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•  Neutrino Oscillation Status
•  The Goals of DUNE Experiment
•  DUNE Experiment Collaboration and Organization
•  Status of Neutrino Beam, Near and Far Detectors
•  DUNE Physics Measurements
•  Liquid Argon TPC Development Path to LBNF/DUNE
•  DUNE Timeline
•  Summary



Neutrino Oscillation: Quick Reminder
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•  Neutrino oscillation parameters: 
    PMNS matrix:         3 mixing angles: θ12, θ23, θ13
                                        1 phase: δ => CP-violation in ν-sector 
    Mass differences: 2 mass difference scales: Δm2

12, Δm2
23.

θ12 measured from
P(νe→νx) by
reactor νe and solar νe.

θ13 measured from
P(νe→νe) by reactor νe.
θ13 and δ measured from
P(νμ→νe) by accelerator νμ.

θ23 measured from P(νμ→νμ) 
by atmospheric νμ and 
accelerator νμ. 

•  The three neutrino mixing: 

(−) (−)  −  −
 −

 −

(−) (−)
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Neutrino Oscillation Results

•  Current understanding

-Mass squared differences:

  Δm2
21 ≈ 7.5 x 10-5eV2 

  |Δm2
32| ≈ 2.5 x 10-3eV2

-Mixing angles:

  sin2θ12 ≈ 0.31
  sin2θ23 ≈ 0.45 – 0.55
  sin2θ13 ≈ 0.02

-Absolute mass scale is 
 unknown.
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Please see related talks: 
-Z. Djurcic’s NOvA talk
-V. Paolone’s T2K talk
-T. Yano’s Super-K talk
-D. Naumov’s Daya Bay talk

Please see related talks: 
-V. Pantuev’s Tritium β-decay talk
-A. Babic’s 0ν2β-decay  talk
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Neutrino Oscillation Questions

Recently measured what is νe component 
in the ν3 mass eigenstate, i.e. θ13.              

Missing information in 3x3 mixing 
scheme:
1.  Is the µ - τ mixing maximal?

 -Only know sin2θ23 ≈ 0.45 – 0.55

2.  What is the mass hierarchy?
-Normal or inverted?

3.  Do neutrinos exhibit CP violation, i.e. 
is δCP ≠ 0?

4.  Why are quark and neutrino mixing 
matrices so different? 
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Please see
S. Bilenky’s
talk on “Neutrino 
in the Standard 
Model and Beyond” 
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The Goals of DUNE Experiment���
���
 
1) Neutrino Oscillation Physics

-CPV in the leptonic sector
“Our best bet for explaining why there is matter in the universe”

-Mass Hierarchy
-Precision Oscillation Physics & testing the 3-flavor paradigm

2) Nucleon Decay
-Predicted in beyond the Standard Model theories [but not yet seen]

e.g. the SUSY-favored mode,  
3) Supernova burst physics & astrophysics

-Galactic core collapse supernova, sensitivity to νe

Time information on neutron star or even black-hole formation

p! K+⌫

•  Primary focus of the DUNE science program is on fundamental open questions in 
particle physics and astro-particle physics: A

ny w
ould be a m

ajor discovery

•  DUNE Ancillary Science Program
        -Other LBL oscillation physics with BSM sensitivity
         -Oscillation physics with atmospheric neutrinos
         -Neutrino Physics in the near detector
         -Search for signatures of Dark Matter
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The DUNE Collaboration

From Sep/04/2016
909 Collaborators
154 Institutions
29 Nations
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Major features of the DUNE experiment are:
•  A high-intensity wide-band neutrino beam originating at FNAL

-1.2 MW proton beam upgradable to 2.4 MW
•  A highly capable near detector to measure the neutrino flux
•  A ~40 kt fiducial mass liquid argon far detector

-Located 1300 km baseline at SURF’s 1.5 km underground level (2300 mwe)
-Staged construction of four ~10 kt detector modules. First module 
 to be installed starting in 2021. 8	
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•  Detectors and Science Collaboration will be managed separately from the 
neutrino facility and infrastructure

