Anomalous Scaling in the Compressible Kazantsev-Kraichnan Model with Spatial Parity Violation

Eva Jurčišinová ${ }^{1,2}$, Marián Jurčišin ${ }^{1,2,3}$, Martin Menkyna ${ }^{1,2,3}$
1^{1} Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia
${ }^{2}$ Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna, Russia
${ }^{3}$ Faculty of Sciences, P.J. Šafárik University, Košice, Slovaka

Mathematical Modeling and Computational Physics 2017

Kazantsev-Kraichnan Model

\triangleright model of kinematic magnetohydrodynamic (MHD) turbulence
\triangleright solenoidal magnetic field $\mathbf{b}(t, \mathbf{x})$ is considered as a passive vector admixture described by the stochastic equation

$$
\begin{equation*}
\partial_{t} \mathbf{b}=\nu_{0} \Delta \mathbf{b}-(\mathbf{v} \cdot \partial) \mathbf{b}+(\mathbf{b} \cdot \partial) \mathbf{v}+\mathbf{f} \tag{1}
\end{equation*}
$$

where $\partial_{t} \equiv \frac{\partial}{\partial t}, \Delta \equiv \partial^{2}$ is the Laplace operator, $\nu_{0}=\frac{c^{2}}{4 \pi \sigma_{0}}$ is the magnetic diffusivity with magnetic conductivity σ_{0}
$\triangleright \mathbf{f}(t, \mathbf{x})$ represents a transverse Gaussian random noise with zero mean and the correlation function

$$
D_{i j}^{b}\left(t, \mathbf{x} ; t^{\prime}, \mathbf{x}^{\prime}\right) \equiv\left\langle f_{i}(t, \mathbf{x}) f_{j}\left(t^{\prime}, \mathbf{x}^{\prime}\right)\right\rangle=\delta\left(t-t^{\prime}\right) C_{i j}\left(\left|\mathbf{x}-\mathbf{x}^{\prime}\right| / L\right)
$$

\triangleright exact form of function $C_{i j}\left(\left|\mathbf{x}-\mathbf{x}^{\prime}\right| / L\right)$ is unimportant

Kazantsev-Kraichnan Model

$$
\partial_{t} \mathbf{b}=\nu_{0} \Delta \mathbf{b}-(\mathbf{v} \cdot \partial) \mathbf{b}+(\mathbf{b} \cdot \partial) \mathbf{v}+\mathbf{f}
$$

$\triangleright \mathbf{v}(t, \mathbf{x})$ is random compressible $(\partial \cdot \mathbf{v} \neq 0)$ velocity field, which obeys Gaussian statistics $(\langle\mathbf{v}(t, \mathbf{x})\rangle=0)$ with the pair correlation function

$$
D_{i j}\left(x ; x^{\prime}\right) \equiv\left\langle v_{i}(x) v_{j}\left(x^{\prime}\right)\right\rangle=\delta\left(t-t^{\prime}\right) D_{0} \int \frac{\mathrm{~d}^{d} \mathbf{k}}{(2 \pi)^{d}} \frac{R_{i j}(\mathbf{k})}{k^{d+\varepsilon}} e^{\mathrm{i} \mathbf{k} \cdot\left(\mathbf{x}-\mathbf{x}^{\prime}\right)}
$$

where d denotes the spatial dimension of the system and $D_{0} \equiv g_{0} \nu_{0}$ is positive amplitute
$\triangleright R_{i j}(\mathbf{k})$ represents a projector defined as

$$
R_{i j}(\mathbf{k})=\delta_{i j}-\frac{k_{i} k_{j}}{k^{2}}+\alpha \frac{k_{i} k_{j}}{k^{2}}+\mathrm{i} \varepsilon_{i j s} \rho \frac{k_{s}}{|\mathbf{k}|},
$$

where $0<\alpha<\infty$ is the compressibility parameter and $0<|\rho|<1$ determines the amount of helicity in the system

