K}^{*} \gamma \& \mathbf{B}_{s} \rightarrow \boldsymbol{\phi} \gamma$
- Electroweak Penguins: $\mathbf{B} \rightarrow X_{s} \ell^{+} \ell^{-}$
- Exclusive Decays B $\rightarrow\left(\boldsymbol{K}, \boldsymbol{K}^{*}, \pi\right) \ell^{+} \ell^{-}$
- Current Frontier of Rare B Decays: $\mathbf{B}_{s} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}$\& $\mathbf{B}_{\boldsymbol{d}} \rightarrow \mu^{+} \mu^{-}$
- Summary and Outlook

Standard Model Lagrangian

$$
\mathcal{L}_{\mathrm{SM}}=\mathcal{L}_{\mathrm{GSW}}+\mathcal{L}_{\mathrm{QCD}}
$$

QCD [SU(3)]

$$
\mathcal{L}_{\mathrm{QCD}}=-\frac{1}{4} \boldsymbol{F}_{\mu v}^{(a)} \boldsymbol{F}^{(a) \mu v}+i \sum_{a} \bar{\psi}_{q}^{\alpha} \gamma^{\mu}\left(D_{\mu}\right)_{\alpha \beta} \psi_{q}^{\beta}
$$

with $F_{\mu v}^{(a)}=\partial_{\mu} A_{v}^{(a)}-\partial_{v} A_{\mu}^{(a)}-g_{s} f_{a b c} A_{\mu}^{(b)} A_{v}^{q(c)} ; \quad a, b, c=1, \ldots, 8$
and $\left(D_{\mu}\right)_{\alpha \beta}=\delta_{\alpha \beta} \partial_{\mu}+i g_{s} \sum_{a} \frac{1}{2} \lambda_{\alpha \beta}^{(a)} A_{\mu}^{(a)}$
Electroweak $\left[S U(2)_{I} \times U(1)_{Y}\right]$

$$
\mathcal{L}_{\mathrm{GSW}}=\mathcal{L}_{\text {gauge }}\left(W_{i}, B, \psi_{j}\right)+\mathcal{L}_{\text {Higgs }}\left(\phi_{k}, W_{i}, B, \psi_{j}\right)
$$

$\mathcal{L}_{\text {gauge }}\left(W_{i}, B, \psi_{j}\right)=-\frac{1}{4} F_{\mu v}^{i} F_{i}^{\mu \nu}-\frac{1}{4} B_{\mu v} B^{\mu v}+\sum_{\psi_{L}} \overline{\psi_{L}} i D_{\mu} \gamma^{\mu} \psi_{L}+\sum_{\psi_{R}} \overline{\psi_{R}} i D_{\mu} \gamma^{\mu} \psi_{R}$

Standard Model Lagrangian-Contd.

$$
\begin{gathered}
\mathcal{L}_{\text {Higgs }}\left(\phi_{k}, W_{i}, B, \psi_{j}\right)=\mathcal{L}_{\text {Higgs }}(\text { gauge })+\mathcal{L}_{\text {Higgs }}(\text { fermions }) \\
\mathcal{L}_{\text {Higgs }}(\text { gauge })=\left(D_{\mu} \Phi\right)^{*}\left(D^{\mu} \Phi\right)-V(\Phi)
\end{gathered}
$$

$$
D_{\mu} \Phi=\left(\mathbf{I}\left(\partial_{\mu}+i \frac{g_{1}}{2} B_{\mu}\right)+i g_{2} \frac{\tau}{2} \cdot \mathbf{W}-\right) \boldsymbol{\Phi} ; V(\Phi)=-\mu^{2} \Phi^{\dagger} \Phi+\lambda\left(\Phi^{\dagger} \Phi\right)^{2}
$$

$$
\mathcal{L}_{\text {Higgs }}(\text { fermions })=\Upsilon_{u}^{i j} \bar{Q}_{L, i} \tilde{\Phi} u_{R, j}+\Upsilon_{d}^{i j} \bar{Q}_{L, i} \Phi d_{R, j}+\text { h.c. }+\ldots
$$

- 3 Quark families: $Q_{L_{j}}=\left(u_{L}, d_{L}\right) ;\left(c_{L}, s_{L}\right) ;\left(t_{L} ; b_{L}\right) ; \bar{u}_{R}, \bar{d}_{R} ; \ldots$
- Flavour mixing reside in the Higgs-Yukawa sector of the theory
- Flavour symmetry broken by Yukawa interactions

$$
\begin{gathered}
Q_{i} Y_{d}^{i j} d_{j} \phi \longrightarrow Q_{i} M_{d}^{i j} d_{j} \\
Q_{i} Y_{u}^{i j} u_{j} \phi^{c} \longrightarrow Q_{i} M_{u}^{i j} u_{j}
\end{gathered}
$$

$$
M_{d}=\operatorname{diag}\left(m_{d}, m_{s}, m_{b}\right) ; M_{u}^{\dagger}=\operatorname{diag}\left(m_{u}, m_{c}, m_{t}\right) \times V_{\mathrm{CKM}}
$$

- $V_{\text {CKM }}$ a (3×3) unitary matrix is the only source of flavour violation

The Cabibbo-Kobayashi-Maskawa Matrix

$$
V_{\mathrm{CKM}} \equiv\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)
$$

■ Customary to use the handy Wolfenstein parametrization

$$
V_{\mathrm{CKM}} \simeq\left(\begin{array}{ccc}
1-\frac{1}{2} \lambda^{2} & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda\left(1+i A^{2} \lambda^{4} \eta\right) & 1-\frac{1}{2} \lambda^{2} & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2}\left(1+i \lambda^{2} \eta\right) & 1
\end{array}\right)
$$

- Four parameters: $A, \lambda, \rho, \eta ; \bar{\rho}=\rho\left(1-\lambda^{2} / 2\right), \bar{\eta}=\eta\left(1-\lambda^{2} / 2\right)$
- The CKM-Unitarity triangle [$\phi_{1}=\beta ; \phi_{2}=\alpha ; \quad \phi_{3}=\gamma$]

Phases and sides of the UT

$$
\alpha \equiv \arg \left(-\frac{V_{t b}^{*} V_{t d}}{V_{u b}^{*} V_{u d}}\right), \quad \beta \equiv \arg \left(-\frac{V_{c b}^{*} V_{c d}}{V_{t b}^{*} V_{t d}}\right), \quad \gamma \equiv \arg \left(-\frac{V_{u b}^{*} V_{u d}}{V_{c b}^{*} V_{c d}}\right)
$$

- β and γ have simple interpretation

$$
V_{t d}=\left|V_{t d}\right| e^{-i \beta}, \quad V_{u b}=\left|V_{u b}\right| e^{-i \gamma}
$$

- α defined by the relation: $\alpha=\pi-\beta-\gamma$
- The Unitarity Triangle (UT) is defined by:

$$
\begin{gathered}
R_{b} \mathrm{e}^{i \gamma}+R_{t} \mathrm{e}^{-i \beta}=1 \\
R_{b} \equiv \frac{\left|V_{u b}^{*} V_{u d}\right|}{\left|V_{c b}^{*} V_{c d}\right|}=\sqrt{\bar{\rho}^{2}+\bar{\eta}^{2}}=\left(1-\frac{\lambda^{2}}{2}\right) \frac{1}{\lambda}\left|\frac{V_{u b}}{V_{c b}}\right| \\
R_{t} \equiv \frac{\left|V_{t b}^{*} V_{t d}\right|}{\left|V_{c b}^{*} V_{c d}\right|}=\sqrt{(1-\bar{\rho})^{2}+\bar{\eta}^{2}}=\frac{1}{\lambda}\left|\frac{V_{t d}}{V_{c b}}\right|
\end{gathered}
$$

Current Status of the CKM-Unitarity Triangle [CKMfitter: 2015]

- Direct and indirect measurements of angles agree well; largest Pull is on $\sin 2 \beta(=1.6 \sigma)$
- Renormalization procedure in QCD

$$
\begin{array}{ll}
A_{0 \mu}^{a}=Z_{3}^{1 / 2} A_{\mu}^{a} & q_{0}=Z_{q}^{1 / 2} q \\
g_{0, s}=Z_{g} g_{s} \mu^{\varepsilon} & m_{0}=Z_{m} m
\end{array}
$$

- The index " 0 " indicates unrenormalized quantities. A_{μ}^{a} and q are renormalized fields, g_{s} is the renormalized QCD coupling and m the renormalized quark mass
- Dimensional Regularization is used in which Feynman diagrams are evaluated in $D=4-2 \varepsilon$ space-time dimensions and the singularities are extracted as $1 / \varepsilon$ poles
- The simplest renormalization scheme is the Minimal Subtraction Scheme MS in which only divergences ($\mathbf{1} / \varepsilon$ poles) are subtracted

$$
Z_{i}=\frac{\alpha_{s}}{4 \pi} \frac{a_{1 i}}{\varepsilon}+\left(\frac{\alpha_{s}}{4 \pi}\right)^{2}\left(\frac{a_{2 i}}{\varepsilon^{2}}+\frac{b_{2 i}}{\varepsilon}\right)+\mathcal{O}\left(\alpha_{s}^{3}\right)
$$

$a_{j i}$ and $\boldsymbol{b}_{j i}$ are $\boldsymbol{\mu}$-independent constants.

Example: Quark Self-Energy Correction in the MS scheme:

$C_{F}=4 / 3 ; \gamma_{E}$ is the Euler constant $\gamma_{E}=0.5772 \ldots$

- The $\overline{\mathrm{MS}}$-scheme is defined by: $\mu_{\overline{\mathrm{MS}}}=\mu e^{\gamma_{E} / 2}(4 \pi)^{-1 / 2}$

$$
\left(i \Sigma_{\alpha \beta}\right)_{d i v}=i C_{F} \delta_{\alpha \beta} \frac{\alpha_{S}}{4 \pi}(\not p-4 m) \frac{1}{\varepsilon}+\mathcal{O}\left(\alpha_{s}^{2}\right)
$$

- Adding the counter-term $i \delta_{\alpha \beta}\left[\left(Z_{q}-1\right) \not p-\left(Z_{q} Z_{m}-1\right) m\right]$ and requiring the final result to be zero yields the Renormalization constants

$$
\begin{aligned}
& Z_{q}=1-\frac{\alpha_{s}}{4 \pi} C_{F} \frac{1}{\varepsilon}+\mathcal{O}\left(\alpha_{s}^{2}\right) \\
& Z_{m}=1-\frac{\alpha_{s}}{4 \pi} 3 C_{F} \frac{1}{\varepsilon}+\mathcal{O}\left(\alpha_{s}^{2}\right)
\end{aligned}
$$

Renormalization contd.

