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ELLIPTIC HYPERGEOMETRIC INTEGRALS
A new class of transcendental special functions (V.S., 2000, 2003)

Definition (2003), univariate case: contour integrals

[:LAM@,

where A(u) satisfies a first order finite difference equation
Alu+wy) = flu;wa, ws)Au),

with an elliptic function f(u;ws,ws), i.e. meromorphic, double-
periodic function:

flu+ws) = flu+ws) = f(u)

for some incommensurate wy 93 € C, Im(wy/w3) # 0.

27wy Jwo

“Bases”: q =e , p = ePmn/en,

Let z = e2™%/“2 and p(2) := A(u) be meromorphic in z.
A strong restriction! Then, for h(z;p) := f(u; ws, ws),

- [ o plaz) = hzpp(). hipz) = h(z).



An infinite product

(zip)oo =1 —20"), IpI<1,z€C

A Jacobi theta function

1
0(z:p) = (2:P)oc(pz i P)oo = ——— Y _(=1)FpF=D22H,
(p:p) =

where z € C*. Important symmetries (an exercise):

O(pz;p) = 0(z Lp) = —210(z; p).

Theorem (Abel, Jacobi):

t
HQJ;Z [1t=T]we

Proof

m t m .
H (kap (wrz; p) _H < k_lzl.
- O(trz;p) O(pwyz;p) e —z



To solve p(qz) = h(z;p)p(z), it is sufficient to solve

Plgzip,q) = 0(2p)T(2p, q)
due to the factorization of h(z;p).

A particular solution

k+1

the (standard) elliptic gamma function:
Barnes (1904), Jackson (1905), Baxter (1972), Ruijsenaars
(1997), Felder-Varchenko (2000), V.S. (2003).

An exercise: find this solution from scratch using the factor-
ization of 6(z;p).

The final result:
th'p, q) dz - &
I(t,w;p,q / 7 tp = W -

— Many parameters.
— Generalizes ALL (old) known univariate ordinary and g-hyper-
geometric functions.




Properties of the elliptic gamma function. Symmetry in bases
['(z;p,q) =T(2;q,p), unexpected!
finite-difference equations
[(qz;p,q9) = 0(z;p)l(z;0,q),  T(pzip,q) = 0(2,¢9)T(2; p, ),

the inversion relation
1

FZ7 ’ — /00O
(%4 I'(%;p,q)

the quadratic transformation
(2% p,q) = D(%2, +£¢'%2, +p'22, £(pg) *2;p, ),
with the convention
[ty tip,q) = T(tip, @) - T(tw; p, @),
P(£zp,q) =Tz p, @)l (=zp. 0),
D(t2"p,q) == T(t"p, )T(tz7" p, q).

The limiting relation

1
lim (1 — 2)I'(z;p,q) =
21 (P P)oo(q; @)oo
needed for residue calculus and reduction to terminating elliptic
hypergeometric series (such infinite series do not converge).




THE ELLIPTIC BETA INTEGRAL (V.S., 2000)
Theorem. Let |p|, |q|, |t;] < 1, H?_l t; = pq. Then

H] 1 7p7
/ xﬁ,p, H Fltstei, g

where T is the unit circle and

_ (P1P)oo(@: @)oo
4

Proof. Use the I'-function inversion

5
1 1
[(tex; p, q) = - A= TT tm.
U62:0,0) = T Teny pg) - TArTp g 1

and rewrite the integral evaluation as

I(tla"'7t5;p7Q):/{/A(x;tla" t57p7Q)x _]-7
T

where
AL [T_ Tt ¢ Asp,q)
['(z*2, Az*l;p, q) H1§i<j§5 F(titﬁ p:q)




The g-difference equation:
A(z:gt) — Aast) = glg'2)A(g "o th) — glo) Al )
with
[[i 0twz;p) O(tiA;p) h
g(z) = 5 9 SN
[T 0(tits: p) 022 2 A p) @
is reduced to the elliptic functions identity

Otz p) T O(ALL D) L t10(t1A; p)
0(Az=t;p) s O(titm; p) x0(x?;p) anﬁ O(t1t,,; p)
(7 [l 0wz p)  TLoy O(twa;p)

0(Az~L; p) 0(Az; p) '

An exercise: prove it by comparing poles and their residues in
the parallelogram of periods. Integrate the equation for A over
x € T = for |t;| < |q| one gets

](qtl) — [(tl) = 0.

Add p > g symmetry ([t1] < [p|) = I(pt1) = I(t1).

Jacobi theorem on absence of periodic functions with three in-
commensurate periods and ti-permutation symmetry

= [ = I(p, q) = const.