•  LBNF (Long Baseline Neutrino Facility): DOE/Fermilab hosted project with 
international participation

-LBNF houses, and delivers beam (i.e. beamline) to detectors built by the  
         DUNE collaboration

-LBNF responsibilities are:
ü  Neutrino beamline
ü  Near detector conventional facilities
ü  Far detector cavern and conventional facilities

•  DUNE (Deep Underground Neutrino Experiment) is responsible for
-Far and Near Detectors
-Scientific Research Program

Project Organization: DUNE – LBNF Relationship
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•  60 - 120 GeV Proton beam energy
•  Initial power 1.2 MW upgradable to 2.4 MW

  -PIP II complete before start of data taking

•  Up to 1021 protons on target per year
•  Good coverage 1 to 5 GeV 

LBNF/DUNE Neutrino Beam

DUNE CDR “Reference” (green)
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DUNE Near Detector current reference design
•  Goal is to precisely measure the 

neutrino fluxes νe , νe , νμ , and  νμ
        -Percent level neutrino flux   
       determination
     -Precision neutrino cross section    
      measurements

•  NOMAD-inspired Fine-Grained 
Tracker (FGT), consisting of: 

      -Central straw-tube tracking system 
        (215,040 channels)
      -Lead-scintillator sampling ECAL
      -RPC-based muon tracking systems
      -Magnetic Spectrometer (0.4 T)

•  Integrated nuclear targets: Ar, 
(C3H6)n, Ca, C, Fe, etc.

 -Sufficient for 10 times the un-oscillated
  far detector neutrino rate from the high
  pressure argon targets

Magnet'
Coils'

Forward'
ECAL'

End'
RPCs'

Backward'ECAL'Barrel'
ECAL'

STT'Module'

Barrel''
RPCs'

End'
RPCs'

•  Design still being optimized
-Quantifying the benefits of augmenting the 
 ref. design with a LArTPC or high-pressure 
 gaseous argon TPC.
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Cryostat 1

Cryostat 4

Cryostat 3

Cryostat 2

Central utility cavern

•  Four-Cavern Layout at the Sanford Underground Research Facility (SURF) at the 
4850 foot Level (4300 m.w.e.)

     -Four independent 10-kt (fiducial mass) Far Detector liquid argon TPC modules
 -Allows for staged construction of the Far Detector
 -Gives flexibility for evolution of liquid argon (LAr) TPC technology design 

DUNE Far Detector Staged Approach

•  Far Detector – Cryostat / Cryogenic Systems Layout
      -Free standing steel supported membrane cryostat design 



Sanford Underground Research Facility, Lead, S. Dakota
•  Site has long & storied history as home to neutrino experiments
•  LBNF scope: 4 detector chambers, utility cavern, connecting drifts
•  Extensive preparatory work for LBNF/DUNE already done
•  DOE approval pending to begin excavation & surface building construction 
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Liquid Argon Time Projection Chamber (TPC) Operation

3.45m à 2.25ms

MIP dE/dx = 2.2 MeV/cm
à ~ 1fC/mm @ 500 V/cm
à  ~1 MeV/wire x	
  

•  Ionization charge drifts to
     finely segmented collection
     planes.

-high resolution data
- high event selection
  efficiency and efficient

          background rejection
•  Scintillator light detected to
     determine interaction time.
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Far Detector Reference Design: Single-phase LAr TPC���
���•  Liquid Argon Time projection 

     chamber with both charge and 
     optical readout.
•  First 10kt detector will be single 
    phase

62	
  m	
  58	
  m	
  

Steel	
  Cryostat	
  

12
	
  m

	
  

14.4	
  m	
  

3.6	
  m	
  

•  17.1/13.8/11.6 Total/Active/Fiducial 
mass

•  3 Anode Plane Assemblies (APA) wide 
(wire planes)

-Cold electronics 384,000 channels
•  Cathode planes (CPA) at 180kV

-3.6 m drift length
•  Photon detection for event interaction 

time determination for underground 
physics
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Far Detector Reference Design: Single-phase LAr TPC���
���•  Liquid Argon Time projection 

     chamber with both charge and 
     optical readout.
•  First 10kt detector will be single 
    phase