- Z_{3} and Z_{g} calculated from the gluon propagator and the $g \bar{q} q$ vertex

$$
\begin{aligned}
& Z_{3}=1-\frac{\alpha_{s}}{4 \pi}\left[\frac{2}{3} f-\frac{5}{3} N\right] \frac{1}{\varepsilon}+\mathcal{O}\left(\alpha_{s}^{2}\right) \\
& Z_{g}=1-\frac{\alpha_{s}}{4 \pi}\left[\frac{11}{6} N-\frac{2}{6} f\right] \frac{1}{\varepsilon}+\mathcal{O}\left(\alpha_{s}^{2}\right)
\end{aligned}
$$

Basic RG Equations in QCD \& their Solutions

- Scale-dependence of coupling $g_{s}(\mu)\left(g \equiv g_{s}\right)$ and quark mass $m(\mu)$:

$$
\begin{gathered}
\frac{d g(\mu)}{d \ln \mu}=\beta(g(\mu), \varepsilon) \\
\frac{d m(\mu)}{d \ln \mu}=-\gamma_{m}(g(\mu)) m(\mu)
\end{gathered}
$$

where

$$
\begin{gathered}
\beta(g(\mu), \varepsilon)=-\varepsilon g+\beta(g), \\
\beta(g)=-g \frac{1}{Z_{g}} \frac{d Z_{g}}{d \ln \mu}, \quad \gamma_{m}(g)=\frac{1}{Z_{m}} \frac{d Z_{m}}{d \ln \mu}
\end{gathered}
$$

Compendium of Useful Results

- $\quad \beta(g), \gamma\left(\alpha_{s}\right)$ and $Z_{q, 1}\left(\alpha_{s}\right)$ up to two-loops are

$$
\begin{gathered}
\beta(g)=-\beta_{0} \frac{g^{3}}{16 \pi^{2}}-\beta_{1} \frac{g^{5}}{\left(16 \pi^{2}\right)^{2}} \\
\gamma_{m}\left(\alpha_{s}\right)=\gamma_{m}^{(0)} \frac{\alpha_{s}}{4 \pi}+\gamma_{m}^{(1)}\left(\frac{\alpha_{s}}{4 \pi}\right)^{2} \\
Z_{q, 1}\left(\alpha_{s}\right)=a_{1} \frac{\alpha_{s}}{4 \pi}+a_{2}\left(\frac{\alpha_{s}}{4 \pi}\right)^{2}
\end{gathered}
$$

where

$$
\begin{gathered}
\beta_{0}=\frac{11 N-2 f}{3} \quad \beta_{1}=\frac{34}{3} N^{2}-\frac{10}{3} N f-2 C_{F} f \\
\gamma_{m}^{(0)}=6 C_{F} \\
\gamma_{m}^{(1)}=C_{F}\left(3 C_{F}+\frac{97}{3} N-\frac{10}{3} f\right) \\
a_{1}=-C_{F} \\
a_{2}=C_{F}\left(\frac{3}{4} C_{F}-\frac{17}{4} N+\frac{1}{2} f\right) \\
C_{F}=\frac{N^{2}-1}{2 N}
\end{gathered}
$$

$\underline{\text { Running Coupling Constant }}$

- The RG equation for $g(\mu)$ can be written as:

$$
\frac{d \alpha_{s}}{d \ln \mu}=-2 \beta_{0} \frac{\alpha_{s}^{2}}{4 \pi}-2 \beta_{1} \frac{\alpha_{s}^{3}}{(4 \pi)^{2}}
$$

- The solution is:

$$
\frac{\alpha_{s}(\mu)}{4 \pi}=\frac{1}{\beta_{0} \ln \left(\mu^{2} / \Lambda_{\overline{M S}}^{2}\right)}-\frac{\beta_{1}}{\beta_{0}^{3}} \frac{\ln \ln \left(\mu^{2} / \Lambda_{\overline{M S}}^{2}\right)}{\ln ^{2}\left(\mu^{2} / \Lambda_{\overline{M S}}^{2}\right)}
$$

- $\Lambda_{\overline{M S}}$ is a QCD scale characteristic for the $\overline{\mathrm{MS}}$ scheme.
- $\Lambda_{\overline{M S}}$ and $\alpha_{s}(\mu)$ depend on f, the number of "effective" flavours present, which depends on the scale μ. As a working procedure $f=6$ for $\mu>m_{t}$, $f=5$ for $m_{b} \leq \mu \leq m_{t}$ etc.
- Denoting by $\alpha_{s}^{(f)}(\mu)$ the effective coupling constant for a theory with f effective flavours, the current world average is

$$
\alpha_{s}^{(5)}\left(M_{Z}\right)=0.1181 \pm 0.0013
$$

QCD Coupling constant $\alpha_{s}(\mu)$ [PDG: 2016]

Running Quark Masses

- The RG equation for $m(\mu)$ can be written as:

$$
\frac{d m(\mu)}{d \ln \mu}=-\gamma_{m}(g) m(\mu)
$$

- With $d g / d \ln \mu=\beta(g)$ the solution is:

$$
m(\mu)=m\left(\mu_{0}\right) \exp \left[-\int_{g\left(\mu_{0}\right)}^{g(\mu)} d g^{\prime} \frac{\gamma_{m}\left(g^{\prime}\right)}{\beta\left(g^{\prime}\right)}\right]
$$

- $m\left(\mu_{0}\right)$ is the value of the running quark mass at the scale μ_{0}. Inserting the expansions for $\gamma_{m}(g)$ and $\beta(g)$ and expanding in α_{s} gives:

$$
m(\mu)=m\left(\mu_{0}\right)\left[\frac{\alpha_{s}(\mu)}{\alpha_{s}\left(\mu_{0}\right)}\right]^{\frac{\gamma_{m}^{(0)}}{2 \beta_{0}}}\left[1+\left(\frac{\gamma_{m}^{(1)}}{2 \beta_{0}}-\frac{\beta_{1} \gamma_{m}^{(0)}}{2 \beta_{0}^{2}}\right) \frac{\alpha_{s}(\mu)-\alpha_{s}\left(\mu_{0}\right)}{4 \pi}\right]
$$

- Since $\frac{\gamma_{m}^{(0)}}{2 \beta_{0}}$ is a positive number, quark masses $m(\mu)$ decrease as μ increases, and they require a scheme and a scale to be quantified much like $\alpha_{s}(\mu)$

Bottom-quark-mass running $m_{b}(\mu)$ [HERA \& LEP]

Operator Product Expansion in Weak decays

- Consider the quark level transition $c \rightarrow s u \bar{d}$

- The tree-level W-exchange amplitude is:

$$
\begin{aligned}
A & =-\frac{G_{F}}{\sqrt{2}} V_{c s}^{*} V_{u d} \frac{M_{W}^{2}}{k^{2}-M_{W}^{2}}(\bar{s} c)_{V-A}(\bar{u} d)_{V-A} \\
& =\frac{G_{F}}{\sqrt{2}} V_{c s}^{*} V_{u d}(\bar{s} c)_{V-A}(\bar{u} d)_{V-A}+\mathcal{O}\left(\frac{k^{2}}{M_{W}^{2}}\right)
\end{aligned}
$$

where $(\bar{s} c)_{V-A} \equiv \bar{s} \gamma_{\mu}\left(1-\gamma_{5}\right) c$

- Ignoring $\mathcal{O}\left(k^{2} / M_{W}^{2}\right)$ terms, the amplitude A may also be obtained from

$$
\mathcal{H}_{e f f}=\frac{G_{F}}{\sqrt{2}} V_{c s}^{*} V_{u d}(\bar{s} c)_{V-A}(\bar{u} d)_{V-A}+\text { High D Operators }
$$

Basic idea of OPE

- Product of two current operators is expanded into a series of local operators, weighted by the eff. coupling constants, Wilson Coefficients OPE \& Short-distance QCD Effects
- Rewriting the $c \rightarrow s u \bar{d}$ transition to make the quark color-indices explicit

$$
\mathcal{H}_{e f f}^{(0)}=\frac{G_{F}}{\sqrt{2}} V_{c s}^{*} V_{u d}\left(\bar{s}_{\alpha} c_{\alpha}\right)_{V-A}\left(\bar{u}_{\beta} d_{\beta}\right)_{V-A}
$$

- With QCD effects $\mathcal{H}_{e f f}^{(0)}$ is generalized to

$$
\mathcal{H}_{e f f}=\frac{G_{F}}{\sqrt{2}} V_{c s}^{*} V_{u d}\left(C_{1}(\mu) Q_{1}+C_{2}(\mu) Q_{2}\right)
$$

where

$$
\begin{aligned}
& Q_{1}=\left(\bar{s}_{\alpha} c_{\beta}\right)_{V-A}\left(\bar{u}_{\beta} d_{\alpha}\right)_{V-A} \\
& Q_{2}=\left(\bar{s}_{\alpha} c_{\alpha}\right)_{V-A}\left(\bar{u}_{\beta} d_{\beta}\right)_{V-A}
\end{aligned}
$$

- In addition to the original operator Q_{2}, a new operator Q_{1} with the same flavour form but different colour structure is generated, as is evident from the colour structure

- The Wilson coefficients C_{1} and C_{2}, become calculable nontrivial functions of α_{s}, M_{W} and the renormalization scale μ.

Calculation of Wilson Coefficients

- They are determined by the requirement that the amplitude $A_{\text {full }}$ in the SM is reproduced by the amplitude in the effective theory $A_{\text {eff }}$

$$
A_{\text {full }}=A_{e f f}=\frac{G_{F}}{\sqrt{2}} V_{c s}^{*} V_{u d}\left(C_{1}\left\langle Q_{1}\right\rangle+C_{2}\left\langle Q_{2}\right\rangle\right)
$$

- There are three steps involved in this procedure, outlined below

Step 1: Calculation of $A_{\text {full }}$

- In the $\mathrm{SM}, A_{\text {full }}$ to $\mathcal{O}\left(\alpha_{s}\right)\left(m_{i}=0, p^{2}<0\right)$:

$$
\begin{aligned}
A_{\text {full }}= & \frac{G_{F}}{\sqrt{2}} V_{c s}^{*} V_{u d}\left[\left(1+2 C_{F} \frac{\alpha_{s}}{4 \pi}\left(\frac{1}{\varepsilon}+\ln \frac{\mu^{2}}{-p^{2}}\right)\right) S_{2}+\frac{3}{N} \frac{\alpha_{s}}{4 \pi} \ln \frac{M_{W}^{2}}{-p^{2}} S_{2}\right. \\
& \left.-3 \frac{\alpha_{s}}{4 \pi} \ln \frac{M_{W}^{2}}{-p^{2}} S_{1}\right]
\end{aligned}
$$

Here S_{1} and S_{2} are the tree level matrix elements of Q_{1} and Q_{2}

$$
\begin{aligned}
& S_{1} \equiv\left\langle Q_{1}\right\rangle_{\text {tree }}=\left(\bar{s}_{\alpha} c_{\beta}\right)_{V-A}\left(\bar{u}_{\beta} d_{\alpha}\right)_{V-A} \\
& S_{2} \equiv\left\langle Q_{2}\right\rangle_{\text {tree }}=\left(\bar{s}_{\alpha} c_{\alpha}\right)_{V-A}\left(\bar{u}_{\beta} d_{\beta}\right)_{V-A}
\end{aligned}
$$

- The singularity $1 / \varepsilon$ can be removed by quark field renormalization

Step 2: Calculation of Matrix Elements $\left\langle Q_{i}\right\rangle$

- The unrenormalized matrix elements of Q_{1} and Q_{2} are found at $\mathcal{O}\left(\alpha_{s}\right)$ by calculating the diagrams in the effective theory

$$
\begin{aligned}
\left\langle Q_{1}\right\rangle^{(0)}= & \left(1+2 C_{F} \frac{\alpha_{s}}{4 \pi}\left(\frac{1}{\varepsilon}+\ln \frac{\mu^{2}}{-p^{2}}\right)\right) S_{1}+\frac{3}{N} \frac{\alpha_{s}}{4 \pi}\left(\frac{1}{\varepsilon}+\ln \frac{\mu^{2}}{-p^{2}}\right) S_{1} \\
& -3 \frac{\alpha_{s}}{4 \pi}\left(\frac{1}{\varepsilon}+\ln \frac{\mu^{2}}{-p^{2}}\right) S_{2} \\
\left\langle Q_{2}\right\rangle^{(0)}= & \left(1+2 C_{F} \frac{\alpha_{s}}{4 \pi}\left(\frac{1}{\varepsilon}+\ln \frac{\mu^{2}}{-p^{2}}\right)\right) S_{2}+\frac{3}{N} \frac{\alpha_{s}}{4 \pi}\left(\frac{1}{\varepsilon}+\ln \frac{\mu^{2}}{-p^{2}}\right) S_{2} \\
& -3 \frac{\alpha_{s}}{4 \pi}\left(\frac{1}{\varepsilon}+\ln \frac{\mu^{2}}{-p^{2}}\right) S_{1}
\end{aligned}
$$

