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Kazantsev-Kraichnan Model

B model of kinematic magnetohydrodynamic (MHD) turbulence

B solenoidal magnetic field b(t,x) is considered as a passive vector admixture described by the
stochastic equation

∂tb = ν0∆b− (v · ∂)b + (b · ∂)v + f , (1)

where ∂t ≡ ∂
∂t
,∆ ≡ ∂2 is the Laplace operator, ν0 =

c2

4πσ0
is the magnetic diffusivity with

magnetic conductivity σ0

B f(t,x) represents a transverse Gaussian random noise with zero mean and the correlation
function

Dbij(t,x; t′,x′) ≡
〈
fi(t,x)fj(t

′,x′)
〉

= δ(t− t′)Cij(
∣∣x− x′

∣∣ /L)

B exact form of function Cij(|x− x′| /L) is unimportant
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Kazantsev-Kraichnan Model

∂tb = ν0∆b− (v · ∂)b + (b · ∂)v + f

B v(t,x) is random compressible (∂ · v 6= 0) velocity field, which obeys Gaussian statistics
(〈v(t,x)〉 = 0) with the pair correlation function

Dij(x;x′) ≡
〈
vi(x)vj(x

′)
〉

= δ(t− t′)D0

∫
ddk

(2π)d
Rij(k)

kd+ε
eik·(x−x′),

where d denotes the spatial dimension of the system and D0 ≡ g0ν0 is positive amplitute

B Rij(k) represents a projector defined as

Rij(k) = δij −
kikj

k2
+ α

kikj

k2
+ iεijsρ

ks

|k|
,

where 0 < α <∞ is the compressibility parameter and 0 < |ρ| < 1 determines the amount
of helicity in the system
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Field Theoretic Model

Theorem

DeDominicis-Janssen theorem states that stochastic problem (1) is equivalent to the field
theoretic model of a set of three fields v, b, and b′ with the action functional

S
[
v,b,b′

]
=−

1

2

∫
dx1 dx2vi(x1)D−1

ij (x1;x2)vj(x2)

+
1

2

∫
dx1 dx2b

′
iD

b
ij(x1;x2)b′j(x2) (2)

+

∫
dxb′ · [−∂tb + ν0∆b− (v · ∂)b + (b · ∂)v]
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Field Theoretic Model

Model (2) corresponds to a standrad Feynman diagrammatic perturbation theory with propagators

∆bb′
ij (k) =

〈
bib
′
j

〉
0

=
Pij(k)

−iωk + ν0k2
=
(

∆b′b
ij

)∗
,

∆vv
ij (k) = 〈vivj〉0 =

ν0g0Rij(k)

kd+ε
,

〈bib′j〉0 =

〈vivj〉0 =

where Pij(k) = δij −
kikj

k2
is the ordinary transverse projector, and the interaction vertex in a

frequency-momentum representation Vijl = i(klδij − kjδi,l)

Vijl =
b′i

bj

vl
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RG Analysis

Q v b b′ m,Λ, µ ν0, ν g0 g, α, ρ

dkQ -1 0 d 1 -2 ε 0

dωQ 1 0 0 0 1 0 0

dQ 1 0 d 1 0 ε 0

Table 1: Canonical dimensions of the fields and parameters of the model under consideration.

B logarithmic for ε = 0

B the only superficially divergent function is
the 1-irreducible Green’s function

〈
b′ibj

〉
1−ir

B parameters renormalization

ν0 = νZν , g0 = gµεZg , Zg = Z−1
ν

B the only independent renormalization
constant is given by a diagram shown on
the right

Zν = 1−
Sd

(2π)d
d− 1 + α

2d

g

ε
, (3)

Sd =
2πd/2

Γ(d/2)

Σb′ibj
=

Figure 1: The only self-energy Feynman diagram that
contributes to the UV renormalization of the model.

