Calabi-Yau manifolds and sporadic groups

Abhishek Chowdhury (ITP, TU Wien)

Based on:

Calabi-Yau manifolds and sporadic groups [arXiv:1711.09698]

A. Banlaki, A. Chowdhury, A. Kidambi, M. Schimpf, H. Skarke and T. Wrase

Int. Winter School on Partition Functions and Automorphic Forms BLTP, JNIR, Dubna 31st Jan. 2018

Outline

- Motivation
 - Where does the moon shine?
 - Why do we care about Moonshine?
- 2 Preliminaries
 - Finite groups
 - Modular forms
 - The Old Monster
- 3 Calabi-Yau & Sporadic groups
 - Elliptic Genus
 - Weak Jacobi forms
 - Calabi-Yaus
- 4 Conclusion

Overview of the talk

- Motivation
 - Where does the moon shine?
 - Why do we care about Moonshine?
- 2 Preliminaries
 - Finite groups
 - Modular forms
 - The Old Monster
- Calabi-Yau & Sporadic groups
 - Elliptic Genus
 - Weak Jacobi forms
 - Calabi-Yaus
- 4 Conclusion

Where does the moon shine?

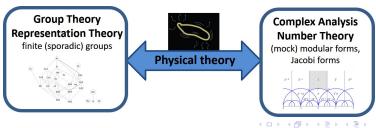
• The first thing that comes to mind is bootleg booze.

Where does the moon shine?

- The first thing that comes to mind is bootleg booze.
- A better answer would be John MaKay's observation in 70's

$$196884 = 1 + 196883$$

 Broadly, "Moonshine" refers to some connection between two apparently different mathematical objects which a priori has nothing to do with each other.



Why do we care about moonshine?

Beautiful maths lurking in the shadows...

Why do we care about moonshine?

- Beautiful maths lurking in the shadows...
- Physics connection :
 - Though the interplay between String theory and maths have been very fruitful to geometry, not many results are known on the number theory side. Moonshine seems to be a great opportunity to develop the number theoretic aspects of string theory.
 - We get to construct systems with large sym. groups.
 - Structure of BPS spectra etc.

Why do we care about moonshine?

- Beautiful maths lurking in the shadows...
- Physics connection :
 - Though the interplay between String theory and maths have been very fruitful to geometry, not many results are known on the number theory side. Moonshine seems to be a great opportunity to develop the number theoretic aspects of string theory.
 - We get to construct systems with large sym. groups.
 - Structure of BPS spectra etc.
- Lot is going on now...
 - There are more & more examples. The meaning of "Moonshine" is everchanging.
 - The "Origin" problem is becoming clearer.
 - Of particular interest is symmetries of "K3-ish" string compactifications.

Overview of the talk

- Motivation
 - Where does the moon shine?
 - Why do we care about Moonshine?
- 2 Preliminaries
 - Finite groups
 - Modular forms
 - The Old Monster
- 3 Calabi-Yau & Sporadic groups
 - Elliptic Genus
 - Weak Jacobi forms
 - Calabi-Yaus
- 4 Conclusion

Finite Simple groups

- Just like prime factorization of natural numbers we can think about finite groups in terms of "Building blocks".
- Notion of "Composite series" of normal subgroups builds finite groups out of a set of "primes"—finite simple groups.
- The full classification is probably one of the greatest work of mathematics in 20th century. [Atlas, Robert Wilson.]
- There are 18 Infinite families, e.g.
 - Alternating group of n elements A_n

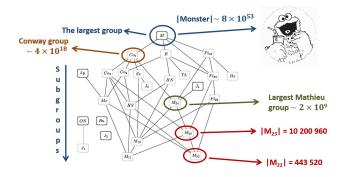
$$A_3: (123) \longleftrightarrow (231) \longleftrightarrow (312)$$

Cyclic group of prime order C_p

$$C_p = \mathbb{Z}_p = \left\langle e^{\frac{2\pi i}{p}} \right\rangle$$

Sporadic groups

There are 26 so called sporadic groups which don't fall into the infinite families.



Modular forms

For
$$\tau$$
 in the UHP \supset (Fnd. domain) and $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2,\mathbb{Z})$:

Modular form of weight k:

$$\phi_k\left(\frac{a\tau+b}{c\tau+d}\right)=(c\tau+d)^k\phi_k(\tau)$$

• Jacobi form of weight k and index m with $\lambda, \mu \in \mathbb{Z}$:

$$\phi_{k,m}\left(\frac{a\tau+b}{c\tau+d},\frac{z}{c\tau+d}\right) = (c\tau+d)^k e^{\frac{2\pi i mcz^2}{c\tau+d}} \phi_{k,m}(\tau,z)$$

$$\phi_{k,m}(\tau,z+\lambda\tau+\mu) = (-1)^{2m(\lambda+\mu)} e^{-2\pi i m(\lambda^2\tau+2\lambda z)} \phi_{k,m}(\tau,z)$$

ullet au o au + 1 and $z o z + \mu$ allows for a Fourier expansion:

$$\phi_{k,m}(q = e^{2\pi i \tau}, y = e^{2\pi i z}) = \sum_{n,r} c(n,r)q^n y^r \quad r^2 > 4nm$$