- Divergence in the first terms can again be removed by quark field renormalization. However, one needs Operator renormalization to remove the residual divergence

$$
Q_{i}^{(0)}=Z_{i j} Q_{j}
$$

- The relation between the unrenormalized $\left(\left\langle Q_{i}\right\rangle{ }^{(0)}\right)$ and the renormalized amputated Green functions $\left(\left\langle Q_{i}\right\rangle\right)$ is:

$$
\left\langle Q_{i}\right\rangle^{(0)}=Z_{q}^{-2} \hat{Z}_{i j}\left\langle Q_{j}\right\rangle
$$

- Z_{q}^{-2} removes the $1 / \varepsilon$ divergences in the first terms discussed above. $\hat{Z}_{i j}$ removes the remaining divergences. In the $\overline{\mathrm{MS}}$-scheme:

$$
\hat{\mathrm{Z}}=1+\frac{\alpha_{s}}{4 \pi} \frac{1}{\varepsilon}\left(\begin{array}{cc}
3 / N & -3 \\
-3 & 3 / N
\end{array}\right)
$$

- The renormalized matrix elements $\left\langle Q_{i}\right\rangle$ are given by

$$
\begin{aligned}
& \left\langle Q_{1}\right\rangle=\left(1+2 C_{F} \frac{\alpha_{s}}{4 \pi} \ln \frac{\mu^{2}}{-p^{2}}\right) S_{1}+\frac{3}{N} \frac{\alpha_{s}}{4 \pi} \ln \frac{\mu^{2}}{-p^{2}} S_{1}-3 \frac{\alpha_{s}}{4 \pi} \ln \frac{\mu^{2}}{-p^{2}} S_{2} \\
& \left\langle Q_{2}\right\rangle=\left(1+2 C_{F} \frac{\alpha_{s}}{4 \pi} \ln \frac{\mu^{2}}{-p^{2}}\right) S_{2}+\frac{3}{N} \frac{\alpha_{s}}{4 \pi} \ln \frac{\mu^{2}}{-p^{2}} S_{2}-3 \frac{\alpha_{s}}{4 \pi} \ln \frac{\mu^{2}}{-p^{2}} S_{1}
\end{aligned}
$$

- Inserting $\left\langle Q_{i}\right\rangle$ in $A_{\text {eff }}$ and comparing with $A_{\text {full }}$ yields the Wilson coefficients C_{1} and C_{2}

$$
C_{1}(\mu)=-3 \frac{\alpha_{s}}{4 \pi} \ln \frac{M_{W}^{2}}{\mu^{2}}, \quad C_{2}(\mu)=1+\frac{3}{N} \frac{\alpha_{s}}{4 \pi} \ln \frac{M_{W}^{2}}{\mu^{2}}
$$

- The Wilson coefficients in the meanwhile have been calculated to next-next-leading-order (NNLO) precision. Their expressions are too long to give here. Their numerical values will be quoted.

Examples of leading electroweak diagrams for $\boldsymbol{B} \rightarrow \boldsymbol{X}_{s} \gamma$

$$
\left|\frac{V_{u b} V_{u s}}{V_{c b}}\right| \simeq\left|\frac{V_{u b} V_{u s}}{V_{t s}}\right| \simeq 2 \%
$$

$\simeq+200 \% \quad \sim-100 \%$
In the amplitude, after including LO QCD effects.

- QCD logarithms $\alpha_{s} \ln \frac{M_{W}^{2}}{m_{b}^{2}}$ enhance $\operatorname{BR}\left(\boldsymbol{B} \rightarrow \boldsymbol{X}_{s} \gamma\right)$ more than twice
- Effective field theory (obtained by integrating out heavy fields) used for resummation of such large logarithms

The effective Lagrangian for $B \rightarrow X_{s} \gamma$ and $B \rightarrow X_{s} \ell^{+} \ell^{-}$

$$
\begin{gathered}
\mathcal{L}=\underset{(q=u, d, s, c, b, l=e, \mu, \tau)^{2}}{\mathcal{L}_{Q C D \times Q E D}(q, l)+\frac{4 G_{F}}{\sqrt{2}} V_{t s}^{*} V_{t b} \sum_{i=1}^{10} C_{i}(\mu) O_{i}} \\
O_{i}=\left\{\begin{array}{lll}
\left(\bar{s} \Gamma_{i} c\right)\left(\bar{c} \Gamma_{i}^{\prime} b\right), & i=1,2, & \left|C_{i}\left(m_{b}\right)\right| \sim 1 \\
\left(\bar{s} \Gamma_{i} b\right) \Sigma_{q}\left(\bar{q} \Gamma_{i}^{\prime} q\right), & i=3,4,5,6, & \left|C_{i}\left(m_{b}\right)\right|<0.07 \\
\frac{e m_{b}}{16 \pi^{2}} \bar{s}_{L} \sigma^{\mu v} b_{R} F_{\mu v}, & i=7, & C_{7}\left(m_{b}\right) \sim-0.3 \\
\frac{g m_{b}}{16 \pi^{2}} \bar{s}_{L} \sigma^{\mu v} T^{a} b_{R} G_{\mu v \prime}^{a} & i=8, & C_{8}\left(m_{b}\right) \sim-0.15 \\
\frac{e^{2}}{16 \pi^{2}}\left(\bar{s}_{L} \gamma_{\mu} b_{L}\right)\left(\bar{l} \gamma^{\mu}\left(\gamma_{5}\right) l\right), & i=9,(10) & \left|C_{i}\left(m_{b}\right)\right| \sim 4
\end{array}\right.
\end{gathered}
$$

Three steps of the calculation:
Matching: Evaluating $C_{i}\left(\mu_{0}\right)$ at $\mu_{0} \sim M_{W}$ by requiring equality of the SM and the effective theory Green functions

Mixing: Deriving the effective theory RGE and evolving $C_{i}(\mu)$ from μ_{0} to $\mu_{b} \sim m_{b}$

The decay $b \rightarrow s \ell^{+} \ell^{-}$: Leading Feynman diagram

Diagrams in the full theory

Diagrams in the effective theory

Structure of the SM calculations for $\bar{B} \rightarrow X_{s} \gamma \& \bar{B} \rightarrow X_{s} \ell^{+} \ell^{-}$

$$
\mathcal{H}_{\mathrm{eff}} \sim \sum_{i=1}^{10} C_{i}(\mu) O_{i}
$$

- $\mathcal{H}_{\text {eff }}$ independent of the scale μ, while $C_{i}(\mu)$ and $O_{i}(\mu)$ depend on μ $\Longrightarrow \underline{\text { Renormalization Group Equation (RGE) for } C_{i}(\mu) \text { : }}$

$$
\mu \frac{d}{d \mu} C_{i}(\mu)=\gamma_{i j}^{\mathrm{T}} C_{j}(\mu)
$$

- $\quad \gamma_{i j}$: anomalous dimension matrix

■ Matching usually done at high scale ($\mu_{0} \sim M_{W}, m_{t}$)

- SM and the matrix elements of the operators have the same large logs $\mu_{0} \sim O\left(M_{W}\right)$
\downarrow RGE
$\mu_{b} \sim O\left(m_{b}\right):$ matrix elements of the operators at this scale don't have large logs; they are contained in the $\boldsymbol{C}_{i}\left(\boldsymbol{\mu}_{b}\right)$
- Evaluation of the on-shell amplitudes at $\mu_{b} \sim m_{b}$

Examples of SM diagrams for the matching of $C_{7}\left(\mu_{0}\right)$

LO:

[Inami, Lim, 1981]

NLO:
[Adel, Yao, 1993]

NNLO:
[Steinhauser, Misiak, 2004]

Resummation of large logarithms $\left(\alpha_{s} \ln \frac{M_{W}^{2}}{m_{b}^{2}}\right)^{n}$ in $b \rightarrow s \gamma$ amplitude RGE for the Wilson coefficients $\mu \frac{d}{d \mu} C_{j}(\mu)=C_{i}(\mu) \gamma_{i j}(\mu)$

- Renormalization constants $\Longrightarrow \gamma_{i j}: C_{j}(\mu)$ known to NLL accuracy

The $b \rightarrow s \gamma$ matrix elements

Perturbative on-shell amplitudes

Wilson Coefficients of Four-Quark Operators

	$C_{1}\left(\mu_{b}\right)$	$C_{2}\left(\mu_{b}\right)$	$C_{3}\left(\mu_{b}\right)$	$C_{4}\left(\mu_{b}\right)$	$C_{5}\left(\mu_{b}\right)$	$C_{6}\left(\mu_{b}\right)$
LL	-0.257	1.112	0.012	-0.026	0.008	-0.033
NLL	-0.151	1.059	0.012	-0.034	0.010	-0.040

Wilson Coefficients of the dipole and semileptonicr Operators

	$C_{7}^{\text {eff }}\left(\mu_{b}\right)$	$C_{8}^{\text {eff }}\left(\mu_{b}\right)$	$C_{9}\left(\mu_{b}\right)$	$C_{10}\left(\mu_{b}\right)$
LL	-0.314	-0.149	2.007	0
NLL	-0.308	-0.169	4.154	-4.261
NNLL	-0.290		4.214	-4.312

- Obtained for the following input:

$$
\begin{aligned}
& \mu_{b}=4.6 \mathrm{GeV} \quad \bar{m}_{t}\left(\bar{m}_{t}\right)=167 \mathrm{GeV} \\
& M_{W}=80.4 \mathrm{GeV} \quad \sin ^{2} \theta_{\mathrm{N}}=0.23
\end{aligned}
$$

$\mathcal{B}\left(B \rightarrow X_{s} \gamma\right)$: Experiment vs. SM \& BSM Effects

- Expt.: CLEO, Belle, BaBar [HFAG 2014]: $\left(E_{\gamma}>1.6 \mathrm{GeV}\right)$:

$$
\mathcal{B}\left(B \rightarrow X_{s} \gamma\right)=(3.43 \pm 0.21 \pm 0.07) \times 10^{-4}
$$

■ $\mathrm{SM}[\mathrm{NNLO}]: \mathcal{B}\left(B \rightarrow X_{s} \gamma\right)=(3.36 \pm 0.23) \times 10^{-4}$

- Expt. $/ \mathrm{SM}=1.02 \pm \mathbf{0 . 0 8}$
- Excellent agreement; restricts most NP models
- BSM effects can be parametrized as additive contributions to the Wilson Coeffs. of the dipole operators C_{7} and C_{8}

$$
\mathcal{B}\left(B \rightarrow X_{s} \gamma\right) \times 10^{4}=(3.36 \pm 0.23)-8.22 \Delta C_{7}-1.99 \Delta C_{8}
$$

- In $2 \mathrm{HDM}, \mathcal{B}\left(B \rightarrow X_{s} \gamma\right)$ puts strict bounds on $\boldsymbol{M}_{H^{+}}$

Photon Energy Spectrum in $B \rightarrow X_{s} \gamma$

Spectator Model: Greub, AA; PLB 259, 182 (1991)

$B \rightarrow X_{s} \gamma$ in 2HDM

- NNLO in 2HDM [Hermann, Misiak, Steinhauser; JHEP 1211 (2012) 036] ; Updated [Misiak et al., Phys. Rev. Lett. 114 (2015) 22, 221801]

$$
\mathcal{L}_{H^{+}}=\left(2 \sqrt{2} G_{F}\right)^{1 / 2} \Sigma_{i, j=1}^{3} \bar{u}_{i}\left(A_{u} m_{u_{i}} V_{i j} P_{L}-A_{d} m_{d_{j}} V_{i j} P_{R}\right) d_{j} H^{*}+\text { h.c. }
$$

