Optimal Approximation of Biquartic Polynomials by Bicubic Splines

Viliam Kačala, Csaba Török
P. J. Šafárik University, Faculty of Science Institute of Computer Science
Košice, Slovakia

4.July.2017, MMCP 2017

Content

I. Motivation

II. 2D - Quartic and Cubic Polynomials

- Basic Idea
- Generalization
- Reduced System - Computation Speedup
- $\mathrm{k}^{\text {th }}$ Reduced Systems
- Explicit Interpolating B-Splines
III. 3D - Biquartic and Bicubic P.
- Generalization
- Reduced System - Speedup computation
- Optimality

Motivation

Areas of using smooth curves, surfaces

- Data processing, CAD, Game industry
- Virtual Caves, Robotics, Drones

Stable, Fast, Simple Techniques

Polynomials, Splines

Aspects

- Analytical
- Geometrical
- Abstraction vs. Generalization
- Computational
- Physical

New Representation of Models, Algorithms, Implementation

Basic Idea - approximation of Quartic Polynomials

Arbitrary inner point u_{1}

- Uniquely defined quartic polynomial

Coincidence in 6 values (*) \Downarrow

- Interpolating Hermite Spline is of class C^{1}

Do the coefficients of the QP
influence the optimal location of u_{1} ?

Basic Idea - Quartic Polynomial

$$
\begin{aligned}
& \text { i) }\|f\|_{2}=\left(\int_{a}^{b}|f(x)|^{2} \mathrm{~d} x\right)^{1 / 2}, \\
& \text { ii) }\|f\|_{\infty}=\max _{a \leq x \leq b}|f(x)| \\
& \text { iii) }\|f\|_{2,2}=\left(\int_{a}^{b}\left|f^{\prime \prime}(x)\right|^{2} \mathrm{~d} x\right)^{1 / 2} .
\end{aligned}
$$

Basic Idea - Quartic Polynomial

> i) $\|f\|_{2}=\left(\int_{a}^{b}|f(x)|^{2} \mathrm{~d} x\right)^{1 / 2}$,
> ii) $\|f\|_{\infty}=\max _{a \leq x \leq b}|f(x)|$,
> iii) $\|f\|_{2,2}=\left(\int_{a}^{b}\left|f^{\prime \prime}(x)\right|^{2} \mathrm{~d} x\right)^{1 / 2}$.

(*)

Theorem

The two-component bicubic C^{1}-class Hermite spline $S=\{g(x), h(x)\}$, defined by the eight equalities of (*), approximating $f(x)$ over intervals $\left[u_{0}, u_{1}\right]$ and $\left[u_{1}, u_{2}\right.$] is of class C^{2}, i. e.

$$
\begin{equation*}
g^{\prime \prime}\left(u_{1}\right)=h^{\prime \prime}\left(u_{1}\right) \tag{54}
\end{equation*}
$$

if $u_{1}=\frac{u_{0}+u_{2}}{2}$.

Generalization on a Uniform Grid

Principle: the $1^{\text {st }}$ derivative of the CP / QP are adjusted

Reduced Tridiagonal Systems, Sequential Algorithm

Theorem 1. The tridiagonal system
$\left[\begin{array}{ccc}-14 & 1 & 0 \\ 1 & -14 & 1 \\ 0 & 1 & -14\end{array}\right.$

where

$$
\begin{array}{ll}
\mu=-15, \tau=0, \eta=4, \nu=N, & \\
\text { if } N \text { is even, } \\
\mu=-14, \tau=2, \eta=-1, \nu=N-1, & \\
\text { if } N \text { is odd },
\end{array}
$$

and the formula

$$
d_{i}=\frac{1}{4}\left(\frac{3}{h}\left(y_{i+1}-y_{i-1}\right)-d_{i-1}-d_{i+1}\right), i=1,3, \ldots, \nu+\tau-1
$$

$$
\left.\eta d_{N+1}\right]
$$

grant that the second derivatives of spline components at the inner grid points are equal.