Eisenstein series

The Eisenstein series have the following Fourier decomposition

$$E_4(\tau) = 1 + 240 \sum_{n=1}^{\infty} \frac{n^3 q^n}{1 - q^n} = 1 + 240q + 2160q^2 + \dots,$$

$$E_6(\tau) = 1 - 504 \sum_{n=1}^{\infty} \frac{n^5 q^n}{1 - q^n} = 1 - 504q - 16632q^2 + \dots.$$

Standard examples of holomorphic modular forms. Unfortunately, the space of holomorphic modular forms is too restrictive, it is just the ring of monomials $E_4^{\alpha} E_6^{\beta}$

• Multipliers: Allow for a phase $\psi: SL_2(\mathbb{Z}) \to C^*$ in transformation, e.g., Dedekind eta fn. $\eta(\tau) = e^{\frac{2\pi i}{24}} \eta(\tau+1)$

- Multipliers: Allow for a phase $\psi: SL_2(\mathbb{Z}) \to C^*$ in transformation, e.g., Dedekind eta fn. $\eta(\tau) = e^{\frac{2\pi i}{24}} \eta(\tau+1)$
- Poles: Allow the function to have exponetial growth near the cusps. (Weakly holomorphic). e.g. the $J(\tau)$ function (Hauptmodul), For a gives pole structure at cusp $i\infty$ and up to a constant it is a unique function which maps the fundamental domain (an S^2) to compactified \mathbb{C} (an S^2).

- Multipliers: Allow for a phase $\psi: SL_2(\mathbb{Z}) \to C^*$ in transformation, e.g., Dedekind eta fn. $\eta(\tau) = e^{\frac{2\pi i}{24}} \eta(\tau+1)$
- Poles: Allow the function to have exponetial growth near the cusps. (Weakly holomorphic). e.g. the $J(\tau)$ function (Hauptmodul), For a gives pole structure at cusp $i\infty$ and up to a constant it is a unique function which maps the fundamental domain (an S^2) to compactified \mathbb{C} (an S^2).
- Subgroups: Consider a subgroup $\Gamma \subset SL_2(\mathbb{Z})$ of the modular group for which we impose the transformation property. e.g. Twined partition function Tr < g > for Monster.

- Multipliers: Allow for a phase $\psi: SL_2(\mathbb{Z}) \to C^*$ in transformation, e.g., Dedekind eta fn. $\eta(\tau) = e^{\frac{2\pi i}{24}} \eta(\tau+1)$
- Poles: Allow the function to have exponetial growth near the cusps. (Weakly holomorphic). e.g. the $J(\tau)$ function (Hauptmodul), For a gives pole structure at cusp $i\infty$ and up to a constant it is a unique function which maps the fundamental domain (an S^2) to compactified \mathbb{C} (an S^2).
- Subgroups: Consider a subgroup $\Gamma \subset SL_2(\mathbb{Z})$ of the modular group for which we impose the transformation property. e.g. Twined partition function Tr < g > for Monster.
- Vector-valued: Consider maps from UHP to \mathbb{C}^n (vectors). Transform as vectors under modular transformations. e.g. Jacobi theta functions.

- Multipliers: Allow for a phase $\psi: SL_2(\mathbb{Z}) \to C^*$ in transformation, e.g., Dedekind eta fn. $\eta(\tau) = \mathrm{e}^{\frac{2\pi i}{24}} \eta(\tau+1)$
- Poles: Allow the function to have exponetial growth near the cusps. (Weakly holomorphic). e.g. the $J(\tau)$ function (Hauptmodul), For a gives pole structure at cusp $i\infty$ and up to a constant it is a unique function which maps the fundamental domain (an S^2) to compactified \mathbb{C} (an S^2).
- Subgroups: Consider a subgroup $\Gamma \subset SL_2(\mathbb{Z})$ of the modular group for which we impose the transformation property. e.g. Twined partition function Tr < g > for Monster.
- Vector-valued: Consider maps from UHP to \mathbb{C}^n (vectors). Transform as vectors under modular transformations. e.g. Jacobi theta functions.
- Now, we have a zoo of interesting species.