2HDM contributions to the Wilson coefficients are proportional to $A_{i} A_{j}^{*}$

- 2HDM of type-I: $A_{u}=A_{d}=\frac{1}{\tan \beta}$
- 2HDM of type-II: $A_{u}=-1 / A_{d}=\frac{1}{\tan \beta}$
(a)

(d)

(b)

(e)

(c)

(f)

$B \rightarrow X_{s} \gamma$ in Type-II 2HDM

[Hermann, Misiak, Steinhauser JHEP 1211 (2012) 036]

- Updated NNLO [Misiak et al., Phys. Rev. Lett. 114 (2015) 22, 221801]
- $M_{H^{+}}>480 \mathrm{GeV}$ (at 95\% C.L.)
- $M_{H^{+}}>358 \mathrm{GeV}$ (at 99\% C.L.)
- Limits on 2HDM competitive to direct $H^{ \pm}$searches at the LHC

The decay $B \rightarrow K^{*} \gamma$

- In LO, only the electromagnetic penguin operator $\mathcal{O}_{7 \gamma}$ contributes to the $B \rightarrow K^{*} \gamma$ amplitude; involves the form factor $T_{1}^{\left(K^{*}\right)}(0)$

$\mathcal{M}^{\mathrm{LO}} \propto V_{t b} V_{t s}^{*} C_{7}^{(0) \mathrm{eff}} \frac{\frac{\bar{m}}{b} b}{4 \pi^{2}} T_{1}^{\left(K^{*}\right)}(0)\left[(P q)\left(e^{*} \varepsilon^{*}\right)-\left(e^{*} P\right)\left(\varepsilon^{*} q\right)+i \mathrm{eps}\left(e^{*}, \varepsilon^{*}, P, q\right)\right]$
Here, $P^{\mu}=p_{B}^{\mu}+p_{K}^{\mu} ; q^{\mu}=p_{B}^{\mu}-p_{K}^{\mu}$ is the photon four-momentum; e^{μ} is its polarization vector; ε^{μ} is the K^{*}-meson polarization vector
- Branching ratio:
$\mathcal{B}^{\mathrm{LO}}\left(B \rightarrow K^{*} \gamma\right)=\tau_{B} \frac{G_{F}^{2}\left|V_{t b} V_{t s}^{*}\right|^{2} \alpha M^{3}}{32 \pi^{4}} \bar{m}_{b}^{2}\left(\mu_{b}\right)\left|C_{7}^{(0) \text { eff }}\left(\mu_{b}\right)\right|^{2}\left|T_{1}^{\left(K^{*}\right)}(0)\right|^{2}$

Hard spectator contributions in $B \rightarrow\left(K^{*}, \rho\right) \gamma$
$\underline{\text { Spectator corrections due to } \mathcal{O}_{7}}$

$\underline{\text { Spectator corrections due to } \mathcal{O}_{8}}$

$\underline{\text { Spectator corrections due to } \mathcal{O}_{2}}$

$\boldsymbol{B} \rightarrow \boldsymbol{K}^{*} \gamma$ decay rates in NLO

- Perturbative approaches: QCD-F; PQCD; SCET

Factorization Ansatz (QCDF):

[Beneke, Buchalla, Neubert, Sachrajda; Beneke \& Feldmann]

$$
\langle V \gamma| Q_{i}|\bar{B}\rangle=t_{i}^{I} \zeta_{V_{\perp}}+t_{i}^{I I} \otimes \phi_{+}^{B} \otimes \phi_{\perp}^{V}+\mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}}{m_{b}}\right)
$$

- $\zeta_{V_{\perp}}$ (form factor) and $\boldsymbol{\phi}^{B, V}$ (LCDAs) are non-perturbative functions
- t^{I} and $t^{I I}$ are perturbative hard-scattering kernels

$$
t^{I}=\mathcal{O}(1)+\mathcal{O}\left(\alpha_{s}\right)+\ldots, \quad t^{I I}=\mathcal{O}\left(\alpha_{s}\right)+\ldots
$$

- The kernels t^{I} and $t^{I I}$ are known at $\mathcal{O}\left(\alpha_{s}\right)$; include Hard-scattering and Vertex corrections [Parkhomenko, AA; Bosch, Buchalla; Beneke, Feldmann, Seidel 2001]

Nonfactorizable α_{s} Corrections

(a)

(b)

(c)

(d)

(e)

- First line: hard-spectator corrections
- Second line: $\quad b \rightarrow s \gamma$ vertex corrections

SCET factorization formula for $\boldsymbol{B} \rightarrow \boldsymbol{K}^{*} \gamma$
[Chay, Kim '03; Grinstein, Grossman, Ligeti '04; Becher, Hill, Neubert '05]

$$
\langle V \gamma| Q_{i}|\bar{B}\rangle=\Delta_{i} C^{A} \zeta_{V_{\perp}}+\left(\Delta_{i} C^{B 1} \otimes j_{\perp}\right) \otimes \phi_{\perp}^{V} \otimes \phi_{+}^{B}
$$

- $\zeta_{V_{\perp}}, \phi_{\perp}^{V}, \phi_{+}^{B}$ are matrix elements of SCET operators
- Hard-scattering kernels $t^{I}, t^{I I}=$ SCET matching coefficients

$$
t_{i}^{I}=\Delta_{i} C^{A}\left(m_{b}\right) ; \quad t_{i}^{I I}=\Delta_{i} C^{B 1}\left(m_{b}\right) \otimes j_{\perp}\left(\sqrt{m_{b} \Lambda}\right) \quad \text { (subfactorization) }
$$

- Derivation of factorization in SCET

1) QCD \rightarrow SCET $_{I}$: Integrate out m_{b}; defines vertex corrections
$\Delta_{i} C^{A}=t_{i}^{I}$

$$
Q_{i} \rightarrow \Delta_{i} C^{A}\left(m_{b}\right) J^{A}+\Delta_{i} C^{B 1}\left(m_{b}\right) \otimes J^{B 1}+\ldots
$$

2) $\mathrm{SCET}_{I} \rightarrow \mathrm{SCET}_{I I}$: Integrate out $\sqrt{m_{b} \Lambda_{\mathrm{QCD}}}$; defines spectator corr.

$$
J^{B 1} \rightarrow j_{\perp}\left(\sqrt{m_{b} \Lambda_{\mathrm{QCD}}}\right) \otimes O^{B 1, \mathrm{SCET}_{I I}}\left(\Lambda_{\mathrm{QCD}}\right)
$$

3) Large logs in $t_{i}^{I I}$ resummed by solving RG equations
$\boldsymbol{B} \boldsymbol{\rightarrow} \boldsymbol{K}^{*} \gamma$ in SCET at NNLO
[Pecjak, Greub, AA '07]
Vertex Corrections

$$
\Delta_{i} C^{A}=\Delta_{7} C^{A(0)}\left[\Delta_{i 7}+\frac{\alpha_{s}(\mu)}{4 \pi} \Delta_{i} C^{A(1)}+\frac{\alpha_{s}^{2}(\mu)}{(4 \pi)^{2}} \Delta_{i} C^{A(2)}\right]
$$

- Contr. from O_{7} and O_{8} exact to NNLO $O\left(\alpha_{s}^{2}\right)$
- Contr. from O_{2} exact at NLO $O\left(\alpha_{s}\right)$ but only large- β_{0} limit at $O\left(\alpha_{s}^{2}\right)$ $\underline{\text { Spectator Corrections at } O\left(\alpha_{s}^{2}\right)}$

$$
t_{i}^{I I(1)}(u, \omega)=\Delta_{i} C^{B 1(1)} \otimes j_{\perp}^{(0)}+\Delta_{i} C^{B 1(0)} \otimes j_{\perp}^{(1)}
$$

- The one-loop jet-function $j_{\perp}^{(1)}$ known; [Becher and Hill '04; Beneke and Yang '05]
- The one-loop hard coefficient $\boldsymbol{\Delta}_{7} C^{B 1(1)}$ known; [Beneke, Kiyo, Yang '04; Becher and Hill '04]
- The one-loop hard coefficient $\Delta_{8} C^{B 1(1)}$ known; [Pecjak, Greub, AA '07]
- $\Delta_{i} C^{B 1(1)}(i=1, \ldots, 6)$ remain unknown (require two loops)

Estimates of $\operatorname{BR}\left(\boldsymbol{B} \rightarrow \boldsymbol{K}^{*} \gamma\right)$ in SCET at NNLO
[Pecjak, Greub, AA; EPJ C55: 577 (2008)]
Estimates at NNLO in units of $\mathbf{1 0}^{-5}$

$$
\begin{aligned}
& \mathcal{B}\left(B^{+} \rightarrow K^{*+} \gamma\right)=4.6 \pm 1.2\left[\zeta_{K^{*}}\right] \pm 0.4\left[m_{c}\right] \pm 0.2\left[\lambda_{B}\right] \pm 0.1[\mu] \\
& {[\text { Expt. } 4.2 \pm 0.18 \text { (HFAG 2012)]; }} \\
& \mathcal{B}\left(B^{0} \rightarrow K^{* 0} \gamma\right)=4.3 \pm 1.1\left[\zeta_{K^{*}}\right] \pm 0.4\left[m_{c}\right] \pm 0.2\left[\lambda_{B}\right] \pm 0.1[\mu] \\
& {[\text { Expt.: } 4.33 \pm 0.15 \text { (HFAG 2012)]; }} \\
& \mathcal{B}\left(B_{s} \rightarrow \phi \gamma\right)=4.3 \pm 1.1\left[\zeta_{\phi}\right] \pm 0.3\left[m_{c}\right] \pm 0.3\left[\lambda_{B}\right] \pm 0.1[\mu] \\
& {\left[\text { Expt.: } 5.7_{-1.8}^{+2.1} \text { (BELLE); } 3.9 \pm 0.5 \text { (LHCb) }\right] }
\end{aligned}
$$

Comparison with current experiments
■ $\frac{\mathcal{B}\left(B^{+} \rightarrow K^{*+} \gamma\right)_{\mathrm{NNLO}}}{\mathcal{B}\left(B^{+} \rightarrow K^{*+} \gamma\right)_{\text {exp }}}=1.10 \pm 0.35[$ theory $] \pm 0.04[\exp]$

- $\frac{\mathcal{B}\left(B^{0} \rightarrow K^{* 0} \gamma\right)_{\text {NNLO }}}{\mathcal{B}\left(B^{+} \rightarrow K^{* 0} \gamma\right)_{\text {exp }}}=1.00 \pm 0.32[$ theory $] \pm 0.04[\exp]$
$B \rightarrow X_{s} l^{+} l^{-}$
- There are two $\boldsymbol{b} \rightarrow \boldsymbol{s}$ semileptonic operators in SM:

$$
O_{i}=\frac{e^{2}}{16 \pi^{2}}\left(\bar{s}_{L} \gamma_{\mu} b_{L}\right)\left(\bar{l} \gamma^{\mu}\left(\gamma_{5}\right) l\right), \quad i=9,(10)
$$

- Their Wilson Coefficients have the following perturbative expansion:

$$
\begin{array}{rlr}
C_{9}(\mu) & =\frac{4 \pi}{\alpha_{s}(\mu)} C_{9}^{(-1)}(\mu)+C_{9}^{(0)}(\mu)+\frac{\alpha_{s}(\mu)}{4 \pi} C_{9}^{(1)}(\mu)+\ldots \\
C_{10} & = & C_{10}^{(0)}+\frac{\alpha_{s}\left(M_{W}\right)}{4 \pi} C_{10}^{(1)}+\ldots
\end{array}
$$