Compute the limit ¢1to — 1, when two pairs of residues pinch
the contour of integration (this requires computation of a pair of

residues) and find that I = 1. O



The unique relation:
e An elliptic binomial theorem (series analogue: Frenkel-Turaev

sum, 1997)

e An elliptic analogue of the Euler beta integral

1
['(x)l
/ "1 =) ldt = M, Re(x), Re(y) > 0.
0 [(z+y)
e Orthogonality measure for the most general univariate classical
special functions

e A germ for infinitely many exact integration formulas and the
whole theory of transcendental elliptic hypergeometric functions

o An W (Eg)-covariant object

e Generates an elliptic Fourier transform (a Bailey lemma) <
Coxeter relations of a permutation group < star-triangle relation
& general solution of YBE

e Quantum field theory: proves equality of superconformal in-
dices of two different 4d N' = 1 supersymmetric theories = a
powerful confirmation of the simplest Seiberg (1994) duality. The
process of integral evaluation = transition from UV (weak cou-
pling) to IR (strong coupling) physics (Dolan, Osborn, 2008)



Euler-Gauss hypergeometric function
o Fi-series:

- n(b)n 7"
2F1abcxzz o), x| < 1,

n=0

(a), =ala+1)...(a+n—1)  the Pochhammer symbol

An integral representation:

oFi(a,b;c;z) = Ic E(Zj;F(b) /0 N1 — ) N1 — )T,

where Re(c¢) > Re(b) > 0 and « ¢ [1, 00|, and the gamma function
['(x):

['(z) = / t" e dt, Re(z) > 0.
0

The hypergeometric equation:

r(l—2)y"(z)+ (c— (a+ b+ D)y (x) — aby(x) =0,
y(x) = 9F1(a,b; c;x) — solution analytical at = = 0.
Barnes representation:

['(c) /ioo [(a+uw)'(b+ u)l'(—u)
P(a)I'(0) J oo Ple+u)

o Fi(a,b;c;x) = (—z)"du



An elliptic analogue of the Euler-(GGauss hypergeo-
metric function

[T Ttz pq) dz
Vit,.... ts: = = —
( 1, ,» U8y D,y Q) /{/}1‘ F(ZiQ;p, q) - ;

8
51, 1pl, lql < 1and T, t; = p°¢”.
For t;t;. = pq, j # k = the elliptic beta integral.
Consider a double integral:

H?:l F(ajzila bjwil;pa Q> F(sztlwil;p’ Q) dz dw
T2 P(z*2,w*p, q) zw’
where a;,b;,c € C, |a,|, |bjl, |c| < 1, and

4 4
CQHCLJ' = CQHbj = pq.
j=1 j=1

Computation of the integrals over z or w in different order =

W (E;)-group of symmetries (V.S., Rains, 2003)
Vit ... tsip,q) = H P(tjtn, tivatyraip, @) V(st, -, 880, ),
1<)<k<4

S = 8tj, ] = 1, 2, 3, 4 L o= pq _ tslelrts
Sj — 8_1tj, ] — 5, 6, 7, 8 ! t1t2t3t4 pq '



Root systems and Weyl groups

Consider R" with the orthonormal basis e; € R", (e;,ej) =
;7. For any x € R" define its reflection w.r.t. the hyperplane
orthogonal to some v € R":

2(v, x)

r— Sy(r) =12 — o o) v S?=1.
If x = const-v = S,(x) = —z. For (v,x2) =0= S,(z) ==
Define R as some set of vectors aq,...,q, € R” forming a

basis. R = root system, if for any «, 5 € R, S,(8) € R.

= reflections W = {S,} form a finite subgroup of the rotation
group O(n) = Coxeter group.

n = rank of the root system, a; = roots.



If foral a, 8 € R

(a, )
(o, @)
= R the crystallographic root system, W = the Weyl group.

2

€7,

= Relation with the classification of semi-simple Lie algebras.

There exist 4 infinite classical series of root systems: A,, B, C,,
D,,, and 5 exceptional cases: G9, Fy, Eg, Er, Ex.

Elliptic hypergeometric functions are naturally related to these
root systems. Equivalently, superconformal indices = integrals over
Haar measures of the compact gauge groups.

Examples of roots systems:
1) A,: take U € R"*! orthogonal to 377/ ej, l.e. for u =

=1
Z;‘;l u;e; € U one has Z?;Lll u; = 0. ’
Then Ry, = {e; —ej, i # ‘7'}‘2.7].:17.”7n+1 and W(A,) = Spi1.
2) Cp: in R" the roots Re, = {+2e;,+¢; £ ¢j, i < j}|,
and W =5, x Z3.
3) Fs: in R® choose
Rp, = {xeiLej, i < j, % Zle(—l)miei, Zle m; = even}}i’j_lw"g.