Jacobi Theta functions

The Jacobi theta functions $\theta_i(\tau, z)$, $i = 1, \dots, 4$ are defined as

$$\begin{split} \theta_1(\tau,z) &= -\mathrm{i} \sum_{n+\frac{1}{2} \in \mathbb{Z}} (-1)^{n-\frac{1}{2}} \, y^n q^{\frac{n^2}{2}} \\ &= -\mathrm{i} q^{\frac{1}{8}} \left(y^{\frac{1}{2}} - y^{-\frac{1}{2}} \right) \prod_{n=1}^{\infty} (1 - q^n) \left(1 - y q^n \right) \left(1 - y^{-1} q^n \right) \,, \\ \theta_2(\tau,z) &= \sum_{n+\frac{1}{2} \in \mathbb{Z}} y^n q^{\frac{n^2}{2}} \\ &= q^{\frac{1}{8}} \left(y^{\frac{1}{2}} + y^{-\frac{1}{2}} \right) \prod_{n=1}^{\infty} \left(1 - q^n \right) \left(1 + y q^n \right) \left(1 + y^{-1} q^n \right) \,, \end{split}$$

Jacobi Theta functions

$$\begin{aligned} \theta_3(\tau,z) &= \sum_{n \in \mathbb{Z}} y^n q^{\frac{n^2}{2}} \\ &= \prod_{n=1}^{\infty} \left(1 - q^n\right) \left(1 + y q^{n - \frac{1}{2}}\right) \left(1 + y^{-1} q^{n - \frac{1}{2}}\right) \,, \\ \theta_4(\tau,z) &= \sum_{n \in \mathbb{Z}} \left(-1\right)^n y^n q^{\frac{n^2}{2}} \\ &= \prod_{n=1}^{\infty} \left(1 - q^n\right) \left(1 - y q^{n - \frac{1}{2}}\right) \left(1 - y^{-1} q^{n - \frac{1}{2}}\right) \,, \end{aligned}$$

Jacobi forms

$$\phi_{0,1}(\tau,z) = 4 \left(\left(\frac{\theta_{2}(\tau,z)}{\theta_{2}(\tau,0)} \right)^{2} + \left(\frac{\theta_{3}(\tau,z)}{\theta_{3}(\tau,0)} \right)^{2} + \left(\frac{\theta_{4}(\tau,z)}{\theta_{4}(\tau,0)} \right)^{2} \right) \\
= \frac{1}{y} + 10 + y + \mathcal{O}(q), \\
\phi_{-2,1}(\tau,z) = \frac{\theta_{1}(\tau,z)^{2}}{\eta(\tau)^{6}} \\
= -\frac{1}{y} + 2 - y + \mathcal{O}(q), \\
\phi_{0,\frac{3}{2}}(\tau,z) = 2 \frac{\theta_{2}(\tau,z)}{\theta_{2}(\tau,0)} \frac{\theta_{3}(\tau,z)}{\theta_{3}(\tau,0)} \frac{\theta_{4}(\tau,z)}{\theta_{4}(\tau,0)} \\
= \frac{1}{\sqrt{y}} + \sqrt{y} + \mathcal{O}(q).$$

- The irreducible representations of the Monster group have dimensions 1, 196 883, 21 296 876,...
- The J-function, that appears in many places in string theory, enjoys the expansion

$$J(q) = \frac{1}{q} + 196884 q + 21493760 q^{2} + \dots$$

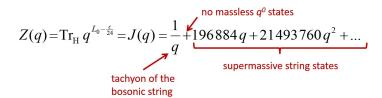
$$\boxed{1 + 196883} + 21296876$$

- The irreducible representations of the Monster group have dimensions 1, 196 883, 21 296 876,...
- The J-function, that appears in many places in string theory, enjoys the expansion

$$J(q) = \frac{1}{q} + 196884 q + 21493760 q^{2} + \dots$$

$$\boxed{1 + 196883} + 21296876$$

• Concrete realization : The (left-moving) bosonic string compactified on a \mathbb{Z}_2 orbifold of R^{24}/Λ with Λ the Leech lattice (even, self-dual) has as its 1-loop partition function the J(q)-function. [Frenkel, Lepowsky, Meurman '88]



- The symmetry group of the compactification space $R^{24}/\Lambda/\mathbb{Z}_2$ is the Monster group.
- Virasoro algebra : Expand the J(q)-function in terms of Virasoro characters (traces of Verma modules)

$$ch_{h=0}(q) = \frac{q^{-c/24}}{\prod_{n=2}^{\infty} (1-q^n)}; \quad ch_h(q) = \frac{q^{h-c/24}}{\prod_{n=1}^{\infty} (1-q^n)}$$

$$J(q) = \frac{1}{q} + 196884 q + 21493760 q^{2} + \dots$$

$$= 1 \operatorname{ch}_{0}(q) + 196883 \operatorname{ch}_{2}(q) + 21296876 \operatorname{ch}_{3}(q) + \dots$$

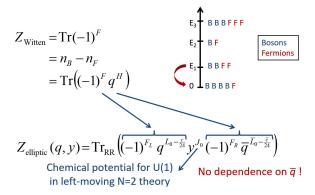
- Other realizations in terms of 23 Niemeier lattices. Construct from ADE root systems with glueing vectors. They are related to Umbral moonshine. Adds const. to J(q).
- Interesting for mathematicians not so interesting for physicists
 - Compactification of the bosonic string:
 - We have a tachyon (instability).
 - Spacetime theory has no fermions.
 - Additionally, only two spacetime dimensions are non-compact.
- There exists various supersymmetric generalizations of mainly Extremal CFT constructions with different "Moonshine".