Field Theoretic Model

Theorem

DeDominicis-Janssen theorem states that stochastic problem (1) is equivalent to the field theoretic model of a set of three fields \mathbf{v}, \mathbf{b}, and \mathbf{b}^{\prime} with the action functional

$$
\begin{align*}
S\left[\mathbf{v}, \mathbf{b}, \mathbf{b}^{\prime}\right]= & -\frac{1}{2} \int \mathrm{~d} x_{1} \mathrm{~d} x_{2} v_{i}\left(x_{1}\right) D_{i j}^{-1}\left(x_{1} ; x_{2}\right) v_{j}\left(x_{2}\right) \\
& +\frac{1}{2} \int \mathrm{~d} x_{1} \mathrm{~d} x_{2} b_{i}^{\prime} D_{i j}^{b}\left(x_{1} ; x_{2}\right) b_{j}^{\prime}\left(x_{2}\right) \tag{2}\\
& +\int \mathrm{d} x \mathbf{b}^{\prime} \cdot\left[-\partial_{t} \mathbf{b}+\nu_{0} \Delta \mathbf{b}-(\mathbf{v} \cdot \partial) \mathbf{b}+(\mathbf{b} \cdot \partial) \mathbf{v}\right]
\end{align*}
$$

Field Theoretic Model

Model (2) corresponds to a standrad Feynman diagrammatic perturbation theory with propagators

$$
\begin{aligned}
\Delta_{i j}^{b b^{\prime}}(k) & =\left\langle b_{i} b_{j}^{\prime}\right\rangle_{0} & =\frac{P_{i j}(\mathbf{k})}{-\mathrm{i} \omega_{k}+\nu_{0} k^{2}}=\left(\Delta_{i j}^{b^{\prime} b}\right)^{*}, & \left\langle b_{i} b_{j}^{\prime}\right\rangle_{0}= \\
\Delta_{i j}^{v v}(k) & =\left\langle v_{i} v_{j}\right\rangle_{0} & =\frac{\nu_{0} g_{0} R_{i j}(\mathbf{k})}{k^{d+\varepsilon}}, & \left\langle v_{i} v_{j}\right\rangle_{0}=---------
\end{aligned}
$$

where $P_{i j}(\mathbf{k})=\delta_{i j}-\frac{k_{i} k_{j}}{k^{2}}$ is the ordinary transverse projector, and the interaction vertex in a frequency-momentum representation $V_{i j l}=\mathrm{i}\left(k_{l} \delta_{i j}-k_{j} \delta_{i, l}\right)$

RG Analysis

Q	\mathbf{v}	\mathbf{b}	\mathbf{b}^{\prime}	m, Λ, μ	ν_{0}, ν	g_{0}	g, α, ρ
d_{Q}^{k}	-1	0	d	1	-2	ε	0
d_{Q}^{ω}	1	0	0	0	1	0	0
d_{Q}	1	0	d	1	0	ε	0

Table 1: Canonical dimensions of the fields and parameters of the model under consideration.
\triangleright logarithmic for $\varepsilon=0$
\triangleright the only superficially divergent function is the 1-irreducible Green's function $\left\langle b_{i}^{\prime} b_{j}\right\rangle_{1-\text { ir }}$
\triangleright parameters renormalization

$$
\nu_{0}=\nu Z_{\nu}, g_{0}=g \mu^{\varepsilon} Z_{g}, Z_{g}=Z_{\nu}^{-1}
$$

\triangleright the only independent renormalization constant is given by a diagram shown on the right

$$
\begin{align*}
Z_{\nu} & =1-\frac{S_{d}}{(2 \pi)^{d}} \frac{d-1+\alpha}{2 d} \frac{g}{\varepsilon} \tag{3}\\
S_{d} & =\frac{2 \pi^{d / 2}}{\Gamma(d / 2)}
\end{align*}
$$

Figure 1: The only self-energy Feynman diagram that contributes to the UV renormalization of the model.
\triangleright Equation (3) is exact (no corrections of order $g^{n}, n \geq 2$)