J=1,...n



The V-function is W(A7) = Sg symmetric (permutation of pa-
rameters ¢;).

Denote t; = (pg)'/*e*™. Then, Z§:1
V(ty,. .., tsip,q)

B [T crcres(trtis P, @)oo

x; = 0 and the function

V(L. tsipg)

o
(20, @) = | (1 = 20"¢").
a,b=0
is invariant w.r.t. the x — S, (x)-reflection with

1
v=2(L1L 11 -1 -1, -1,-1), (v,v)=2

Namely;, | |
VP (s1,...,88p,q) = V(L ... ts).

This is the extension W (A7) = Sg — W (Er).



The elliptic hypergeometric equation

Addition formula for theta-functions (an exercise)
tef(trtst tez™tp) + teb(tats !, tr2 p) + tl(tets" tgz™ " p) = 0
induces the contiguous relation

tsV (qts) tzV (qt7) tsV (qts)
Otstz" tetz ' p)  O(tets' trtsh;p)  O(tsts' tstat: p)

)

where szl t; = p’q.

Apply W (E7)-group — many contiguous relations, one of which
has the form

A(ty, ... e, t7, 13, ¢ p) <U(Qt6, q 'tr) — U(E))

FA( ottt 050) (Ul s, atr) = U L)) + U () = 0,

where

5
0(ts/qts, tste, ts/te; D) H O(t:tr/q; p)

O(ts/tz, 17/ qte, tetr/q:p) -~ Oltsti;p)

A(th .. 7t87q;p) =

and

V(t:p,q)
HZ:6 (tktg ' Ds Q)

Al(ty, ... ts,q;p) — an elliptic function of all parameters.

Ult) =



This elliptic hypergeometric equation can be written as

Alw) (f(gz) = f(2) + Ale™) (Fla™'0) = f(@)) + vf(w) =0,
Hi:l 0(erz; p) ° ELES
Alz) = v=\|l0—:p]),
o)

(2%, qz%p)

with the constraints H2:1 er = p*¢® and g7 = %8.
Solutions o< V(.. .).

Conclusion: elliptic hypergeometric integrals solve some par-
ticular finite-difference equations with elliptic function coeflicients.

Orthogonality relations
(Ro(z), Rin(T)) = Opm, mym =0,1,2,...,

where R, are either polynomials of x or rational functions,
the scalar product (-, ) is an integral w.r.t. some measure.



CLASSICAL ORTHOGONAL POLYNOMIALS AND THEIR GENERALIZATIONS

Jacobi Rogers
2F1 (1826 ) ? 21 (189g4 )

| l

Chebyshev Hahn
3F2 <1875 ) ? 3¥2 (1949 )

Hahn
Racah
Askey,
F 1942 —) Wilson

453 g‘?lgon 1985
l self-dual orthogonal J/ polynomaials
Wilson Rahman
1978 1986

9F8 Rahman : 10@9 Wilson :
1986 1991

VS,

Zhedanov
12 ‘/1 1|\ 1999

V.S., 2000

self-dual biorthogonallrational functions l

/
10%9 X 109 —

/
12V11 X 12V11

self-dual biorthogonal functions (V.S., 2000)




C,, elliptic beta integral of type I
(van Diejen, V.S., 2001; Rains, 2003, V.S., 2004)

Let |pl, |ql, |t;] < 1 and H2"+4 = pgq, then
n 2n—|—4r

! k=1 (tszl;p, q)dz;
™ 1<]<k<n j Zk; 7p7q j=1 Zj Py q j
— H D(tite:p,q),  Fn = (pip)sca: )5

(47i)n!
1<k<s<2n+4

The simplest proof: a straightforward generalization of n = 1 case.
Analytical properties of general integrals:

1
H tktl p,q / :|:1 I1
™ )

1<j<]{,'<n % kP d

1<k<I<2n+2m+4
n 2n+2m+4 . 2n+2m+4
XH k=1 l};(tkzj :D:q) dzj7 H = (pq)mﬂ
ol ['(257%p,q) Zj P

is holomorphic in parameters (Rains, 2010).



C,, elliptic beta integral of type I1
(van Diejen, V.S., 2000, 2001)

Let |p|, |ql, [t], [t;] < 1 and 2"=2]]°._, t,» = pq, then
/ tzilzk 1; D, Q) ﬁ H?n:1 F(th;ﬂ,p, Q) de
"

idren LET TP 11 TE PG

—H< ,p, H (7t p, ))

t D, 9q 1<m<s<6

Proof. Denote the mtegral as I,,(t,t1,...,t5) and consider

/ 11 HHT 0 tzzil;p,Q)de
T 1<j<ken F(Z;Hz;ﬂ’p, g A
1
H T tl/Qzﬂwﬂ'p q) H
J ko1 ]
1 1]:J<n 1 1<j<k<n—1 F(w] Wy 5 P, Q>
<k<n

o H iltn 3/2 HS 1 sy D, Q) dwj
F Jj,:lt2n 3/2 Hs:l sy Py Q) w

where ¢"~1 HT:O t, = pq.