B Equation (3) is exact (no corrections of
order gn, n ≥ 2)
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RG Analysis

B RG functions

βg ≡ µ∂µg = g(−ε+ γν),

γν ≡ µ∂µ lnZν

γν =
Sd

(2π)d
d− 1 + α

2d
g

B inertial range scaling behaviour is driven by the exact one-loop stable fixed point of RG
funcions, namely

g∗ =
(2π)d

Sd

2d

d− 1 + α
ε,

which is obtained by the requirement of vanishing of βg . Note that the exact value is
γ∗ν = ε, which is IR stable for ε > 0 and corresponds to the so-called kinetic regime in the
genuine MHD turbulence
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RG Analysis

B we are interested in the scaling behaviour of single-time two-point correlation function of the
magnetic field

BN−m,m(r) ≡
〈
bN−mr (t,x)bmr (t,x′))

〉
, r =

∣∣x− x′
∣∣ ,

where br denotes the component of the magnetic field along r = x− x′

B general correlation function with IR asymptotic form

G(r) ' νd
ω
G

0 l−dG (r/l)−∆GR(r/L),

where dG and dωG are the corresponding canonical dimensions of G, R(r/L) is a scaling
function, l = 1/Λ represents the viscous scale, L = 1/kmin is the integral scale, and ∆G

denotes the critical dimension defined as

∆G = dkG + ∆ωd
ω
G + γ∗G.

γ∗G represents fixed point value of γG ≡ µ∂µ lnZG, ZG is the renormalization constant of

G = ZGG
R, and ∆ω = 2− γ∗v = 2− ε

∆v = 1− ε, ∆b = 0, ∆b′ = d
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RG Analysis

B using the relations for generalized correlation function one obtains

BN−m,m(r) ' ν−N/20 (r/l)−γ
∗
N−m−γ

∗
mRN,m(r/L),

where γ∗N−m and γ∗m are the anomalous dimensions of the composites operators bN−mr and
bmr , respectively, taken at the fixed point g∗

B deep inside the inertial region (r/L→ 0)
scaling function RN,m(r/L) takes the form

RN,m(r/L) =
∑
i

CFi
(r/L)(r/L)∆Fi ,

where summation over all possible
renormalized composite operators Fi with
corresponding critical dimensions ∆Fi

is
performed

B leading contribution is given by operators
constructed solely from b(x) in the form

FN,p = [n · b]p (b · b)l , N = 2l + p

Γ
(1)
N,p =

Γ
(2)
N,p = +

+ +

Figure 2: The Feynman diagrams for the function
ΓN,p(x;b) in the two-loop approximation following
the rules mentioned previously.
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B final form of the asymptotic inertial range behaviour of the correlation functions is then

BN−m,m(r) ∝ rζN,m = r
ζ
(1)
N,m

ε+ζ
(2)
N,m

ε2

B for both N and m either even or odd

ζ
(1)
N,m = −

m(N −m)(d− 1)[1 + α(d+ 1)]

(d+ 2)(d− 1 + α)

B for even values of N and odd values of m

ζ
(1)
N,m = −

(d− 1){m(N −m)[1 + α(d+ 1)] + d+ 1 + α}
(d+ 2)(d− 1 + α)

B the two-loop corrections ζ
(2)
N,m have the following form

ζ
(2)
N,m = −

Sd−1

Sd

d

(d+ 2)(d− 1 + α)2

∫ 1

0
dx(1− x2)

d−3
2

{√
1− x2

× [(d− 2)D1(W1Y1 + 2ρ2δ3dY3) +D2W2Y1]

−
2

d+ 4
(D3W3 +D4W4)Y2

}
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Anomalous scaling of BN−m,m(r)
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Figure 3: Dependencies of the total two-loop scaling exponents
ζ2,1, ζ3,1, ζ4,2, and ζ5,3 on α and ρ for d = 3 and ε = 1.