RG Analysis

\triangleright RG functions

$$
\begin{aligned}
\beta_{g} & \equiv \mu \partial_{\mu} g=g\left(-\varepsilon+\gamma_{\nu}\right) \\
\gamma_{\nu} & \equiv \mu \partial_{\mu} \ln Z_{\nu} \\
\gamma_{\nu} & =\frac{S_{d}}{(2 \pi)^{d}} \frac{d-1+\alpha}{2 d} g
\end{aligned}
$$

\triangleright inertial range scaling behaviour is driven by the exact one-loop stable fixed point of RG funcions, namely

$$
g_{*}=\frac{(2 \pi)^{d}}{S_{d}} \frac{2 d}{d-1+\alpha} \varepsilon
$$

which is obtained by the requirement of vanishing of β_{g}. Note that the exact value is $\gamma_{\nu}^{*}=\varepsilon$, which is IR stable for $\varepsilon>0$ and corresponds to the so-called kinetic regime in the genuine MHD turbulence

RG Analysis

\triangleright we are interested in the scaling behaviour of single-time two-point correlation function of the magnetic field

$$
\left.B_{N-m, m}(r) \equiv\left\langle b_{r}^{N-m}(t, \mathbf{x}) b_{r}^{m}\left(t, \mathbf{x}^{\prime}\right)\right)\right\rangle, \quad r=\left|\mathbf{x}-\mathbf{x}^{\prime}\right|
$$

where b_{r} denotes the component of the magnetic field along $\mathbf{r}=\mathbf{x}-\mathbf{x}^{\prime}$
\triangleright general correlation function with IR asymptotic form

$$
G(r) \simeq \nu_{0}^{d_{G}^{\omega}} l^{-d_{G}}(r / l)^{-\Delta_{G}} R(r / L),
$$

where d_{G} and d_{G}^{ω} are the corresponding canonical dimensions of $G, R(r / L)$ is a scaling function, $l=1 / \Lambda$ represents the viscous scale, $L=1 / k_{\text {min }}$ is the integral scale, and Δ_{G} denotes the critical dimension defined as

$$
\Delta_{G}=d_{G}^{k}+\Delta_{\omega} d_{G}^{\omega}+\gamma_{G}^{*}
$$

γ_{G}^{*} represents fixed point value of $\gamma_{G} \equiv \mu \partial_{\mu} \ln Z_{G}, Z_{G}$ is the renormalization constant of $G=Z_{G} G^{R}$, and $\Delta_{\omega}=2-\gamma_{v}^{*}=2-\varepsilon$

$$
\Delta_{\mathbf{v}}=1-\varepsilon, \quad \Delta_{\mathbf{b}}=0, \quad \Delta_{\mathbf{b}^{\prime}}=d
$$

RG Analysis

\triangleright using the relations for generalized correlation function one obtains

$$
B_{N-m, m}(r) \simeq \nu_{0}^{-N / 2}(r / l)^{-\gamma_{N-m}^{*}-\gamma_{m}^{*}} R_{N, m}(r / L),
$$

where γ_{N-m}^{*} and γ_{m}^{*} are the anomalous dimensions of the composites operators b_{r}^{N-m} and b_{r}^{m}, respectively, taken at the fixed point g_{*}
\triangleright deep inside the inertial region $(r / L \rightarrow 0)$ scaling function $R_{N, m}(r / L)$ takes the form

$$
R_{N, m}(r / L)=\sum_{i} C_{F_{i}}(r / L)(r / L)^{\Delta_{F_{i}}}
$$

where summation over all possible renormalized composite operators F_{i} with corresponding critical dimensions $\Delta_{F_{i}}$ is performed
\triangleright leading contribution is given by operators constructed solely from $\mathbf{b}(x)$ in the form

$$
F_{N, p}=[\mathbf{n} \cdot \mathbf{b}]^{p}(\mathbf{b} \cdot \mathbf{b})^{l}, \quad N=2 l+p
$$