- The term $C_{9}^{(-1)}(\mu)$ reproduces the electroweak logarithm that originates from the photonic penguins with ct

$$
\frac{4 \pi}{\alpha_{s}\left(m_{b}\right)} C_{9}^{(-1)}\left(m_{b}\right)=\frac{4}{9} \ln \frac{M_{W}^{2}}{m_{b}^{2}}+\mathcal{O}\left(\alpha_{s}\right) \simeq 2
$$

- $C_{9}^{(0)}\left(m_{b}\right) \simeq 2.2$; need to calculate NNLO for reliable estimates

The decay $b \rightarrow s \ell^{+} \ell^{-}$: Leading Feynman diagram

Diagrams in the full theory

Diagrams in the effective theory

NNLO Calculations of $\mathcal{B}\left(B \rightarrow X_{s} \ell^{+} \ell^{-}\right)$

- 2-loop matching, 3-loop mixing and 2-loop matrix elements are available
- Matching: [Bobeth, Misiak, Urban]
- Mixing: [Gambino, Gorbahn, Haisch]
- Matrix elements:
[Asatryan, Asatrian, Greub, Walker; Asatrian, Bieri, Greub, Hovhannissyan;
Ghinculov, Hurth, Isidori, Yao; Bobeth, Gambino, Gorbahn, Haisch]
- Power corrections in $B \rightarrow X_{s} \ell^{+} \ell^{-}$decays
- $1 / m_{b}$ corrections [A. Falk et al.; AA, Handoko, Morozumi,Hiller; Buchalla, Isidori]
- $1 / m_{c}$ corrections [Buchalla, Isidori, Rey]
- NNLO Phenomenological analysis of $\boldsymbol{B} \rightarrow \boldsymbol{X}_{\boldsymbol{s}} \ell^{+} \ell^{-}$decays
[AA, Greub, Hiller, Lunghi, Phys. Rev. D66, 034002 (2002)]
$\square \quad \mathrm{BR}\left(B \rightarrow X_{s} \mu^{+} \mu^{-}\right) ; \quad q^{2}>4 m_{\mu}^{2}=(4.2 \pm 1.0) \times 10^{-6}$
■ $\operatorname{BR}\left(B \rightarrow X_{s} e^{+} e^{-}\right)=(6.9 \pm 0.7) \times 10^{-6}$

Dilepton Invariant Mass in $\boldsymbol{B} \rightarrow \boldsymbol{X}_{s} \ell^{+} \ell^{-}$

$$
\begin{aligned}
& \frac{d \Gamma\left(B \rightarrow X_{s} \ell^{+} \ell^{-}\right)}{d \hat{s}}=\left(\frac{\alpha_{e m}}{4 \pi}\right)^{2} \frac{G_{F}^{2} m_{b, p o l e}^{5}\left|V_{t s}^{*} V_{t b}\right|^{2}}{48 \pi^{3}}(1-\hat{s})^{2} \\
& \times\left((1+2 \hat{s})\left(\left|\tilde{C}_{9}^{\text {eff }}\right|^{2}+\left|\tilde{C}_{10}^{\text {eff }}\right|^{2}\right)+4(1+2 / \hat{s})\left|\tilde{C}_{7}^{\text {eff }}\right|^{2}+12 \operatorname{Re}\left(\tilde{C}_{7}^{\text {eff }} \tilde{C}_{9}^{\text {eff } *}\right)\right) \\
& \widetilde{C}_{7}^{\text {eff }}=\left(1+\frac{\alpha_{s}(\mu)}{\pi} \omega_{7}(\hat{s})\right) A_{7} \\
& -\frac{\alpha_{s}(\mu)}{4 \pi}\left(C_{1}^{(0)} F_{1}^{(7)}(\hat{s})+C_{2}^{(0)} F_{2}^{(7)}(\hat{s})+A_{8}^{(0)} F_{8}^{(7)}(\hat{s})\right) \\
& \widetilde{C}_{9}^{\text {eff }}=\left(1+\frac{\alpha_{s}(\mu)}{\pi} \omega_{9}(\hat{s})\right)\left(A_{9}+T_{9} h\left(\hat{m}_{c}^{2}, \hat{s}\right)+U_{9} h(1, \hat{s})+W_{9} h(0, \hat{s})\right) \\
& -\frac{\alpha_{s}(\mu)}{4 \pi}\left(C_{1}^{(0)} F_{1}^{(9)}(\hat{s})+C_{2}^{(0)} F_{2}^{(9)}(\hat{s})+A_{8}^{(0)} F_{8}^{(9)}(\hat{s})\right) \\
& \widetilde{C}_{10}^{\text {eff }}=\left(1+\frac{\alpha_{s}(\mu)}{\pi} \omega_{9}(\hat{s})\right) A_{10}
\end{aligned}
$$

- $A_{7}, A_{8}, A_{9}, A_{10}, T_{9}, U_{9}, W_{9}$ are functions of the Wilson coefficients

Sensitivity of the different q^{2} regions to SD- \& LD-pieces

Forward-Backward Asymmetry in $B \rightarrow X_{s} \ell^{+} \ell^{-}$
[Proposed in AA, Mannel, Morozumi, PLB 273, 505 (1991)]
[NNLL: Asatrian, Bieri, Greub, Hovhannisyan; Ghinculov, Hurth, Isidori, Yao]

Normalized FB Asymmetry

$$
\begin{gathered}
\bar{A}_{\mathrm{FB}}(\hat{s})=\frac{\int_{-1}^{1} \frac{d^{2} \Gamma\left(B \rightarrow X_{s} \ell^{+} \ell^{-}\right)}{d \hat{s} \hat{d z}} \operatorname{sgn}(z) d z}{\int_{-1}^{1} \frac{d^{2} \Gamma\left(B \rightarrow X_{s} \ell^{+} \ell^{-}\right)}{d \hat{s} d z} d z} \\
\int_{-1}^{1} \frac{d^{2} \Gamma\left(b \rightarrow X_{s} \ell^{+} \ell^{-}\right)}{d \hat{s} d z} \operatorname{sgn}(z) d z=\left(\frac{\alpha_{\mathrm{em}}}{4 \pi}\right)^{2} \frac{G_{F}^{2} m_{b, \text { pole }}^{5}\left|V_{t s}^{*} V_{t b}\right|^{2}}{48 \pi^{3}}(1-\hat{s})^{2} \\
\times\left[-3 \hat{s} \operatorname{Re}\left(\widetilde{C}_{9}^{\mathrm{efff}} \widetilde{C}_{10}^{\mathrm{eff} *}\right)\left(1+\frac{2 \alpha_{s}}{\pi} f_{910}(\hat{s})\right)-6 \operatorname{Re}\left(\widetilde{C}_{7}^{\mathrm{eff}} \widetilde{C}_{10}^{\mathrm{eff} *}\right)\left(1+\frac{2 \alpha_{s}}{\pi} f_{710}\right.\right.
\end{gathered}
$$

- NNLL stabilize the scale $(=\mu)$ dependence of the FB Asymmetry
$A_{\mathrm{FB}}^{\mathrm{NLL}}(0)=-(2.51 \pm 0.28) \times 10^{-6}$;
$A_{\mathrm{FB}}^{\mathrm{NNLL}}(0)=-(2.30 \pm 0.10) \times 10^{-6}$
- Zero of the FB Asymmetry is a precise test of the SM, correlating $\widetilde{C}_{7}^{\text {eff }}$ and $\widetilde{C}_{a}^{\text {eff }}$

Normalized FB-Asymmetry in $\bar{B} \rightarrow X_{s} \ell^{+} \ell^{-}$
[Ghinculov, Hurth, Isidori, Yao 2004]

$\overline{\mathcal{A}}_{\mathrm{FB}}\left(q^{2}\right)=\frac{1}{d \mathcal{B}\left(B \rightarrow X_{s} \ell^{+} \ell^{-}\right) / d q^{2}} \int_{-1}^{1} d \cos \theta_{\ell} \frac{d^{2} \mathcal{B}\left(B \rightarrow X_{s} \ell^{+} \ell^{-}\right)}{d q^{2} d \cos \theta_{\ell}} \operatorname{sgn}\left(\cos \theta_{\ell}\right)$

- Zero of the FB-Asymmetry is a precision test of the SM
$q_{0}^{2}=(3.90 \pm 0.25) \mathrm{GeV}^{2}$
[Ghinculov, Hurth, Isidori, Yao 200

Rare B-Decays in the SM and Hints of BSM P]

Comparison of $B \rightarrow X_{s} \ell^{+} \ell^{-}$with Data

[AA,Greub, Hiller, Lunghi 2001 (AGHL); Ghinculov, Hurth, Isidori, Yao 2004 (GHIY); Huber, Lunghi, Misiak, Wyler 2005 (HLMW); Bobeth, Gambino, Gorbahn, Haisch 2003]

- Inclusive $\boldsymbol{B} \rightarrow \boldsymbol{X}_{s} \ell^{+} \ell^{-}$BRs

$$
\begin{gathered}
\mathcal{B}\left(B \rightarrow X_{S} \ell^{+} \ell^{-}\right)\left(M_{\ell \ell}>0.2 \mathrm{GeV}\right)=\left(3.66_{-0.77}^{+0.76}\right) \times 10^{-6}\left[\mathrm{HFAG}^{\prime} 12\right] \\
S M:(4.2 \pm 0.7) \times 10^{-6}[\mathrm{AGHL}] ;(4.6 \pm 0.8) \times 10^{-6}[\mathrm{GHIY}]
\end{gathered}
$$

- Partial BRs (integrated over lower range of \boldsymbol{q}^{2})
$\mathcal{B}\left(\bar{B} \rightarrow X_{S} \ell^{+} \ell^{-}\right) ; q^{2} \in[1,6] \mathrm{GeV}^{2}=(1.63 \pm 0.20) \times 10^{-6}$ [GHIY]
$\mathcal{B}\left(\bar{B} \rightarrow X_{s} \mu^{+} \mu^{-}\right) ; q^{2} \in[1,6] \mathrm{GeV}^{2}=(1.59 \pm 0.11) \times 10^{-6}$ [HLMW]
$\mathcal{B}\left(\bar{B} \rightarrow X_{s} e^{+} e^{-}\right) ; \quad q^{2} \in[1,6] \mathrm{GeV}^{2}=(1.63 \pm 0.11) \times 10^{-6}$ [HLMW]
Expt:: $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \ell^{+} \ell^{-}\right) \quad q^{2} \in[1,6] \mathrm{GeV}^{2}=(1.60 \pm 0.51) \times 10^{-6}$
- Partial BRs (integrated over higher range of \boldsymbol{q}^{2})
$\overline{\mathcal{B}}\left(\bar{B} \rightarrow X_{s} \ell^{+} \ell^{-}\right) ; q^{2}>14 \mathrm{GeV}^{2}=(4.04 \pm 0.78) \times 10^{-7}$ [GHIY]
- $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \mu^{+} \mu^{-}\right) ; ~ q^{2}>14.4 \mathrm{GeV}^{2}=2.40\left(1_{-0.26}^{+0.29}\right) \times 10^{-7}$ [HLMW]
$\mathcal{B}\left(\bar{B} \rightarrow X_{s} e^{+} e^{-}\right) ; \quad q^{2}>14.4 \mathrm{GeV}^{2}=2.09\left(1_{-0.30}^{+0.32}\right) \times 10^{-7}$ [HLMW]
Expt: $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \ell^{+} \ell^{-}\right) \quad q^{2}>14.4 \mathrm{GeV}^{2}=(4.4 \pm 1.2) \times 10^{-7}$