B the scaling properties of the
correlation function BN−m,m
become more anomalous due to
the impact of helicity

B in agreement with recent
experimental measurementsa

B behaviour of ζ2,1 as a function of
α for fixed |ρ|

B unique behaviour of ζ3,1 as a
function of α� 1 for |ρ| ≈ 1

B decreasing tendencies of ζ4,2 and
ζ5,3 for small enough α and |ρ|

B for large enough value of α the
scaling exponents become
increasing functions of α
regardless of the value of |ρ|

aD. A. Schaffner et al, Phys. Rev. Lett. 112,
(2014) 165001
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Anomalous scaling of BN−m,m(r)
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Figure 4: Dependencies of the total two-loop scaling exponents
ζ6,1, ζ6,2, ζ7,1, and ζ7,3 on α and ρ for d = 3 and ε = 1.

B ζN,m, N = 6, 7 are universally
increasing functions of α
regardless of the value of the
helicity parameter ρ

B although not shown here, similar
behaviour is valid for all scaling
exponents N ≥ 8
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Conclusion

B scaling properties of BN,m(r) within the framework of helical and compressible
Kazantsev-Kraichnan model were investigated using field theoretic RG technique and the
OPE up to the two-loop approximation

B IR asymptotic behaviour in the inertial interval is dependent on α but not on ρ

B presence of helicity can significantly decrease the scaling exponents of the magnetic
correlation functions

B influence of compressibility is also investigated but exhibits more complicated behaviour

• for small order correlation functions the corresponding scaling exponents decrease as
functions of the compressibility parameter at least for α� 1 and |ρ| � 1

• however, for higher order correlation functions the scaling exponents become increasing
functions of α regardless of the value of the helicity parameter
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Thank you for your attention!

Simultaneous influence of helicity and compressibility on anomalous scaling of the magnetic field in the Kazantsev-Kraichnan
model
E. Jurčǐsinová, M. Jurčǐsin, M. Menkyna

Phys. Rev. E 95, (2017) 053210
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C1 = (d+ 1)(N − p)(d+N + p− 2)− 2N(N − 1 (4)

C2 = −(N − p)(d+N + p− 2) + dN(N − 1), (5)

C3 = (N − 2)C1, (6)

C4 = (N − 2)[−3(N − p)(d+N + p− 2) + (d+ 2)N(N − 1)], (7)

and

W1 = 2 + α− α2 (8)

W2 = 2(1− x2) + α[d(d− 3) + 4x2]− α2[d(d− 1)− 2(1− x2)], (9)

W3 = (1− x2)(9− 5d+ 4x2) + α[9(1− 2x2) + x2(d2 + 8x2) + 5d(1− x2)]

− α2(10− 3d− 11x2 + 4x4), (10)

W4 = −2(1− x2)2 + 4α(1− x2)(d− x2)

+ α2[d2(d+ 1− x2)− 2(1− x2)2 + d(2x2 − 3)]. (11)

In addition,

Y1 = x

[
arctan

(
1 + x
√

1− x2

)
− arctan

(
1− x
√

1− x2

)]
, (12)

Y2 =
x

√
4− x2

[
arctan

(
2 + x
√

4− x2

)
− arctan

(
2− x
√

4− x2

)]
, (13)

Y3 = π − arctan

(
1 + x
√

1− x2

)
− arctan

(
1− x
√

1− x2

)
. (14)
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D1 = D2 = 2m(N −m), D3 = m(N −m)(3N + 2d− 4), (15)

D4 = 3m(N − 4)(N −m) (16)

for even values of N and m,

D1 = 2[m(N −m) + d+ 1], D2 = 2[m(N −m)− 1], (17)

D3 = m(N −m)(3N + 2d− 4) + (N − 4)(d+ 1), (18)

D4 = 3(N − 4)[m(N −m)− 1] (19)

for even N and odd m, and

D1 = D2 = 2m(N −m), D3 = (N −m)[m(3N + 2d− 4)− d− 1], (20)

D4 = 3(N −m)[m(N − 4) + 1], (21)
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