Overview of the talk

- Motivation
 - Where does the moon shine?
 - Why do we care about Moonshine?
- 2 Preliminaries
 - Finite groups
 - Modular forms
 - The Old Monster
- 3 Calabi-Yau & Sporadic groups
 - Elliptic Genus
 - Weak Jacobi forms
 - Calabi-Yaus
- 4 Conclusion

Elliptic genus

Elliptic genus: Defined for a SCFT with N = (2, 2) or more SUSY. An index is invariant under deformations of the theory, e.g. masses going to zero in Witten Index.

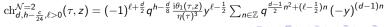


N=2 Characters

• For central charge c=3d and heighest weight state $|\Omega\rangle$ with eigenvalues h, I w.r.t. L_0 and J_0 .

$$\mathrm{ch}_{d,h-\frac{c}{24},\ell}^{\mathcal{N}=2}(\tau,z)=\mathrm{tr}_{\mathcal{H}_{h,\ell}}((-1)^Fq^{L_0-\frac{c}{24}}\mathrm{e}^{2\pi\mathrm{i} z J_0})$$

- In the Ramond sector unitarity requires $h \ge \frac{c}{24} = \frac{d}{8}$.
- Massless (BPS) representations exist for $h = \frac{d}{8}$; $\ell = \frac{d}{2}$, $\frac{d}{2} 1$, $\frac{d}{2} 2$, ..., $-(\frac{d}{2} 1)$, $-\frac{d}{2}$. For $\frac{d}{2} > \ell \ge 0$ $\mathrm{ch}_{d,0,\ell \ge 0}^{\mathcal{N}=2}(\tau,z) = (-1)^{\ell + \frac{d}{2}} \frac{(-\mathrm{i})\theta_1(\tau,z)}{n(\tau)^3} y^{\ell + \frac{1}{2}} \sum_{n \in \mathbb{Z}} q^{\frac{d-1}{2}n^2 + (\ell + \frac{1}{2})n} \frac{(-y)^{(d-1)n}}{1 \nu \sigma^n}$
- Massive (non-BPS) representations exist for $h > \frac{d}{8}$; $\ell = \frac{d}{2}, \frac{d}{2} 1, \dots, -(\frac{d}{2} 1), -\frac{d}{2}$ and $\ell \neq 0$ for d = even.



Weak Jacobi forms

 The space of weak Jacobi forms of even weight k and integer index m is generated by [Zagier et. al. '85; Gritsenko '99]

$$E_4(\tau), E_6(\tau), \phi_{-2,1}(\tau, z), \phi_{0,1}(\tau, z)$$

• Simple combinatorics gives the space $J_{0,m}$ of Jacobi forms of weight 0 and index m, is generated by m functions for m=1,2,3,4,5. In particular, we have

$$J_{0,1} = \langle \phi_{0,1} \rangle,$$

$$J_{0,2} = \langle \phi_{0,1}^2, E_4 \phi_{-2,1}^2 \rangle,$$

$$J_{0,3} = \langle \phi_{0,1}^3, E_4 \phi_{-2,1}^2 \phi_{0,1}, E_6 \phi_{-2,1}^3 \rangle,$$

$$J_{0,4} = \langle \phi_{0,1}^4, E_4 \phi_{-2,1}^2 \phi_{0,1}^2, E_6 \phi_{-2,1}^3 \phi_{0,1}, E_4^2 \phi_{-2,1}^4 \rangle,$$

$$J_{0,5} = \langle \phi_{0,1}^5, E_4 \phi_{-2,1}^2, \phi_{0,1}^3, E_6 \phi_{-2,1}^3, \phi_{0,1}^2, E_4^2 \phi_{-2,1}^4 \phi_{0,1}, E_4 E_6 \phi_{-2,1}^5 \rangle$$

Weak Jacobi forms

- The functions $J_{0,\frac{d}{2}}$ above appear in the elliptic genus of Calabi-Yau d=2,4,6,8,10 target manifolds.
- Coefficients can be fixed in terms of a few topological numbers of the CY d-fold.

Weak Jacobi forms

- The functions $J_{0,\frac{d}{2}}$ above appear in the elliptic genus of Calabi-Yau d = 2, 4, 6, 8, 10 target manifolds.
- Coefficients can be fixed in terms of a few topological numbers of the CY d-fold.
- Weight zero, half integer index Jacobi forms, follows from

$$J_{2k,m+\frac{1}{2}} = \phi_{0,\frac{3}{2}} J_{2k,m-1}, \qquad m \in \mathbb{Z}$$

- In particular, $\phi_{0,\frac{3}{2}}$ and $\phi_{0,\frac{3}{2}}\phi_{0,1}$ are, up to rescaling, the unique Jacobi forms of weight 0 and index $\frac{3}{2}$ and $\frac{5}{2}$, respectively.
- Generally, the space $J_{0,m+\frac{3}{2}}$ is spanned by m functions for m = 1, 2, 3, 4, 5 and these functions are the ones given in previous slide multiplied by $\phi_{0,\frac{3}{2}}$.
- Summary: Space of Jacobi forms $J_{0,\frac{d}{2}}$ is generated by very few functions for small d. Carries little info. about the CY.