Figure 2: The Feynman diagrams for the function $\Gamma_{N, p}(x ; \mathbf{b})$ in the two-loop approximation following the rules mentioned previously.
\triangleright final form of the asymptotic inertial range behaviour of the correlation functions is then

$$
B_{N-m, m}(r) \propto r^{\zeta_{N, m}}=r^{\zeta_{N, m}^{(1)} \varepsilon+\zeta_{N, m}^{(2)} \varepsilon^{2}}
$$

\triangleright for both N and m either even or odd

$$
\zeta_{N, m}^{(1)}=-\frac{m(N-m)(d-1)[1+\alpha(d+1)]}{(d+2)(d-1+\alpha)}
$$

\triangleright for even values of N and odd values of m

$$
\zeta_{N, m}^{(1)}=-\frac{(d-1)\{m(N-m)[1+\alpha(d+1)]+d+1+\alpha\}}{(d+2)(d-1+\alpha)}
$$

\triangleright the two-loop corrections $\zeta_{N, m}^{(2)}$ have the following form

$$
\begin{aligned}
\zeta_{N, m}^{(2)}= & -\frac{S_{d-1}}{S_{d}} \frac{d}{(d+2)(d-1+\alpha)^{2}} \int_{0}^{1} \mathrm{~d} x\left(1-x^{2}\right)^{\frac{d-3}{2}}\left\{\sqrt{1-x^{2}}\right. \\
& \times\left[(d-2) D_{1}\left(W_{1} Y_{1}+2 \rho^{2} \delta_{3 d} Y_{3}\right)+D_{2} W_{2} Y_{1}\right] \\
& \left.-\frac{2}{d+4}\left(D_{3} W_{3}+D_{4} W_{4}\right) Y_{2}\right\}
\end{aligned}
$$

Anomalous scaling of $B_{N-m, m}(r)$

Figure 3: Dependencies of the total two-loop scaling exponents $\zeta_{2,1}, \zeta_{3,1}, \zeta_{4,2}$, and $\zeta_{5,3}$ on α and ρ for $d=3$ and $\varepsilon=1$.
\triangleright the scaling properties of the correlation function $B_{N-m, m}$ become more anomalous due to the impact of helicity
\triangleright in agreement with recent experimental measurements ${ }^{a}$
\triangleright behaviour of $\zeta_{2,1}$ as a function of α for fixed $|\rho|$
\triangleright unique behaviour of $\zeta_{3,1}$ as a function of $\alpha \ll 1$ for $|\rho| \approx 1$
\triangleright decreasing tendencies of $\zeta_{4,2}$ and $\zeta_{5,3}$ for small enough α and $|\rho|$
\triangleright for large enough value of α the scaling exponents become increasing functions of α regardless of the value of $|\rho|$

[^0]
Anomalous scaling of $B_{N-m, m}(r)$

$\triangleright \zeta_{N, m}, N=6,7$ are universally increasing functions of α regardless of the value of the helicity parameter ρ
\triangleright although not shown here, similar behaviour is valid for all scaling exponents $N \geq 8$

Figure 4: Dependencies of the total two-loop scaling exponents $\zeta_{6,1}, \zeta_{6,2}, \zeta_{7,1}$, and $\zeta_{7,3}$ on α and ρ for $d=3$ and $\varepsilon=1$.

Conclusion

\triangleright scaling properties of $B_{N, m}(r)$ within the framework of helical and compressible Kazantsev-Kraichnan model were investigated using field theoretic RG technique and the OPE up to the two-loop approximation
\triangleright IR asymptotic behaviour in the inertial interval is dependent on α but not on ρ
\triangleright presence of helicity can significantly decrease the scaling exponents of the magnetic correlation functions
\triangleright influence of compressibility is also investigated but exhibits more complicated behaviour

- for small order correlation functions the corresponding scaling exponents decrease as functions of the compressibility parameter at least for $\alpha \ll 1$ and $|\rho| \ll 1$
- however, for higher order correlation functions the scaling exponents become increasing functions of α regardless of the value of the helicity parameter

Thank you for your attention!