Full=Reduced+Rest
Speedup

- Assessed theoretical ≈ 1.54
- Measured ≈ 1.55
- 2 times less equations
- Less divisions
- Instruction Level Parallelism

$$
\mathbf{T}_{n}(1,4,1) \cdot \mathbf{d}=\varrho,
$$

$\frac{3}{h}\left(y_{2}-y_{0}\right)-d_{0}$
$\frac{3}{h}\left(y_{3}-y_{1}\right)$
$\frac{3}{h}\left(y_{4}-y_{2}\right)$
$\frac{3}{h}\left(y_{n}-y_{n-2}\right)$

Parallel Algorithm

$k^{\text {th }}$ Reduced Tridiagonal Systems

1) Geometrical - Quartic P.
2) Analytical

- Spline

3) Abstract

- Matrices \& not only for splines
$M^{1}: \quad d_{0}-14 d_{2}+d_{4}=\frac{3}{h}\left(y_{4}-y_{0}\right)-\frac{12}{h}\left(y_{3}-y_{1}\right)$

$$
\left[\begin{array}{ccc}
2 a c-b^{2} & c^{2} & 0 \\
a^{2} & 2 a c-b^{2} & c^{2} \\
0 & a^{2} & 2 a c-b^{2}
\end{array}\right]\left[\begin{array}{l}
x_{2} \\
x_{4} \\
x_{6}
\end{array}\right]=\left[\begin{array}{l}
r_{1} a-r_{2} b+r_{3} c-a^{2} x_{0} \\
r_{3} a-r_{4} b+r_{5} c \\
r_{5} a-r_{6} b+r_{7} c-c^{2} x_{8}
\end{array}\right]
$$

$$
M^{2}:-d_{0}+194 d_{4}-d_{8}=3 \frac{y 0-y 8}{h}-12 \frac{y 1-y^{7}}{h}+42 \frac{y 2-y 6}{h}-156 \frac{y 3-y 5}{h}
$$

Explicit Interpolating Splines

Explicit Interpolating B-Splines

$$
\begin{aligned}
\left(d_{1}, \ldots, d_{n}\right)^{\top}=\mathbf{d} & =\mathbf{T}^{-1} \cdot \varrho \\
& =\mathbf{A} \cdot \boldsymbol{\gamma}, \\
{\left[s_{1}(x), \ldots, s_{n+1}(x)\right]^{\top}=\mathbf{S} } & =\mathbf{B} \cdot \gamma \text { explicit }
\end{aligned}
$$

$$
\begin{aligned}
{\left[s_{1}(x), \ldots, s_{n+1}(x)\right]^{\top} } & =\mathbf{S}=\mathbf{B} \cdot \mathbf{C} \quad \text { explicit } \\
& =\mathbf{S}=\mathbf{B} \cdot \mathbf{C} \cdot \boldsymbol{\gamma} \text { explicit }
\end{aligned}
$$

Popularity - Interpretability - Reparameterization
kde $\gamma=\left(y_{0}, y_{1}, \ldots, y_{n+1}, d_{0}, d_{n+1}\right)^{\top}$.

[^0]
Biquartic \& Bicubic Polynomials

Problem statement (*)

9
$12+11=36$

Theorem

The biquartic polynomial $F(x, y)$ based bicubic Hermite spline components S_{00}, S_{10}, S_{01}, S_{11} that approximate $F(x, y)$ under conditions (*) make up a clamped bicubic spline with C^{2} continuity if

$$
u_{1}=\frac{u_{0}+u_{2}}{2} \quad \text { and } \quad v_{1}=\frac{v_{0}+v_{2}}{2}
$$

1. Uniform $\quad \Rightarrow \quad 1 . \mathrm{HS} \in \mathrm{C}^{2}$
2. From Quartic

No Systems of Eq. Nothing about optimality

Interpol. Sp. Surfaces

- De Boor's Full Algorithm
- Biquartic P. based Reduced Algorithm
Full=Reduced+Rest
- Half size tridiagonal systems
- Explicit formulas

Uniform grid

Speedup $\approx 1.2<1.55$? Correctness vs. Time
For Cross Derivatives Intricate Explicit Formulas

Two solutions - ok

- ? return to optimality
- Miňo, Török, 2015
- V.Kačala, L.Miňo, 2017

Optimal Approximation of Biquartic Splines

Theorem

The biquartic polynomial $F(x, y)$ based bicubic Hermite spline components S_{00}, S_{10}, S_{01}, S_{11} that approximate $F(x, y)$ under conditions (*) make up a clamped bicubic spline with C^{2} continuity if

$$
u_{1}=\frac{u_{0}+u_{2}}{2} \quad \text { and } \quad v_{1}=\frac{v_{0}+v_{2}}{2} .
$$