- $\mathcal{Z}_{CY_d}(\tau, z) = \sum_{p=0}^{d} (-1)^p \chi_p(CY_d) y^{\frac{d}{2}-p} + \mathcal{O}(q)$
- Various signed indices $\chi_p(CY_d) = \sum_{r=0}^d (-1)^r h^{p,r}$. Euler no. : $\mathcal{Z}_{CY_d}(\tau,0) = \chi_{CY_d} = \sum_{p=0}^d (-1)^p \chi_p(CY_d)$.

- $\mathcal{Z}_{CY_d}(\tau, z) = \sum_{p=0}^{d} (-1)^p \chi_p(CY_d) y^{\frac{d}{2}-p} + \mathcal{O}(q)$
- Various signed indices $\chi_p(CY_d) = \sum_{r=0}^d (-1)^r h^{p,r}$.
- Euler no. : $\mathcal{Z}_{CY_d}(\tau,0) = \chi_{CY_d} = \sum_{p=0}^{d} (-1)^p \chi_p(CY_d)$.
- The Elliptic genus carries little info. about the particular CY.
- For larger d many different Calabi-Yau d-folds will give rise to the same elliptic genus since the number of Calabi-Yau manifolds grows much faster with d than the number of basis elements of $J_{0,\frac{d}{2}}$.

- $\mathcal{Z}_{CY_d}(\tau, z) = \sum_{p=0}^{d} (-1)^p \chi_p(CY_d) y^{\frac{d}{2}-p} + \mathcal{O}(q)$
- Various signed indices $\chi_p(CY_d) = \sum_{r=0}^d (-1)^r h^{p,r}$.
- Euler no. : $\mathcal{Z}_{CY_d}(\tau,0) = \chi_{CY_d} = \sum_{p=0}^{d} (-1)^p \chi_p(CY_d)$.
- The Elliptic genus carries little info. about the particular CY.
- For larger d many different Calabi-Yau d-folds will give rise to the same elliptic genus since the number of Calabi-Yau manifolds grows much faster with d than the number of basis elements of $J_{0,\frac{d}{a}}$.
- Question: If one finds interesting expansion coefficients in higher dimensional manifolds, i.e the expansion coefficients are given in terms of irreducible representations of a particular sporadic group, does this imply that all manifolds with such elliptic genus are connected to the particular sporadic group, or only a few or none?

• Calabi-Yau 1-fold: For the standard torus T^2 the elliptic genus vanishes, $\mathcal{Z}_{T^2}(\tau,z)=0$. The same holds true for any even dimensional torus $\mathcal{Z}_{T^{2n}}(\tau,z)=0$, $\forall n\in\mathbb{N}$. This is due to the fermionic zero modes in the right moving Ramond sector.

- Calabi-Yau 1-fold : For the standard torus T^2 the elliptic genus vanishes, $\mathcal{Z}_{T^2}(\tau,z)=0$. The same holds true for any even dimensional torus $\mathcal{Z}_{T^{2n}}(\tau,z)=0$, $\forall n\in\mathbb{N}$. This is due to the fermionic zero modes in the right moving Ramond sector.
- Calabi-Yau 2-fold : Non-trivial example is K3 surface. Elliptic genus is a Jacobi form that appears in Mathieu Moonshine.

```
[Tachikawa et.al. '10 ; Gaberdiel et.al. '10, Mukai '88] \mathcal{Z}_{K3}(\tau,z) = 2\phi_{0,1}(\tau,z) = -20 \operatorname{ch}_{2,0,0}^{\mathcal{N}=2}(\tau,z) + 2 \operatorname{ch}_{2,0,1}^{\mathcal{N}=2}(\tau,z) - \sum_{n=1}^{\infty} A_n \operatorname{ch}_{2,n,1}^{\mathcal{N}=2}(\tau,z) The coefficients are irreps of M_{24}.
```

$$20 = 23 - 3 \cdot 1,$$

$$-2 = -2 \cdot 1,$$

$$A_1 = 45 + 45,$$

$$A_2 = 231 + 231,$$

$$A_3 = 770 + 770$$

Calabi-Yaus

• Calabi-Yau 3-fold : Unfortunately, rather uninteresting expansion in N = 2 characters

$$\mathcal{Z}_{CY_3}(au,z) = rac{\chi_{CY_3}}{2} \ \phi_{0,rac{3}{2}} = rac{\chi_{CY_3}}{2} \left(ext{ch}_{3,0,rac{1}{2}}^{\mathcal{N}=2}(au,z) + ext{ch}_{3,0,-rac{1}{2}}^{\mathcal{N}=2}(au,z)
ight)$$