Dilepton invariant mass spectrum in $B \rightarrow X_{s} \ell^{+} \ell^{-}$[BaBar 2013]

Forward-Backward Asymmetry in $B \rightarrow X_{s} \ell^{+} \ell^{-}$[Belle 2014]

Exclusive Decays $\boldsymbol{B} \rightarrow\left(\boldsymbol{K}, \boldsymbol{K}^{*}\right) \ell^{+} \ell^{-}$

- $B \rightarrow K \& B \rightarrow K^{*}$ transitions involve the currents:

$$
\Gamma_{\mu}^{1}=\bar{s} \gamma_{\mu}\left(1-\gamma_{5}\right) b, \Gamma_{\mu}^{2}=\bar{s} \sigma_{\mu \nu} q^{v}\left(1+\gamma_{5}\right) b
$$

$\square \Longrightarrow 10$ non-perturbative q^{2}-dependent functions (Form factors)

$$
\begin{gathered}
\langle K| \Gamma_{\mu}^{1}|B\rangle \supset f_{+}\left(q^{2}\right), f_{-}\left(q^{2}\right) \\
\langle K| \Gamma_{\mu}^{2}|B\rangle \supset f_{T}\left(q^{2}\right) \\
\left\langle K^{*}\right| \Gamma_{\mu}^{1}|B\rangle \supset V\left(q^{2}\right), A_{1}\left(q^{2}\right), A_{2}\left(q^{2}\right), A_{3}\left(q^{2}\right) \\
\left\langle K^{*}\right| \Gamma_{\mu}^{2}|B\rangle \supset T_{1}\left(q^{2}\right), T_{2}\left(q^{2}\right), T_{3}\left(q^{2}\right)
\end{gathered}
$$

■ Data on $B \rightarrow K^{*} \gamma$ provides normalization of $T_{1}(0)=T_{2}(0) \simeq 0.28$

- HQET/SCET-approach allows to reduce the number of independent form factors from 10 to 3 in low- q^{2} domain $\left(q^{2} / m_{b}^{2} \ll 1\right)$

Experimental data vs. SM in $B \rightarrow\left(X_{s}, K, K^{*}\right) \ell^{+} \ell^{-}$Decays Branching ratios (in units of $\mathbf{1 0}^{-\mathbf{6}}$) [HFAG: 2012]

SM: [A.A., Greub, Hiller, Lunghi PR D66 (2002) 034002]

Decay Mode	Expt. (BELLE \& BABAR)	Theory (SM)
$B \rightarrow K \ell^{+} \ell^{-}$	0.45 ± 0.04	0.35 ± 0.12
$B \rightarrow K^{*} e^{+} e^{-}$	$1.19_{-0.16}^{+0.17}$	1.58 ± 0.49
$B \rightarrow K^{*} \mu^{+} \mu^{-}$	$1.15_{-0.15}^{+0.16}$	1.19 ± 0.39
$B \rightarrow X_{s} \mu^{+} \mu^{-}$	4.2 ± 1.3	4.2 ± 0.7
$B \rightarrow X_{s} e^{+} e^{-}$	4.7 ± 1.3	4.2 ± 0.7
$B \rightarrow X_{s} \ell^{+} \ell^{-}$	4.5 ± 1.3	4.2 ± 0.7

Test of Lepton Universality using $\boldsymbol{B}^{ \pm} \rightarrow \boldsymbol{K}^{ \pm} \boldsymbol{\ell}^{+} \boldsymbol{\ell}^{-}$decays
[R.Aaij et al. (LHCb) PRL 113, 151601 (2014)]

- Precise measurements of the differential branching ratios in $B^{ \pm} \rightarrow K^{ \pm} e^{+} e^{-} \& B^{ \pm} \rightarrow K^{ \pm} \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}$

$$
R_{K} \equiv \frac{\int_{1 G G^{2} V^{2}}^{6} d \Gamma / d q^{2}\left[B^{ \pm} \rightarrow K^{ \pm} \mu^{+} \mu^{-}\right] d q^{2}}{\int_{1 G e V^{2}}^{6 ~ G e V^{2}} d \Gamma / d q^{2}\left[B^{ \pm} \rightarrow K^{ \pm} e^{+} e^{-}\right] d q^{2}}=0.745_{-0.074}^{+0.090} \pm 0.036
$$

- SM Predictions [Bobeth, Hiller, Piranishvili, JHEP 12 (2007) 040]

$$
R_{K}=1.0003 \pm 0.0001 \Longrightarrow 2.6 \sigma \text { deviation }
$$

- Radiative corrections for the experimental setup is an issue

■ BRs(expt.) smaller than the SM for both $K^{ \pm} \mu^{+} \mu^{-}$and $K^{ \pm} \boldsymbol{e}^{+} \boldsymbol{e}^{-}$

$$
\begin{gathered}
\mathcal{B}\left(B \rightarrow K e^{+} e^{-}\right)=\left(1.56_{-0.15-0.04}^{+0.19-0.06}\right) \times 10^{-7} \\
\mathcal{B}\left(B \rightarrow K \mu^{+} \mu^{-}\right)=(1.20 \pm 0.09 \pm 0.07) \times 10^{-7} \\
\mathcal{B}^{\mathrm{SM}}\left(B \rightarrow K \mu^{+} \mu^{-}\right)=\mathcal{B}^{\mathrm{SM}}\left(B \rightarrow K e^{+} e^{-}\right)=\left(1.75_{-0.29}^{+0.60}\right) \times 10^{-7}
\end{gathered}
$$

Test of Lepton Universality from the ratio $B \rightarrow D^{(*)} \tau v_{\tau} / B \rightarrow D^{(*)} \ell v_{\ell}$
[J.P. Lees et al. (BaBar), Phys. Rev. D88, 072012 (2013); M. Husche et al. (Belle) Phys. Rev. D92, 072014 (2015); R. Aaij et al. (LHCb) PRL 115, 159901 (2015)]

- A 3.9 σ deviation from $\tau / \ell ;(\ell=e, \mu)$ universality in charged current semileptonic $\boldsymbol{B} \rightarrow \boldsymbol{D}^{(*)}$ decays is reported by BaBar, Belle and LHCb

$$
\begin{gathered}
R_{D^{(*)}}^{\tau / \ell} \equiv \frac{\mathcal{B}\left(B \rightarrow D^{(*)} \tau v_{\tau}\right) / \mathcal{B}\left(B \rightarrow D^{(*)} \tau v_{\tau}\right)_{\mathrm{SM}}}{\mathcal{B}\left(B \rightarrow D^{(*)} \ell v_{\ell}\right) / \mathcal{B}\left(B \rightarrow D^{(*)} \ell v_{\ell}\right)_{\mathrm{SM}}} \\
R_{D}^{\tau \ell}=1.37 \pm 0.17 ; \quad R_{D^{*}}^{\tau \ell}=1.28 \pm 0.08
\end{gathered}
$$

- A 30\% deviation from the SM in a tree-level charged current interaction calls for a drastic contribution to an effective 4 -fermi interaction proportional to the $L L$ operator $\left(\bar{c} \gamma_{\mu} b_{L}\right)\left(\tau_{L} \gamma_{\mu} v_{L}\right)$
- Lepton non-universality in loop-induced \boldsymbol{R}_{K} can be due to an $L L$ operator $\left(\bar{s}_{L} \gamma_{\mu} b_{L}\right)\left(\bar{\mu}_{L} \gamma_{\mu} \mu_{L}\right)$, or an $R L$ operator $\left(\bar{s}_{L} \gamma_{\mu} b_{R}\right)\left(\bar{\mu}_{L} \gamma_{\mu} \mu_{L}\right)$

Leptoquark models for R_{K} and $B \rightarrow D^{(*)} \tau v_{\tau} / B \rightarrow D^{(*)} \ell v_{\ell}$ anomalies

- Several suggestions along these lines have been made involving a leptoquark mediator
- A leptoquark model, with the leptoquark $\boldsymbol{\phi}$ transforming as (3,3,-1/3) under the SM gauge groups, yielding an $L L$ operator for muons:

$$
\mathcal{L}=-\lambda_{b \mu} \phi^{*} q_{3} \ell_{2}-\lambda_{s \mu} \phi^{*} q_{2} \ell_{2}
$$

- A leptoquark model with an $R L$ operator for electrons, with $\boldsymbol{\phi}$ transforming as (3,2,1/6)

$$
\mathcal{L}=-\lambda_{b e} \phi\left(\bar{b} P_{L} \ell_{e}\right)-\lambda_{s e} \phi\left(\bar{s} P_{L} \ell_{e}\right)
$$

[G. Hiller, M. Schmaltz, Phys.Rev. D90, 054014 (2014)]

- A scalar leptoquark ϕ transforming as $(\mathbf{3}, \mathbf{1}, \mathbf{- 1 / 3})$ under the SM gauge groups, with $m_{\phi}=\boldsymbol{O}(\mathbf{1}) \mathrm{TeV}$ and $\boldsymbol{O}(\mathbf{1})$ couplings [M. Bauer, M. Neubert, arxiv 1511.01900 (2015)]
- Anomalies in \boldsymbol{B} decays and $\boldsymbol{U}(2)$ flavor symmetry
[R. Barbieri et al., Eur.Phys. J. C (2016) 76]

Angular analysis in $B \rightarrow K^{*} \mu^{+} \mu^{-}$

$$
\boldsymbol{B}^{0} \rightarrow \boldsymbol{K}^{* 0}\left(\rightarrow \boldsymbol{K}^{+} \boldsymbol{\pi}^{-}\right) \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}
$$

- Decay is $P \rightarrow V V^{\prime}$ (since $K^{*}(892)^{0}$ is $\left.J^{P}=1^{-}\right)$.
- System fully described by q^{2} and three angles $\vec{\Omega}=\left(\cos \theta_{l}, \cos \theta_{K}, \phi\right)$

Observables in $B \rightarrow K^{*} \mu^{+} \mu^{-}$

$$
\begin{aligned}
\frac{1}{\mathrm{~d}(\Gamma+\bar{\Gamma}) / \mathrm{d} q^{2}} \frac{\mathrm{~d}^{4}(\Gamma+\bar{\Gamma})}{\mathrm{d} q^{2} \mathrm{~d} \vec{\Omega}}=\frac{9}{32 \pi} & {\left[\frac{3}{4}\left(1-F_{\mathrm{L}}\right) \sin ^{2} \theta_{K}+F_{\mathrm{L}} \cos ^{2} \theta_{K}\right.} \\
& +\frac{1}{4}\left(1-F_{\mathrm{L}}\right) \sin ^{2} \theta_{K} \cos 2 \theta_{l} \\
& -F_{\mathrm{L}} \cos ^{2} \theta_{K} \cos 2 \theta_{l}+S_{3} \sin ^{2} \theta_{K} \sin ^{2} \theta_{l} \cos 2 \phi \\
& +S_{4} \sin 2 \theta_{K} \sin 2 \theta_{l} \cos \phi+S_{5} \sin 2 \theta_{K} \sin \theta_{l} \cos \phi \\
& +\frac{4}{3} A_{\mathrm{FB}} \sin ^{2} \theta_{K} \cos \theta_{l}+S_{7} \sin 2 \theta_{K} \sin \theta_{l} \sin \phi \\
& \left.+S_{8} \sin 2 \theta_{K} \sin 2 \theta_{l} \sin \phi+S_{9} \sin ^{2} \theta_{K} \sin ^{2} \theta_{l} \sin 2 \phi\right]
\end{aligned}
$$