3) If

$$
a_{42}=a_{43}=0=a_{24}=a_{34}
$$

then the Hermite spline $\mathrm{S}=\left\{\mathrm{S}_{00}, \mathrm{~S}_{10}, \mathrm{~S}_{01}, \mathrm{~S}_{11}\right\}$ optimally approximates $F(\mathrm{x}, \mathrm{y})$ in Holladay's semi-norm.

$$
\|f\|^{2}=\left.\int_{x_{a}}^{x_{y}} \int_{y_{a}}\left|\frac{y_{b}}{}\right| \frac{\partial^{4} f(x, y)}{\partial x^{2} \partial y^{2}}\right|^{2} d y d x
$$

Can these 4 constraints

- be embeded into a new computational algorithm that would grant optimality
- speed up the computation?

Summary

We offer

- Quartic P. based Fast Reduced Tridiagonal Systems
 - Speedup 2D: 1.55(seq), 3.5(par); 3D: 1.2(seq)
- Explicit Splines

Future Work

- Speedup of Bicubic Spline Surfaces
- Knot Detection \& Sequential Smoothing
- Nonuniform Reduced Systems \& Explicit Splines
- $\mathrm{k}^{\text {th }}$ Reduced Systems

Many Thanks

- Higher Degree Polynomials
- Knot Detection \& Sequential Smoothing

116 Years of Runge Phenomenon - Uniform Grid

- Chebyshev
$[x 0, x 0+h, x 0+2 h, x 0+3 h, x 0+4 h]$
- Oscillatoric Theorem
- Chebyshev's Arguments
- Chebyshevov polynóm

$$
\frac{\frac{1}{24} \frac{y 0}{h^{4}(x-x 0)}-\frac{1}{6} \frac{y 1}{h^{4}(x-x 0-h)}+\frac{1}{4} \frac{y 0, y l, y 2, y 3, y 4]}{h^{4}(x-x 0-2 h)}-\frac{1}{6} \frac{y 3}{h^{4}(x-x 0-3 h)}+\frac{1}{24} \frac{y 4}{h^{4}(x-x 0-4 h)}}{\frac{1}{24 h^{4}(x-x 0)}-\frac{1}{6 h^{4}(x-x 0-h)}+\frac{1}{4 h^{4}(x-x 0-2 h)}-\frac{1}{6 h^{4}(x-x 0-3 h)}+\frac{1}{24 h^{4}(x-x 0-4 h)}}
$$

- Chebyshevov polynóm
- Barycentric Reprezentation of Interpolating Polynomials
- Trefethen - Chebfun
- Holladay's Theorem and Optimal Splines

Splines minimize curvature \& energy
Splines are curvature minimizing curves
I intend to speak about the role of Q and $B Q$ polynomials in speedup of spline computation. But of course not only.
First of all, quartic means that the polynomial is of degree four, biquartic means that the product $x y$ is of degree four.

To understand why are we concerned with BQP when working with BCS, we have to understand the interrelation between quartic and cubic polynomials, so
after a short motivation I present the basic idea and its consequences. The road to our main topic leads through such topics as spline curves and surfaces, reduced tridiagonal systems or explicit splines that were triggered by the basic concept.

To the areas of using smooth curves and surfaces beyond data processing and CAD systems belong ...
They need stable, but f.o.all fast \& simple techniques to be able to work online \& implement them in non standard and complex environment.

Consider an interval with an arbitrary inner point u1, see the scheme.

The bicubic spline S does not approximate optimally even the closest general biquartic polynomial.
https://ludwig.guru/
LU decomposition
Environment
we are dealing with
we are concerned/troubled with
The road to ... leads through
Let's move on
Let's move to the next topic
We need not be
To our surprise/astonishment
It was an unexpected
requirements/conditions are met/fulfilled
has 2 consequences
look for/search/seek after
investigate, explore, study
investigation is going on
The investigation/story continues
to clarify - tisztazni, objasnit
to explain
there are two explanations

We did not succeed
We failed
it appeared
We left/abandoned
final result

[^0]: Hudák, Török, 2017

