BIASED TWISTED BILAYER GRAPHENE: MAGNETISM AND GAP

A.V. Rozhkov, A.O. Sboychakov, A.L. Rakhmanov, F. Nori ITAE RAS, Moscow, Russia RIKEN, Wako-shi, Japan

General properties of twisted bilayers Effect of the bias: nested Fermi surface Exitonic gap + magnetism

Twisted bilayer graphene

System before rotation: AB bilayer graphene

"Commensurate" twist angle

Twisted bilayer graphene as seen on experiment

Scanning spectroscopy of twisted bilayer samples with different twist angles

I. Brihuega et al., Phys. Rev. Lett., **109**, 196802 (2012)

Moire superlattice is clearly seen

Theory of the single-electron dispersion for twisted bilayer graphene

Most of our knowledge about single-electron properties of twisted bilayers comes from calculations at "commensurate" angles

$$\cos \theta = \frac{3m^2 + 3mr + r^2/2}{3m^2 + 3mr + r^2}$$

Here *m* and *r* are co-prime natural numbers

Commensurate angles: superstructure

Commensurate angles: superstructure in the reciprocal space

Red dashed line – Brillouin zone of the unrotated layer

Blue dashed line – Brillouin zone of the rotated layer

Green solid line – Brillouin zone of the superstructure.

Why theorists like commensurate angles?

Advantages

- 1. Periodic structure emerges (one can study finite supercells)
- 2. Arbitrary incommensurate angle can be approximated

Calculation at a commensurate angle: single-particle dispersion

<u>"Monolayer" Dirac cones</u>

Renormalized Dirac cones at the corners of the supercell Brilloun zone

Fermi velocity renormalization

G. Trambly de Laissardière et al., Nano Letters, 10, 804 (2010)

Interaction effects: phase transitions?

Bad new for phase transition: Dirac cones => vanishing DOS => no mean-field instability

 $T_c \sim \exp(-1/\rho(0)g)$

Fermi surface (Fermi curve)

Spectrum

Fermi surface (Fermi curve) with nesting

Fermi surfaces near \mathbf{K}_1 and \mathbf{K}_2 points are doubly degenerate (perfect nesting between hole- and electron-like bands). This leads to exciton band gap opening.

Quality of nesting

Electron Fermi surface and hole Fermi surface are almost identical

Ordered state

Electron in one layer + hole in another + e-e repulsion = exciton

Ordered state: why nesting is important?

For any electron with low energy and momentum **p** there is a hole with low energy and momentum **p**

Some technical remarks

Model hamiltonian: $H = H_0 + H_{int}$

Tight-binding part:

$$\hat{H}_0 = \sum_{\substack{i\mathbf{n},j\mathbf{m}\\ss'\sigma}} t(\mathbf{r}_{\mathbf{n}}^{is};\mathbf{r}_{\mathbf{m}}^{js'}) \hat{d}_{\mathbf{n}is\sigma}^{\dagger} \hat{d}_{\mathbf{m}js'\sigma} + \frac{V_b}{2} \sum_{\mathbf{n}} (\hat{n}_{\mathbf{n}1} - \hat{n}_{\mathbf{n}2})$$

Interaction part (*U* is screened Coulomb interaction):

$$\hat{H}_{\text{int}} = \frac{1}{2} \sum_{\substack{injm\\ss'\sigma\sigma'}} \hat{d}^{\dagger}_{\mathbf{n}is\sigma} \hat{d}_{\mathbf{n}is\sigma} U_{ij} (\mathbf{r}^{is}_{\mathbf{n}} - \mathbf{r}^{js'}_{\mathbf{m}}) \hat{d}^{\dagger}_{\mathbf{m}js'\sigma'} \hat{d}_{\mathbf{m}js'\sigma'}$$

Some more technical remarks

Order parameter is of SDW type two such order parameters (one per Dirac point)

Effect of low Fermi velocity

Two SDW order parameters (one per Dirac point) => interference

- Effect of the bias: nested Fermi surface

Insulating gap + interference of 2 magnetic orders