Doesn't mean no connection to moonshine, e.g. By Heterotic Type II duality connection between Vafa's New SUSY index (One loop correction to prepotential in Het. side) connects to Gromov-Witten inv. on Type II side. [Wrase '14; Aradhita's talk]

Calabi-Yaus

• Calabi-Yau 3-fold : Unfortunately, rather uninteresting expansion in N=2 characters

$$\mathcal{Z}_{CY_3}(\tau,z) = \frac{\chi_{CY_3}}{2} \phi_{0,\frac{3}{2}} = \frac{\chi_{CY_3}}{2} \left(\operatorname{ch}_{3,0,\frac{1}{2}}^{\mathcal{N}=2}(\tau,z) + \operatorname{ch}_{3,0,-\frac{1}{2}}^{\mathcal{N}=2}(\tau,z) \right)$$

Doesn't mean no connection to moonshine, e.g. By Heterotic Type II duality connection between Vafa's New SUSY index (One loop correction to prepotential in Het. side) connects to Gromov-Witten inv. on Type II side. [Wrase '14; Aradhita's talk]

• Calabi-Yau 4-folds: Coefficients of $J_{0,2}$ is fixed by Euler no. χ_{CY_4} and $\chi_0 = \sum_r (-1)^r h^{0,r} = h^{0,0} + h^{0,4} = 2$ (for gen. CY_4)

$$\mathcal{Z}_{CY_4}(\tau, z) = \frac{\chi_{CY_4}}{144} \left(\phi_{0,1}^2 - E_4 \, \phi_{-2,1}^2 \right) + \chi_0 E_4 \, \phi_{-2,1}^2$$

Obvious e.g. is $\mathcal{Z}_{K3\times K3}(\tau,z)=4\phi_{0,1}^2$ (not a gen. CY_4), exhibits an $M_{24}\times M_{24}$ symmetry. Many, other connections.

[work in progress, Cheng et.al.]

Calabi-Yau 5-folds

• Elliptic genus is proportional to $\phi_{0,\frac{3}{2}}\phi_{0,1}$ and we can fix the prefactor in terms of the Euler number χ_{CY_5} .

$$\mathcal{Z}_{CY_{5}}(\tau,z) = \frac{\chi_{CY_{5}}}{24} \phi_{0,\frac{3}{2}} \phi_{0,1}$$

$$= -\frac{\chi_{CY_{5}}}{48} \left[22 \left(\operatorname{ch}_{5,0,\frac{1}{2}}^{\mathcal{N}=2}(\tau,z) + \operatorname{ch}_{5,0,-\frac{1}{2}}^{\mathcal{N}=2}(\tau,z) \right) -2 \left(\operatorname{ch}_{5,0,\frac{3}{2}}^{\mathcal{N}=2}(\tau,z) + \operatorname{ch}_{5,0,-\frac{3}{2}}^{\mathcal{N}=2}(\tau,z) \right) + \sum_{n=1}^{\infty} A_{n} \left(\operatorname{ch}_{5,n,\frac{3}{2}}^{\mathcal{N}=2}(\tau,z) + \operatorname{ch}_{5,n,-\frac{3}{2}}^{\mathcal{N}=2}(\tau,z) \right) \right]$$

• In particular, for CY 5-folds with $\chi_{CY_5} = -48$ we find essentially the same expansion coefficients as in Mathieu moonshine, while for $\chi_{CY_5} = -24$ we find essentially the same coefficients as for Enriques moonshine.

- Since, the elliptic genus is effectively the same for a huge class of 5-folds, it stands to reason that we should check the Twinings by elements of M₂₄.
- We didn't expect to weed out the huge class of potential CY's we scanned.

- Since, the elliptic genus is effectively the same for a huge class of 5-folds, it stands to reason that we should check the Twinings by elements of M₂₄.
- We didn't expect to weed out the huge class of potential CY's we scanned.
- Toric code: The Calabi-Yau manifolds we are interested in are hypersurfaces in weighted projective ambient spaces. A particular Calabi-Yau d-fold that is a hypersurface in the weighted projective space $\mathbb{CP}_{w_1...w_{d+2}}^{d+1}$ is determined by a solution of $p(\Phi_1,\ldots,\Phi_{d+2})=0$, where the Φ_i denote the homogeneous coordinates of the weighted projective space and p is a transverse polynomial of degree $m=\sum_i w_i$.

- Mapping [Benini et.al.]: Two-dim. gauged linear sigma model with N = (2, 2) SUSY.
 - U(1) gauge field under which the chiral multiplets Φ_i have charge w_i . Additionally, one extra chiral multiplet X with U(1) charge -m.
 - Invariant superpotential $W = Xp(\Phi_1, \dots, \Phi_{d+2})$
 - The F-term equation $\partial W/\partial X = p = 0$ restricts us to the Calabi-Yau hypersurface above.
 - R-charge : Zero for Φ_i and 2 for X.