62	
  m	
  58	
  m	
  

3.6 m 

•  MicroBooNE example: mm spatial resolution
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Alternative Far Detector Design: Dual-phase LAr TPC���
���•  DUNE collaboration recognizes the potential of the dual-phase technology
      -A dual-phase implementation of the DUNE far detector is presented as an alternative   
       design in the CDR (Conceptual Design Report).
      -DUNE strongly supports the WA105 development program at the CERN neutrino   
        platform
      -If demonstrated, could form basis of second or subsequent 10-kt far detector modules 
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Neutrino Oscillation Strategy
•  Measure neutrino spectra at 1300 km in a wide-band beam
      -Determine MH and θ23 octant, probe CPV, test 3-flavor paradigm and search for  
       neutrino NSI in a single experiment
•  Long baseline:

Matter effects are large ~ 40%
•  Wide-band beam:

Measure νe appearance and νμ disappearance over range of energies
MH & CPV effects are separable  
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Neutrino Oscillation Strategy (cont.)
•  Physics (MH, θ23, θ13, δ) extracted from combined analysis of 4 samples:

-CDR estimates, assuming:  CDR optimized beam, 56% LBNF uptime, FastMC   
 detector response
-Physics inputs:  δ = 0, θ23 = 45o, others from NuFIT: Gonzalez-Garcia, Maltoni,  Schwetz, JHEP 1411 
(2014)

ν	
  mode	
  /	
  150	
  kt-­‐MW-­‐yr	
   νe	
  appearance	
  	
   νµ	
  disappearance	
  

Signal	
  events	
  (NH	
  /	
  IH)	
   945	
  (521)	
   7929	
  

Wrong-­‐sign	
  signal	
  (NH	
  /IH)	
   13	
  (26)	
   511	
  

Beam	
  νe	
  background	
   204	
   	
  –	
  

NC	
  background	
   17	
   76	
  

Other	
  background	
   22	
   29	
  

AnE-­‐ν	
  mode	
  /	
  150	
  kt-­‐MW-­‐yr	
   νe	
  appearance	
  	
   νµ	
  disappearance	
  

Signal	
  events	
  (NH	
  /	
  IH)	
   168	
  (438)	
   2639	
  

Wrong-­‐sign	
  signal	
  (NH	
  /IH)	
   47	
  (28)	
   1525	
  

Beam	
  νe	
  background	
   105	
   –	
  	
  

NC	
  background	
   9	
   41	
  

Other	
  background	
   13	
   18	
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DUNE Sensitivity to CP Violation

•  Experimental configuration (geometry, flux, detector response) used for 
sensitivity calculations shown here is published in arXiV:1606.09550

•  Sensitivity to CP Violation, after 300 kt-MW-yrs (3.5 + 3.5 yrs x 40kt @ 1.07 MW)
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DUNE Sensitivity to CP Violation (vs Exposure)

DUNE CDR      •  Sensitivities shown as function
of exposure in kt-MW-yr’s.

40-kt x 10 yrs x 1.2 MW 
~ 500 kt-MW-yr

Other factors: 
-Efficiency / Background Rejection
-Neutrino beam flux
-Physics:  MH, θ23, θ13, δCP
-Systematic Errors
-Complications from BSM physics?

•   DUNE Strengths: LArTPC technology, flexible wide-band beam, Near Detector, 
direction resolution for atmospheric neutrinos

Significance with which the CP violation can be 
determined for 25%, 50%, 75% of δCP
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DUNE Mass Hierarchy Sensitivity
•  Significance with which the mass hierarchy can be determined as a function of the 

value of δCP for an exposure of 300 kt · MW (3.5 + 3.5 yrs x 40kt @ 1.07 MW)
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•  DUNE can definitively determine the neutrino mass hierarchy
•  For a favorable CP phase this could be achieved in a few years!
•  Improvements in beam design can greatly improve the sensitivity thus 

reducing the time needed for a definitive measurement 

DUNE Mass Hierarchy Sensitivity (vs Exposure)



Neutrinos from Supernovae���

300000000000000000 km

ν
ν

•   About 99% of the gravitational binding energy of the proto-neutron star goes into 
neutrinos.