Optimized variables with reduced FF uncertainties

$$
\begin{gathered}
P_{1}=2 S_{3} /\left(1-F_{L}\right) ; P_{2}=2 A_{F B} / 3\left(1-F_{L}\right) ; P_{3}=-S_{9} /\left(1-F_{L}\right) \\
P_{4,5,6,8}=S_{4,5,6,8} / \sqrt{F_{L}\left(1-F_{L}\right)}
\end{gathered}
$$

Latest Update from the LHCb: LHCb-Paper-2015-051

SM Estimates: Altmannshofer \& Straub, EPJC 75 (2015) 382

Analysis of the optimised angular variables: LHCb-Paper-2015-051

SM Estimates: Descotes-Genon, Hofer, Matias, Virto; JHEP 12 (2014) 125

Recent Updates: Pull on the SM [Altmannshofer, Straub (2015)]

W. Altmannshofer \& D.M. Straub, EPJ C75 (2015) 8, 382

Decay	obs.	q^{2} bin	SM pred.	measurement		pull
$\bar{B}^{0} \rightarrow \bar{K}^{* 0} \mu^{+} \mu^{-}$	$10^{7} \frac{\mathrm{dBR}}{\mathrm{dq} q^{2}}$	$[2,4.3]$	0.44 ± 0.07	0.29 ± 0.05	LHCb	+1.8
$\bar{B}^{0} \rightarrow \bar{K}^{* 0} \mu^{+} \mu^{-}$	$10^{7} \frac{\mathrm{dBR}}{\mathrm{d} q^{2}}$	$[16,19.25]$	0.47 ± 0.06	0.31 ± 0.07	CDF	+1.8
$\bar{B}^{0} \rightarrow \bar{K}^{* 0} \mu^{+} \mu^{-}$	F_{L}	$[2,4.3]$	0.81 ± 0.02	0.26 ± 0.19	ATLAS	+2.9
$\bar{B}^{0} \rightarrow \bar{K}^{* 0} \mu^{+} \mu^{-}$	F_{L}	$[4,6]$	0.74 ± 0.04	0.61 ± 0.06	LHCb	+1.9
$\bar{B}^{0} \rightarrow \bar{K}^{* 0} \mu^{+} \mu^{-}$	S_{5}	$[4,6]$	-0.33 ± 0.03	-0.15 ± 0.08	LHCb	-2.2
$B^{-} \rightarrow K^{*-} \mu^{+} \mu^{-}$	$10^{7} \frac{\mathrm{dBR}}{\mathrm{d} q^{2}}$	$[4,6]$	0.54 ± 0.08	0.26 ± 0.10	LHCb	+2.1
$\bar{B}^{0} \rightarrow \bar{K}^{0} \mu^{+} \mu^{-}$	$10^{8} \frac{\mathrm{dBR}}{d q^{2}}$	$[0.1,2]$	2.71 ± 0.50	1.26 ± 0.56	LHCb	+1.9
$\bar{B}^{0} \rightarrow \bar{K}^{0} \mu^{+} \mu^{-}$	$10^{8} \frac{\mathrm{dBR}}{\mathrm{d} q^{2}}$	$[16,23]$	0.93 ± 0.12	0.37 ± 0.22	CDF	+2.2
$B_{s} \rightarrow \phi \mu^{+} \mu^{-}$	$10^{7} \frac{\mathrm{dBR}}{d q^{2}}$	$[1,6]$	0.48 ± 0.06	0.23 ± 0.05	LHCb	+3.1
$B \rightarrow X_{s} e^{+} e^{-}$	$10^{6} \mathrm{BR}$	$[14.2,25]$	0.21 ± 0.07	0.57 ± 0.19	BaBar	-1.8

Tension on the SM from $B \rightarrow K^{*} \mu^{+} \mu^{-}$measurements

- Perform χ^{2} fit of the measured observables $F_{L}, A_{F B}, S_{3}, \ldots, S_{9}$
- Float the generic vector coupling, i.e., $\operatorname{Re}\left(C_{9}\right)$
- Best fit: $\Delta \operatorname{Re}\left(C_{9}\right)=\operatorname{Re}\left(C_{9}\right)^{\mathrm{LHCb}}-\operatorname{Re}\left(C_{9}\right)^{\mathrm{SM}}=-1.04 \pm 0.25$

$$
\begin{aligned}
H_{\mathrm{eff}}^{(b \rightarrow d)} & =-\frac{4 G_{F}}{\sqrt{2}}\left[V_{t b}^{*} V_{t d} \sum_{i=1}^{10} C_{i}(\mu) \mathcal{O}_{i}(\mu)\right. \\
& \left.+V_{u b}^{*} V_{u d} \sum_{i=1}^{2} C_{i}(\mu)\left(\mathcal{O}_{i}(\mu)-\mathcal{O}_{i}^{(u)}(\mu)\right)\right]+ \text { h.c. }
\end{aligned}
$$

- G_{F} (Fermi constant), $C_{i}(\mu)$ (Wilson coefficients), and $\mathcal{O}_{i}(\mu)$ (dimension-six operators) are the same (modulo $s \rightarrow d$) as in $H_{\text {eff }}^{(b \rightarrow s)}$
- CKM structure of the matrix elements more interesting in $H_{\text {eff }}^{(b \rightarrow d)}$, as $V_{t b}^{*} V_{t d} \sim V_{u b}^{*} V_{u d} \sim \lambda^{3}$ are of the same order in $\lambda=\sin \theta_{12}$
- Anticipate sizable CP-violating asymmetries in $b \rightarrow d$ transitions compared to $b \rightarrow s$

Operator Basis

- Tree operators

$$
\begin{array}{cl}
\mathcal{O}_{1}=\left(\bar{d}_{L} \gamma_{\mu} T^{A} c_{L}\right)\left(\bar{c}_{L} \gamma^{\mu} T^{A} b_{L}\right), & \mathcal{O}_{2}=\left(\bar{d}_{L} \gamma_{\mu} c_{L}\right)\left(\bar{c}_{L} \gamma^{\mu} b_{L}\right) \\
\mathcal{O}_{1}^{(u)}=\left(\bar{d}_{L} \gamma_{\mu} T^{A} u_{L}\right)\left(\bar{u}_{L} \gamma^{\mu} T^{A} b_{L}\right), & \mathcal{O}_{2}^{(u)}=\left(\bar{d}_{L} \gamma_{\mu} u_{L}\right)\left(\bar{u}_{L} \gamma^{\mu} b_{L}\right)
\end{array}
$$

- Dipole operators

$$
\mathcal{O}_{7}=\frac{e m_{b}}{g_{\mathrm{st}}^{2}}\left(\bar{d}_{L} \sigma^{\mu \nu} b_{R}\right) F_{\mu v}, \quad \mathcal{O}_{8}=\frac{m_{b}}{g_{\mathrm{st}}}\left(\bar{d}_{L} \sigma^{\mu v} T^{A} b_{R}\right) G_{\mu v}^{A}
$$

- Semileptonic operators

$$
\mathcal{O}_{9}=\frac{e^{2}}{g_{\mathrm{st}}^{2}}\left(\bar{d}_{L} \gamma^{\mu} b_{L}\right) \sum_{\ell}\left(\bar{\ell} \gamma_{\mu} \ell\right), \quad \mathcal{O}_{10}=\frac{e^{2}}{g_{\mathrm{st}}^{2}}\left(\bar{d}_{L} \gamma^{\mu} b_{L}\right) \sum_{\ell}\left(\bar{\ell} \gamma_{\mu} \gamma_{5} \ell\right)
$$

$B \rightarrow \pi$ transition matrix elements

Momentum transfer:
$q=p_{B}-p_{\pi}=p_{\ell^{+}}+p_{\ell^{-}}$

The Feynman diagram for the $B^{+} \rightarrow \pi^{+} \ell^{+} \ell^{-}$decay.

$$
\begin{aligned}
& \left\langle\pi\left(p_{\pi}\right)\right| \bar{b} \gamma^{\mu} d\left|B\left(p_{B}\right)\right\rangle=f_{+}\left(q^{2}\right)\left(p_{B}^{\mu}+p_{\pi}^{\mu}\right)+\left[f_{0}\left(q^{2}\right)-f_{+}\left(q^{2}\right)\right] \frac{m_{B}^{2}-m_{\pi}^{2}}{q^{2}} q^{\mu} \\
& \left\langle\pi\left(p_{\pi}\right)\right| \bar{b} \sigma^{\mu \nu} q_{\nu} d\left|B\left(p_{B}\right)\right\rangle=\frac{i f_{T}\left(q^{2}\right)}{m_{B}+m_{\pi}}\left[\left(p_{B}^{\mu}+p_{\pi}^{\mu}\right) q^{2}-q^{\mu}\left(m_{B}^{2}-m_{\pi}^{2}\right)\right]
\end{aligned}
$$

- Dominant theoretical uncertainty is in the form factors $f_{+}\left(q^{2}\right), f_{0}\left(q^{2}\right)$, $f_{T}\left(q^{2}\right)$; require non-perturbative techniques, such as Lattice QCD
- Their determination is the main focus of the theory
$B \rightarrow \pi \ell^{+} v_{\ell}$ decay

$$
\langle\pi| \bar{u} \gamma^{\mu} b|B\rangle=f_{+}\left(q^{2}\right)\left(p_{B}^{\mu}+p_{\pi}^{\mu}-\frac{m_{B}^{2}-m_{\pi}^{2}}{q^{2}} q^{\mu}\right)+f_{0}\left(q^{2}\right) \frac{m_{B}^{2}-m_{\pi}^{2}}{q^{2}} q^{\mu}
$$

- $f_{0}\left(q^{2}\right)$ contribution is suppressed by m_{ℓ}^{2} / m_{B}^{2} for $\ell=e, \mu$
- Differential decay width

$$
\frac{d \Gamma}{d q^{2}}\left(B^{0} \rightarrow \pi^{-} \ell^{+} v_{\ell}\right)=\frac{G_{F}^{2}\left|V_{u b}\right|^{2}}{192 \pi^{3} m_{B}^{3}} \lambda^{3 / 2}\left(q^{2}\right)\left|f_{+}\left(q^{2}\right)\right|^{2}
$$

with $\lambda\left(q^{2}\right)=\left(m_{B}^{2}+m_{\pi}^{2}-q^{2}\right)^{2}-4 m_{B}^{2} m_{\pi}^{2}$

- Assuming Isospin symmetry: $f_{+}\left(q^{2}\right)$ and $f_{0}\left(q^{2}\right)$ in charged current $B \rightarrow \pi \ell v_{\ell}$ and neutral current $B \rightarrow \pi \ell^{+} \ell^{-}$decays are equal
- Global fit of the CKM matrix element [PDG, 2012]

$$
\left|V_{u b}\right|=\left(3.51_{-0.14}^{+0.15}\right) \times 10^{-3}
$$

Fits of the data on $B \rightarrow \pi^{+} \ell^{-} v_{\ell}$ yield $f_{+}\left(q^{2}\right)$