Integration over w; or z; using the type I C),-integral yields the
recurrence relation:

t" ,
Lt ... t) = — L1 H Dt by p,q) Tni(t, 28, ... £Y/%5)
['(t;p.q
O<r<s<5
with known n = 1 initial condition. []

This is an elliptic analogue of the Selberg beta integral.

Relation to root systems R: the integrands contains the products
H F(ea;p7 Q)a Zj = eXp(€j>7
acR

where e; are orthonormal R" basis vectors. This is related to Haar
measures for compact (gauge) groups.



Full Seiberg duality (1995) for V' =1 4d SUSY theories:
“Electric” theory:

SU(N.) | SU(Ny)i | SU(Ny)y [ U(L)p | U(L)g
Qrf ! ! L | Ne/Ny
@ f 1 f -1 Nc/Nf
V] o adi 1 1 0 1

“Magnetic” theory:

SU(NC) SU(Nf>l SU(Nf)r U(l)B U(DR

q ! J 1 Ne/Ne | No/Ny

q / 1 z _NC/NC ]\Ig/Nf

M1 f 7 0 |2N./N;
V| o adi 1 1 0 1

where N, = Ny—N.and 3N./2 < Ny < 3N, (conformal window)

Seiberg conjecture: these two N' = 1 SYM theories have the
same physics at their IR fixed points

Consistency checks:
e The global anomalies match ('t Hooft anomaly matching)
e Matching of the reductions Ny — Ny —1

e The moduli spaces have the same dimensions and the gauge
invariant operators match



The electric theory index:

N Nc NC
o [ e T
E — Nc N
TNe—1 H1§i<j§]\fc ['(z; ZJ ) Zi 3:1
Ne¢ - -
- -1 V)N U )
ST N TN )N
j=1

This is an elliptic hypergeometric integral for Ay, root system
(i.e. SU(N,) gauge group).

The magnetic theory: Iy = kg, HU (s tj_l)x

Hj-vzfl NC F(S cs :I:J,T_ﬁctixj_l) Neel oo

J
~ 1 1 .

j=1
where HNC xj=1 N,=N;— N,
S=IIhsi T=ITAt ST =(pg)"



Theorem: Iy = I, V.S. (special cases), Rains

Proof (Rains, 2003). For special discrete values of parameters
the integral I is reduced to computation of determinants of matri-
ces with entries described by univariate integrals of combinations
of theta functions. The latter determinants can be transformed
to multivariate integrals of the products of two computable theta-
function determinants, equivalent to I; for special values of pa-
rameters. The set of such discrete parameter values is dense =
the integration formula is true for Iy, I, analytically continued in
parameters.

Better proofs should be found !

This mathematically rigorous statement absorbs all previously
known criteria of Seiberg and gives even more (equality of BPS
states spectra).

An interplay between Physics and Mathematics
Physics = very many new identities
Mathematics = many new dualities; new duality tests



Miscellaneous results:

e 't Hooft anomaly matching «— SL(3,Z)-modular covari-
ance (skipped)

e Ny — N; — 1 reduction in SCIs: sktlzl = pq (a simple
substitution for Ip and a residue calculus for Iyy)

e Conjectures: a hundred new computable elliptic beta inte-
grals and symmetry transformations for higher order elliptic
hypergeometric integrals on root systems (SU(N), SP(2N),
SO(N), Gy, Fg, Fy gauge groups)

e Tens of new N = 1 dualities, new confining theories

e Discovery of many relations between dualities (some of them
are deducible from the others)

e There are infinitely many quiver dualities whose SCIs are
generated by integral Bailey lemma



e Conjecture: there are infinitely (countably) many qualita-
tively different supersymmetric dualities for simple gauge groups
and corresponding elliptic hypergeometric integral identities

e Reduction of 4d SCls/dualities — 3d and 2d partition func-
tions/dualities

e Dirac delta function behavior of integrals/superconformal in-
dices «— chiral symmetry breaking

e 4d N = 2 SCIs and 2d topological field theories (Gadde,

Pomoni, Rastelli, Razamat, Yan, ...)

e SCIs on lens spaces = finite sums of elliptic hypergeomet-

ric integrals, reduction to 3d SCIs with monopoles (Benini,
Nishioka, Yamazaki, Razamat, Willet, Kels, V.S).

A lot of work ahead !