- Mapping [Benini et.al.]: Two-dim. gauged linear sigma model with N = (2, 2) SUSY.
 - U(1) gauge field under which the chiral multiplets Φ_i have charge w_i . Additionally, one extra chiral multiplet X with U(1) charge -m.
 - Invariant superpotential $W = Xp(\Phi_1, \dots, \Phi_{d+2})$
 - The F-term equation $\partial W/\partial X = p = 0$ restricts us to the Calabi-Yau hypersurface above.
 - R-charge : Zero for Φ_i and 2 for X.
- Refined Elliptic genus : Extra chemical potential $x=e^{2\pi \mathrm{i} u}$

$$\mathcal{Z}_{\rm ref}(\tau,z,u) = {\rm Tr}_{RR} \left((-1)^{F_L} y^{J_0} q^{L_0 - \frac{d}{8}} x^Q (-1)^{F_R} \bar{q}^{\bar{L}_0 - \frac{d}{8}} \right)$$

- Contribution to Refined elliptic genus :
 - Each chiral multiplet of U(1) charge Q and R-charge R

$$\mathcal{Z}_{\mathrm{ref}}^{\Phi}(\tau,z,u) = \frac{\theta_1\left(\tau,\left(\frac{R}{2}-1\right)z+Qu\right)}{\theta_1\left(\tau,\frac{R}{2}z+Qu\right)}$$

Abelian vector field

$$\mathcal{Z}_{ ext{ref}}^{ ext{vec}}(au, z) = rac{\mathrm{i} \eta(au)^3}{ heta_1(au, -z)}$$

Combined :

$$\mathcal{Z}_{\mathrm{ref}}(\tau,z,u) = \frac{\mathrm{i}\eta(\tau)^3}{\theta_1(\tau,-z)} \frac{\theta_1(\tau,-mu)}{\theta_1(\tau,z-mu)} \prod_{i=1}^{d+2} \frac{\theta_1(\tau,-z+w_iu)}{\theta_1(\tau,w_iu)}$$

 Standard elliptic genus is obtained by integrating over u. The integral localizes to sum over contour integrals around poles of u in the integrand.

$$\begin{split} \mathcal{Z}_{CY_d}(\tau,z) &= \sum_{k,\ell=0}^{m-1} \frac{e^{-2\pi \mathrm{i}\ell z}}{m} \prod_{i=1}^{d+2} \frac{\theta_1\left(\tau, \frac{w_i}{m}(k+\ell\tau+z) - z\right)}{\theta_1\left(\tau, \frac{w_i}{m}(k+\ell\tau+z)\right)} \\ &= \sum_{k,\ell=0}^{m-1} \frac{y^{-\ell}}{m} \prod_{i=1}^{d+2} \frac{\theta_1\left(q, e^{\frac{2\pi \mathrm{i}w_i k}{m}} q^{\frac{w_i \ell}{m}} y^{\frac{w_i}{m}-1}\right)}{\theta_1\left(q, e^{\frac{2\pi \mathrm{i}w_i k}{m}} q^{\frac{w_i \ell}{m}} y^{\frac{w_i}{m}}\right)} \end{split}$$

$$\mathcal{Z}_{CY_{d}}(\tau, z) = \sum_{k,\ell=0}^{m-1} \frac{e^{-2\pi i \ell z}}{m} \prod_{i=1}^{d+2} \frac{\theta_{1}\left(\tau, \frac{w_{i}}{m}(k+\ell\tau+z)-z\right)}{\theta_{1}\left(\tau, \frac{w_{i}}{m}(k+\ell\tau+z)\right)}$$

$$= \sum_{k,\ell=0}^{m-1} \frac{y^{-\ell}}{m} \prod_{i=1}^{d+2} \frac{\theta_{1}\left(q, e^{\frac{2\pi i w_{i} k}{m}} q^{\frac{w_{i} \ell}{m}} y^{\frac{w_{i}}{m}-1}\right)}{\theta_{1}\left(q, e^{\frac{2\pi i w_{i} k}{m}} q^{\frac{w_{i} \ell}{m}} y^{\frac{w_{i}}{m}}\right)}$$

Twine the elliptic genus by an Abelian symmetry g:

$$g:\Phi_i\to e^{2\pi i\alpha_i}\Phi_i$$
, $i=1,2,\ldots,d+2$

It effectively, leads to a shift of the original z coordinate (i.e. the second argument) of the θ_1 -functions for each Φ_i by α_i .

Twining for CY_5

- A list of 5757727 CY 5-folds that can be described by reflexive polytopes is given on the TU website.
- Out of these 5757727 CY 5-folds only 19353 are described by transverse polynomials in weighted projective spaces.