•  Expect 2-3 core-collapse supernovae in the Milky Way per century ≈ 3000 
neutrinos in 34kt LBNE for SN@10 kpc

•  Unique sensitivity through 

Model from L. Hudepohl et al., PRL 104(2010)251101 
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-Note distinct features in time 
 (left plot) and energy (right plot) 
 spectra

-A large theory effort is underway to understand neutrino related dynamics of the supernova. 
 Both oscillations, mass, and self-interactions have large effects on observables e.g. mass  
 hierarchy could have very distinct effects on the spectrum.

DUNE	
  CDR	
  



Nucleon Decay

Kaon observed entering 
ICARUS TPC in CNGS run

p→	
  K+ ν
_	
  

•  Imaging, dE/dx, calorimetric capabilities of 
LArTPC enable sensitive, background-free 
searches

•  Many modes accessible, superior detection 
efficiency for K production modes:   

     SUSY-favored p à K+ ν 
_	
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Technical Design & Large-scale Prototypes 

•  DUNE 10-kt LArTPC Modules represent O(50x) scale-up w.r.t. largest 
LArTPC modules to date (ICARUS), 100x scale-up w.r.t. MicroBooNE

•  Operation of large-scale prototypes an important ingredient of DUNE program
-Need understand production as well as operational issues
-Provides opportunities for Test Beam data 

ü  Direct Link to DUNE Science Program

•  Key Steps/Milestones include operation of large-scale prototypes
-Two ProtoDUNE Detectors (Single-Phase & Dual-Phase) operational at   
  CERN in 2018 

ü  Provides key risk mitigation opportunity for Far Detector modules
-DUNE Technical Design Report to be reviewed in 2019

ü Done in context of both US DOE process and international 
organizations

Please see J. Kisiel’s
talk on ICARUS 
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MicroBooNE

ICARUS@LNGS

SBND

       protoDUNE @ CERN 

Single-Phase
LArTPCs

ICARUS@SBN

WA105: 1x1x3 m3

2016 2018

WA105

Dual-Phase
LArTPCs

DUNE Reference Design

DUNE Alternative Design

LArTPC Development Path to LBNF/DUNE
Fermilab and CERN neutrino platforms 
provide a strong LArTPC development 
and prototyping program.  

2015 2018 2018

2015

2015 2018

DUNE 35t Prototype
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ProtoDUNE Detector Status ���
•  EHN1 Extension now in construction
•  Beneficial Occupancy, Sept. ’16
•  Cryostats complete, April ’17
•  Test-Beam Operations in 2018
•  H2/H4 tertiary beam lines:

0.5-5 GeV/c e, μ, π, K, p  +/- beams 
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ProtoDUNE-SP 
•  Single-phase TPC prototype

-  Will sit in H4 beam line @ CERN
-  Will consist of 4 full-size APA’s 

plus CPA’s à 2 x 3.6m drift 
regions

-  Will install photon detectors of 
different fabrication methods

-  Plan for operation in 2018

•  Will be a key test of:
-  DUNE Detector components
-  Construction methods
-  Installation procedures
-  Commissioning
-  Detector response to particles 
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•  July 2015 “CD-1 Refresh” review. Conceptual design review.
•  Dec. 2015 CD-3a CF Far Site. Needed to authorize far site conventional 

facilities work including underground excavation and outfitting.
•  2017 Ongoing shaft renovation at SURF complete.
•  2017 Start of far site conventional facilities.
•  2018 Testing of “full-scale” far detector elements at CERN.
•  2019 Technical Design review. 
•  2021 Ready for start of installation of the first far detector module.
•  2024 start of physics with one detector module.

Additional far detector modules every ~2 years.
•  2026 Beam available.
•  2026 Near detector available. 
•  2028 DUNE construction finished.
•  Reach an exposure of 120 kt-MW-yr by 2035.