Simultaneous influence of helicity and compressibility on anomalous scaling of the magnetic field in the Kazantsev-Kraichnan model
E. Jurčišinová, M. Jurčišin, M. Menkyna

Phys. Rev. E 95, (2017) 053210

$$
\begin{align*}
& C_{1}=(d+1)(N-p)(d+N+p-2)-2 N(N-1 \tag{4}\\
& C_{2}=-(N-p)(d+N+p-2)+d N(N-1), \tag{5}\\
& C_{3}=(N-2) C_{1}, \tag{6}\\
& C_{4}=(N-2)[-3(N-p)(d+N+p-2)+(d+2) N(N-1)], \tag{7}
\end{align*}
$$

and

$$
\begin{align*}
W_{1}= & 2+\alpha-\alpha^{2} \tag{8}\\
W_{2}= & 2\left(1-x^{2}\right)+\alpha\left[d(d-3)+4 x^{2}\right]-\alpha^{2}\left[d(d-1)-2\left(1-x^{2}\right)\right], \tag{9}\\
W_{3}= & \left(1-x^{2}\right)\left(9-5 d+4 x^{2}\right)+\alpha\left[9\left(1-2 x^{2}\right)+x^{2}\left(d^{2}+8 x^{2}\right)+5 d\left(1-x^{2}\right)\right] \\
& -\alpha^{2}\left(10-3 d-11 x^{2}+4 x^{4}\right), \tag{10}\\
W_{4}= & -2\left(1-x^{2}\right)^{2}+4 \alpha\left(1-x^{2}\right)\left(d-x^{2}\right) \\
& +\alpha^{2}\left[d^{2}\left(d+1-x^{2}\right)-2\left(1-x^{2}\right)^{2}+d\left(2 x^{2}-3\right)\right] . \tag{11}
\end{align*}
$$

In addition,

$$
\begin{align*}
& Y_{1}=x\left[\arctan \left(\frac{1+x}{\sqrt{1-x^{2}}}\right)-\arctan \left(\frac{1-x}{\sqrt{1-x^{2}}}\right)\right] \tag{12}\\
& Y_{2}=\frac{x}{\sqrt{4-x^{2}}}\left[\arctan \left(\frac{2+x}{\sqrt{4-x^{2}}}\right)-\arctan \left(\frac{2-x}{\sqrt{4-x^{2}}}\right)\right], \tag{13}\\
& Y_{3}=\pi-\arctan \left(\frac{1+x}{\sqrt{1-x^{2}}}\right)-\arctan \left(\frac{1-x}{\sqrt{1-x^{2}}}\right) . \tag{14}
\end{align*}
$$

$$
\begin{align*}
& D_{1}=D_{2}=2 m(N-m), \quad D_{3}=m(N-m)(3 N+2 d-4) \tag{15}\\
& D_{4}=3 m(N-4)(N-m) \tag{16}
\end{align*}
$$

for even values of N and m,

$$
\begin{align*}
& D_{1}=2[m(N-m)+d+1], \quad D_{2}=2[m(N-m)-1] \tag{17}\\
& D_{3}=m(N-m)(3 N+2 d-4)+(N-4)(d+1) \tag{18}\\
& D_{4}=3(N-4)[m(N-m)-1] \tag{19}
\end{align*}
$$

for even N and odd m, and

$$
\begin{align*}
& D_{1}=D_{2}=2 m(N-m), \quad D_{3}=(N-m)[m(3 N+2 d-4)-d-1] \tag{20}\\
& D_{4}=3(N-m)[m(N-4)+1] \tag{21}
\end{align*}
$$

[^0]: ${ }^{a}$ D. A. Schaffner et al, Phys. Rev. Lett. 112, (2014) 165001