Twining for CY_5

- A list of 5757727 CY 5-folds that can be described by reflexive polytopes is given on the TU website.
- Out of these 5 757 727 CY 5-folds only 19 353 are described by transverse polynomials in weighted projective spaces.
- For generic χ_{CY_5} (the constant sitting in front of $\mathcal{Z}_{CY_5}(\tau,z)$) we can perform the twining. e.g. For the hypersurface in the weighted projective space $\mathbb{CP}^6_{1,1,1,3,5,9,10}$ with $\chi = -170\,688$ and

$$\mathcal{Z}_{CY_5}(\tau,z) = 3556 \cdot \left[22 \left(\operatorname{ch}_{5,0,\frac{1}{2}}^{\mathcal{N}=2}(\tau,z) + \operatorname{ch}_{5,0,-\frac{1}{2}}^{\mathcal{N}=2}(\tau,z) \right) \cdots \right]$$

For the Z₂ symmetry

$$\mathbb{Z}_2: \left\{ \begin{array}{l} \Phi_1 \to -\Phi_1 \,, \\ \Phi_2 \to -\Phi_2 \,, \end{array} \right.$$

Twining for CY_5

Corresponding twined elliptic genus

$$\mathcal{Z}_{CY_{5}}^{tw,2A}(\tau,z) = 14 \cdot \left[2 \left(\operatorname{ch}_{5,0,\frac{1}{2}}^{\mathcal{N}=2}(\tau,z) + \operatorname{ch}_{5,0,-\frac{1}{2}}^{\mathcal{N}=2}(\tau,z) \right) -2 \left(\operatorname{ch}_{5,0,\frac{3}{2}}^{\mathcal{N}=2}(\tau,z) + \operatorname{ch}_{5,0,-\frac{3}{2}}^{\mathcal{N}=2}(\tau,z) \right) + 6 \left(\operatorname{ch}_{5,1,\frac{3}{2}}^{\mathcal{N}=2}(\tau,z) + \operatorname{ch}_{5,1,-\frac{3}{2}}^{\mathcal{N}=2}(\tau,z) \right) + \dots \right]$$

which is a twined constant, 14 instead of 3556, multiplied by the 2A series of M_{24} .

• Generically, in most cases the \mathbb{Z}_2 twining produced a linear combination of 1A and 2A conjugacy classes of M_{24} hence killing the scope of M_{24} symmetry. Cases, which reproduced say 2A were lifted by higher order twinings.

Overview of the talk

- Motivation
 - Where does the moon shine?
 - Why do we care about Moonshine?
- 2 Preliminaries
 - Finite groups
 - Modular forms
 - The Old Monster
- 3 Calabi-Yau & Sporadic groups
 - Elliptic Genus
 - Weak Jacobi forms
 - Calabi-Yaus
- 4 Conclusion

 It is not absolutely settled as to whether the Mathieu moonshine in K3 is a property of the manifold or not? Same questions can be asked for higher dim Calabi-Yau and it seems to be property of the Jacobi form rather than the manifold.

- It is not absolutely settled as to whether the Mathieu moonshine in K3 is a property of the manifold or not? Same questions can be asked for higher dim Calabi-Yau and it seems to be property of the Jacobi form rather than the manifold.
- We also study CY 5-folds with Euler number different from ±48, whose elliptic genus expansion agrees with the K3 elliptic genus expansion only up to a prefactor, is that the product spaces K3×CY₃ have an elliptic genus that likewise agrees with the K3 elliptic genus expansion only up to a prefactor.

- It is not absolutely settled as to whether the Mathieu moonshine in K3 is a property of the manifold or not? Same questions can be asked for higher dim Calabi-Yau and it seems to be property of the Jacobi form rather than the manifold.
- We also study CY 5-folds with Euler number different from ±48, whose elliptic genus expansion agrees with the K3 elliptic genus expansion only up to a prefactor, is that the product spaces K3×CY₃ have an elliptic genus that likewise agrees with the K3 elliptic genus expansion only up to a prefactor.
- The conclusions we drew rules out single copy of Mathieu moonshine but in some cases the reasoning allows for multiple copies but I agree it is preposterous.

- It is not absolutely settled as to whether the Mathieu moonshine in K3 is a property of the manifold or not? Same questions can be asked for higher dim Calabi-Yau and it seems to be property of the Jacobi form rather than the manifold.
- We also study CY 5-folds with Euler number different from \pm 48, whose elliptic genus expansion agrees with the K3 elliptic genus expansion only up to a prefactor, is that the product spaces $K3 \times CY_3$ have an elliptic genus that likewise agrees with the K3 elliptic genus expansion only up to a prefactor.
- The conclusions we drew rules out single copy of Mathieu moonshine but in some cases the reasoning allows for multiple copies but I agree it is preposterous.
- If the goal is to connect the weight zero Jacobi forms to interesting jacobi forms coming from Umbral moonshine, it seems product of CYs doesn't work.

THANK YOU