DUNE/LBNF Timeline
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Summary DUNE Status and Prospects

•  The DUNE collaboration has formed and is managed as other international  
HEP collaborations (LHC model).

     -The scope of DUNE is a high power beam, high precision near detector, and    
      four far liquid argon detectors each with over 10 kt fiducial mass.

-The baseline will be 1,300 km and the detector will be at SURF 4850 ft.

•  Capability of making major discoveries in
-Long-baseline oscillation physics
-Nucleon decay
-Neutrino astrophysics
-Other areas

•  Expect to start far site construction in 2017.

•  Will be testing “full-scale” detector elements at CERN in 2018.

•  Start of physics in 2024 with first 10 kton detector (beam available in 2026).

•  Many opportunities for early discoveries
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Backup Slides
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Neutrino Oscillation
•  Neutrinos produced in weak decays are linear combinations of mass eigenstates

	
  	
   	
  |να > = Σ U*αi |νi>  
	
  	
  Neutrino of flavor      Neutrino of definite mass mi���
 α = e, µ, or τ Leptonic Mixing Matrix

•  Neutrino flavor content evolves in time with L/E i.e. “oscillates”

•  Neutrino oscillation described by 
-amplitude, determined by mixing matrix Uij
-wavelength, determined by (mass)ij

2 differences
-matter effects
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Neutrino Mixing

•  Three neutrino mixing

Δij = Δmij
2L / 4Eυ

a =GFNe / 2

-νe appearance amplitude depends on θ13, θ23, δCP, and mass hierarchy (sign Δm31
2).

-Large value of sin2 2θ13 allows significant νe appearance sample.  
-δCP and the term a switch signs in going from the νμ → νe to the νμ → νe 

sij = sin θij   cij = cos θij   
δ = CP-violating phase•  Electron neutrino appearance example:
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Bi-Probability Plots

•  These are older unofficial bi-probability plots
-show interplay of P(νμ→νe) and P(νμ→νe) vs mass-hierarchy option 

         and δCP-values. 

Comparison of 800 km to 1300 km

_ _



Why is CP-violation (i.e. δCP ≠ 0) with neutrinos so important?

Big Bang produced slightly different 
amounts of matter and anti-matter, 
with some tiny asymmetry? 

Then matter and anti-matter 
annihilated leaving just us?

-Striking feature of the Universe: only matter, virtually no anti-matter!

-Observation of CP-violation would make it more likely that the  
 baryon-antibaryon asymmetry of the universe arose through  
 leptogenesis.

-The theory of leptogenesis is linked to the see-saw theory 
 and as a consequence the light neutrinos are Majorana and 
 have GUT-scale partners.

-The matter-antimatter asymmetry of the universe may be explained 
 through CP-violating decays of the heavy partners, producing 
 a state with unequal numbers of Standard Model leptons and 
 antileptons.
    N → L- + ϕ+ and N → L+ + ϕ-    (ϕ+, ϕ- - Standard-Model Higgs) 
  
-The Standard Model processes convert such a state into the world 
 around us with an unequal number of baryons and antibaryons.
-It is thought that CP-violation would be very unlikely to appear in the heavy sector  
 without happening in light neutrinos.
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Timeline
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DUNE Oscillation Physics Milestones

•  Rapidly reach scientifically interesting sensitivities:
e.g. in best-case scenario for CPV (δCP = +π/2) :

with 60 – 70 kt.MW.year reach 3σ CPV sensitivity 
e.g. in best-case scenario for MH :

with 20 – 30  kt.MW.year reach 5σ MH sensitivity 

•  There is genuine potential for early physics results

P5 Goal
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DUNE 35-ton Single-Phase Prototype���

•  Phase-II of program w/ membrane cryostat
ü  First phase established Ar purity capability
ü  2nd phase – install, operate LBNE style TPC
ü  operations Feb-Mar 2016
ü  Purity à Success!
ü  TPC / Scint Det. Ops à Success!

-Incl. operation @ 250 V/cm

Ø  Not everything worked well:
-Noise environment not good
-Early end due to mechanical 
 failure leading to LAr 
 contamination 


