
COMPARING THE
EFFECTIVENESS OF PROOF
WITH OTHER METHOD
PARALLELIZM FOR THE
EXPERIMENT DATA PROCESSING

SOLOVJEVA T., SOLOVIEV A.

The international Conference “Mathematical
Modeling and Computational Phisycs”

3-7 July, 2017
Dubna, Russia

TNE METHODS OF PARALLELISM IN ROOT
 PROOF – Parallel ROOT Facility - is an extension of

ROOT enabling interactive analysis of large sets of
ROOT files in parallel on clusters of computers or
many-core machines. PROOF can parallelize tasks
that can be formulated as a set of independent sub-
tasks (embarrassingly or ideally parallel).

 Class Tthread - this class implements threads. A
thread is an execution environment much lighter
than a process. A single process can have multiple
threads.

 Using Library OpenMP

MULTILEVEL ARCHITECTURE PROOF

PROCESS PROOF

SELECTOR STRUCTURE
 Begin() function is called at the start of the query. When

running with PROOF Begin() is only called on the client.
 SlaveBegin() function is called after the Begin() function.

When running with PROOF SlaveBegin() is called on each
slave server.

 Process() function is called for each entry in the tree (or
possibly keyed object in the case of PROOF) to be processed.
The entry argument specifies which entry in the currently
loaded tree is to be processed. It can be passed to GetEntry()
to read either all or the required parts of the data, keyed
objects is available via the fObject pointer. This function
should contain the "body" of the analysis. It can contain simple
or elaborate selection criteria, run algorithms on the data of
the event and typically fill histograms.

 SlaveTerminate() function is called after all entries or objects
have been processed. With PROOF SlaveTerminate() is called
on each slave server.

 Terminate() function is the last function to be called during a
query. It always runs on the client, it can be used to present
the results graphically or save the results to file.

CLASS TTHREAD
A thread is a sequence of instructions being executed in a
program. A thread has a program counter and a private stack
to keep track of local variables and return addresses. A
multithreaded process is associated with one or more threads.
Threads execute independently. All threads in a given process
share the private address space of that process.
Parallelism arises when at least two threads are executing
simultaneously. This requires a system with multiple
processors.
Left to their own devices, threads execute independently.
Synchronization is the work that must be done when there
are, in fact, interdependencies that require some form of
communication among threads. Synchronization tools include
mutexes (mutual exclusion lock), semaphores (mechanism of
synchronization that starts out initialized to some positive
value), condition variables, and other variations on locking.

FIRST EXAMPLE

Events are generated
according to the Gauss
distribution

Dependence of the
execution time of the
macro on the number of
generated events

SECOND EXAMPLE

Generation Tree with 12
branch

Dependence of the
execution time of the
macro on the file size

CONCLUSION

 As you can see from the presented graphs with small
calculations or a small file size, it is advantageous to
use the library OpenMP. But if you increase the
amount of work, it is better to use PPOOF.

 Using a class Tthreadh gives a very small win in
performance.

 Also note that PROOF has reserves for increasing
productivity. In the processing of data, fittings are
often used. It is executed in a program Terminate(),
that is located in an unparallel section. Therefore, at
this point, you can apply either the MINUIT2
program or the library RooFit. This task will be the
goal of our further work.

Thank you for
attention

	COMPARING THE EFFECTIVENESS OF PROOF WITH OTHER METHOD PARALLELIZM FOR THE EXPERIMENT DATA PROCESSING� Solovjeva T., Soloviev A.
	Tne Methods of Parallelism in ROOT
	Multilevel architecture PROOF
	Process PROOF
	Selector Structure
	�																		Class TThread		 ���Class TThread
	First example
	Second Example
	Conclusion
	Слайд номер 10