Heavy-Quark Symmetry (HQS) relations

- Including symmetry-breaking corrections, Heavy Quark Symmetry relates $f_{+}\left(q^{2}\right), f_{0}\left(q^{2}\right)$ and $f_{T}\left(q^{2}\right)$ (for $q^{2} / m_{b}^{2} \ll 1$) [Beneke, Feldmann (2000)]

$$
\begin{gathered}
f_{0}\left(q^{2}\right)=\left(\frac{m_{B}^{2}+m_{\pi}^{2}-q^{2}}{m_{B}^{2}}\right)\left[\left(1+\frac{\alpha_{s}(\mu) C_{F}}{4 \pi}\left(2-2 L\left(q^{2}\right)\right)\right) f_{+}\left(q^{2}\right)\right. \\
\left.+\frac{\alpha_{S}(\mu) C_{F}}{4 \pi} \frac{m_{B}^{2}\left(q^{2}-m_{\pi}^{2}\right)}{\left(m_{B}^{2}+m_{\pi}^{2}-q^{2}\right)^{2}} \Delta F_{\pi}\right], \\
f_{T}\left(q^{2}\right)=\left(\frac{m_{B}+m_{\pi}}{m_{B}}\right)\left[\left(1+\frac{\alpha_{s}(\mu) C_{F}}{4 \pi}\left(\ln \frac{m_{b}^{2}}{\mu^{2}}+2 L\left(q^{2}\right)\right)\right) f_{+}\left(q^{2}\right)\right. \\
\left.-\frac{\alpha_{S}(\mu) C_{F}}{4 \pi} \frac{m_{B}^{2}}{m_{B}^{2}+m_{\pi}^{2}-q^{2}} \Delta F_{\pi}\right], \\
L\left(q^{2}\right)=\left(1+\frac{m_{B}^{2}}{m_{\pi}^{2}-q^{2}}\right) \ln \left(1+\frac{m_{\pi}^{2}-q^{2}}{m_{B}^{2}}\right), \Delta F_{\pi}=\frac{8 \pi^{2} f_{B} f_{\pi}}{N_{c} m_{B}}\left\langle l_{+}^{-1}\right\rangle_{+}\left\langle\bar{u}^{-1}\right\rangle_{\pi}
\end{gathered}
$$

$B^{ \pm} \rightarrow \pi^{ \pm} \ell^{+} \ell^{-}$at large hadronic recoil $\left(q^{2} / m_{b}^{2} \ll 1\right)$
[AA, A. Parkhomenko, A. Rusov; Phys. Rev. D89 (2014) 094021]

- Partially integrated branching fractions for $\boldsymbol{B}^{ \pm} \rightarrow \pi^{ \pm} \ell^{+} \ell^{-}$

$$
\mathrm{BR}_{\mathrm{SM}}\left(B^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-} ; 1 \mathrm{GeV}^{2} \leq q^{2} \leq 8 \mathrm{GeV}^{2}\right)=\left(0.57_{-0.05}^{+0.07}\right) \times 10^{-8}
$$

- Dimuon invariant mass spectrum at large hadronic recoil

Determination of $f_{0}^{B \pi}\left(q^{2}\right)$ and $f_{T}^{B \pi}\left(q^{2}\right)$ and comparison with Lattice QCD

- FFs are obtained by the \boldsymbol{z}-expansion [Boyd, Grinstein, Lebed] and constraints from data in low- q^{2}
- Lattice data (in high- q^{2} are obtained by the HPQCD Collab. for $f_{0}^{B \pi}\left(q^{2}\right)$ from [arXiv:hep-lat/0601021]
for $f_{T}^{B \pi}\left(q^{2}\right)$ from [arXiv:1310.3207]
- In almost the entire \boldsymbol{q}^{2}-domain, the form factors are now determined accurately. Recent Fermilab/MILC lattice results are in agreement
$B^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}$in the entire range of q^{2}
[AA, A. Parkhomenko, A. Rusov; Phys. Rev. D89 (2014) 094021]

Dimuon invariant mass spectrum in $B \rightarrow \pi \ell^{+} \ell^{-}$

- In excellent agreement with the APR2013 predictions, as well as with the Lattice results

SM vs. experimental data

- SM theoretical estimate of the total branching fraction [AA, A. Parkhomeno, A. Rusov; Phys. Rev. D89 (2014) 094021]:

$$
\mathrm{BR}_{\mathrm{SM}}\left(B^{ \pm} \rightarrow \pi^{ \pm} \mu^{+} \mu^{-}\right)=\left(1.88_{-0.21}^{+0.32}\right) \times 10^{-8}
$$

- Uncertainty from the form factors is now reduced greatly. Residual theoretical uncertainty is mainly from the scale dependence and the CKM matrix elements
- LHCb has measured the BR and dimuon invariant mass distribution in $\left.B^{ \pm} \rightarrow \pi^{ \pm} \mu^{+} \mu^{-}\right)$based on $3 \mathrm{fb}^{-1}$ integrated luminosity
[LHCb-PAPER-2015-035; arXiv:1509.00414]:

$$
\mathrm{BR}_{\exp }\left(B^{ \pm} \rightarrow \pi^{ \pm} \mu^{+} \mu^{-}\right)=(1.83 \pm 0.24(\text { stat }) \pm 0.05(\text { syst })) \times 10^{-8}
$$

- Excellent agreement with SM-based APR2013-theory within errors, but significant improvement expected from the future analysis

Determination of Wilson Coeffs. from $B \rightarrow(\pi / K) \mu^{+} \mu^{-}$
[Fermilab/MILC, arxiv:1510.02349]

Effective Hamiltonian

$$
\mathcal{H}_{e f f}=-\frac{G_{F} \alpha}{\sqrt{2} \pi} V_{t s}^{*} V_{t b} \sum_{i}\left[C_{i}(\mu) \mathcal{O}_{i}(\mu)+C_{i}^{\prime}(\mu) \mathcal{O}_{i}^{\prime}(\mu)\right]
$$

- Operators: $O_{i}(\mathrm{SM}) \& O_{i}^{\prime}(\mathrm{BSM})$

$$
\begin{array}{cl}
\mathcal{O}_{10}=\left(\bar{s}_{\alpha} \gamma^{\mu} P_{L} b_{\alpha}\right)\left(\bar{l} \gamma_{\mu} \gamma_{5} l\right), & \mathcal{O}_{10}^{\prime}=\left(\bar{s}_{\alpha} \gamma^{\mu} P_{R} b_{\alpha}\right)\left(\bar{l} \gamma_{\mu} \gamma_{5} l\right) \\
\mathcal{O}_{S}=m_{b}\left(\bar{s}_{\alpha} P_{R} b_{\alpha}\right)(\bar{l} l), & \mathcal{O}_{S}^{\prime}=m_{s}\left(\bar{s}_{\alpha} P_{L} b_{\alpha}\right)(\bar{l} l) \\
\mathcal{O}_{P}=m_{b}\left(\bar{s}_{\alpha} P_{R} b_{\alpha}\right)\left(\bar{l} \gamma_{5} l\right), & \mathcal{O}_{P}^{\prime}=m_{s}\left(\bar{s}_{\alpha} P_{L} b_{\alpha}\right)\left(\bar{l} \gamma_{5} l\right) \\
\operatorname{BR}\left(\bar{B}_{s} \rightarrow \mu^{+} \mu^{-}\right)= & \frac{G_{F}^{2} \alpha^{2} m_{B_{s}}^{2} f_{B_{s}}^{2} \tau_{B_{s}}}{64 \pi^{3}}\left|V_{t s}^{*} V_{t b}\right|^{2} \sqrt{1-4 \hat{m}_{\mu}^{2}} \\
\times\left[\left(1-4 \hat{m}_{\mu}^{2}\right)\left|F_{S}\right|^{2}+\left|F_{P}+2 \hat{m}_{\mu}^{2} F_{10}\right|^{2}\right] \\
F_{S, P}=m_{B_{s}}\left[\frac{C_{S, P} m_{b}-C_{S, P}^{\prime} m_{s}}{m_{b}+m_{s}}\right], & F_{10}=C_{10}-C_{10}^{\prime}, \hat{m}_{\mu}=m_{\mu} / m_{B_{s}}
\end{array}
$$

Leading diagrams for $\boldsymbol{B}_{s} \rightarrow \mu^{+} \mu^{-}$in SM, 2HDM \& MSSM

$B_{s} \rightarrow \mu^{+} \mu^{-}$in the SM

- SM predictions depend somewhat on the input parameters [Blanke \&

Buras, arxiv: 1602.04021; Bobeth et al., Phys. Rev. Lett. 112, 101801 (2014)]
$\mathcal{B}\left(\bar{B}_{s} \rightarrow \mu^{+} \mu^{-}\right)=(3.65 \pm 0.06) \times 10^{-9}\left(\frac{m_{t}\left(m_{t}\right)}{163.5 \mathrm{GeV}}\right)^{3.02}\left(\frac{\alpha_{s}\left(M_{\mathrm{Z}}\right)}{0.1184}\right)^{0.032}$

$$
R_{s}=\left(\frac{F_{B_{s}}}{227.7 \mathrm{MeV}}\right)^{2}\left(\frac{\tau_{B_{s}}}{1.516 \mathrm{ps}}\right)\left(\frac{0.938}{r\left(y_{s}\right)}\right)\left(\frac{\left|V_{t s}\right|}{41.5 \times 10^{-3}}\right)^{2}
$$

- $\Delta \Gamma_{s}$ effects are taken into account through $r\left(y_{s}\right)=\mathbf{1}-y_{s}$, with $y_{s}=\tau_{B_{s}} \Delta \Gamma_{s} / 2=0.062 \pm 0.005$

$$
\mathcal{B}\left(\bar{B}_{s} \rightarrow \mu^{+} \mu^{-}\right)=(3.78 \pm 0.23)[3.65 \pm 0.23] \times 10^{-9}
$$

$$
\mathcal{B}\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)=(1.06 \pm 0.02) \times 10^{-10}\left(\frac{m_{t}\left(m_{t}\right)}{163.5 \mathrm{GeV}}\right)^{3.02}\left(\frac{\alpha_{s}\left(M_{\mathrm{Z}}\right)}{0.1184}\right)^{0.03}
$$

$$
\begin{gathered}
R_{d}=\left(\frac{F_{B_{d}}}{190.5 \mathrm{MeV}}\right)^{2}\left(\frac{\tau_{B_{d}}}{1.519 \mathrm{ps}}\right)\left(\frac{\left|V_{t d}\right|}{8.8 \times 10^{-3}}\right)^{2} \\
\mathcal{B}\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)=(1.02 \pm 0.08[1.06 \pm 0.09]) \times 10^{-10}
\end{gathered}
$$

Compatibility of the SM with $B_{(s)}^{0} \rightarrow \mu^{+} \mu^{-}$measurements
$B_{s}^{0} \rightarrow \mu^{+} \mu^{-}$
Combined analysis with CMS
[Nature 522(2015)]

- First observation of $B_{s}^{0} \rightarrow \mu^{+} \mu^{-}$ and evidence for $B^{0} \rightarrow \mu^{+} \mu^{-}$.
- 6.2σ and 3.2σ respectively.
- Measurement of branching fractions and ratio of branching fractions.
$\mathcal{B}\left[B_{s}^{0} \rightarrow \mu^{+} \mu^{-}\right]=2.8_{-0.6}^{+0.7} \times 10^{-9}$
$\mathcal{B}\left[B^{0} \rightarrow \mu^{+} \mu^{-}\right]=3.9_{-1.4}^{+1.6} \times 10^{-10}$
- Ratio found to be compatible with SM to 2.3σ.

Test of the SM in Semileptonic \boldsymbol{B}-decays and $\boldsymbol{B}_{s} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}$
[Fermilab/MILC, arxiv:1510.02349]

Summary and outlook

- Lattice QCD, QCD sum rules, and heavy quark symmetry provide a controlled theoretical framework for \boldsymbol{B}-meson physics
- Despite this impressive progress, some non-perturbative power corrections remain to be calculated quantitatively, limiting the current theoretical precision
- B-decays have been measured over 9 orders of magnitude and are found to be compatible with the SM, in general
- There is some tension on the SM in a number of rare \boldsymbol{B} decays, typically $2-3 \sigma$; whether this is due to New Physics or QCD remains to be seen
- FCNC processes remain potentially very promising to search for physics beyond the SM, and they complement direct searches of BSM physics
- We look forward to improved theory and even more precise measurements at the LHC and the Super-B factory at KEK

