Generation and analysis of the second order difference scheme for the Korteveg-de Vries equation

Yu.A.Blinkov

Saratov State University, Saratov, Russia
V.P.Gerdt

Joint Institute for Nuclear Research, Dubna, Russia

K.B.MARINOV
University "Dubna", Dubna, Russia

MMCP 2017, July 7, Dubna, Russia
(1) Problem statement
(2) Discretization of KdV
(3) Numerical experiments

4 Conclusion

Problem statement

Let ∂_{x} be the derivation operator and $\mathcal{R}:=\mathbb{Q}(\alpha, \beta, \ldots)\{u\}$ be the ordinary differential polynomial ring over the field $\mathbb{Q}(\alpha, \beta, \ldots)$ of real constants (parameters).

Our goal is to apply the general algorithmic approach to generation of difference schemes (Gerdt, Blinkov,Mozzhilkin'2006) specified (Blinkov, Gerdt, Marinov'2017) to evolution equations of the form

$$
u_{t}=\left(P+a u_{m-1}\right)_{x}, u_{k}:=\partial_{x}^{k} u, P \in \mathcal{R}, \operatorname{ord}_{\partial_{x}}(P)<m-1, a \in \mathbb{R}
$$

to the Korteveg-de Vries equation (KdV)

$$
u_{t}+\left(P+\beta u_{x x}\right)_{x}=0, \quad P=\frac{\alpha}{2} u^{2}, \quad \alpha, \beta \in \mathbb{R}
$$

and investigate quality of the obtained scheme.

Discretization of KdV I

(1) Choose the regular grid with $t_{n+1}-t_{n}=\tau, x_{j+1}-x_{j}=h$
(c) Convert KdV into the integral conservation law form

$$
u_{t}+\left(P+\beta u_{x x}\right)_{x}=0 \Longleftrightarrow \oint_{\Gamma}-\left(P+\beta u_{x x}\right) d t+u d x=0
$$

(0) Select the rectangular integration contour

as a "control volume".

Discretization of KdV II

(9) Add the (exact) integral relations

$$
\begin{aligned}
& \int_{x_{j}}^{x_{j+2}} u_{x x} d x=u_{x}\left(t, x_{j+2}\right)-u_{x}\left(t, x_{j}\right), \\
& \int_{x_{j}}^{x_{j+1}} u_{x} d x=u\left(t, x_{j+1}\right)-u\left(t, x_{j}\right) .
\end{aligned}
$$

(5) Evaluate the contour integral numerically by the trapezoidal rule for integration over t and by the midpoint rule for integration over x.
(0) Evaluate the integral relations numerically by the trapezoidal rule for the integration of u_{x} and by the midpoint rule for the integration of $u_{x x}$. This leads to the difference scheme which is outputted by the Maple code (Gerdt, Blinkov, Marinov'2017)

Maple code

```
restart:
with (LDA) :
L:=[(- (P(n,j) +P(n+1,j) -P(n,j+2) -P(n+1,j+2)) - (beta*uxx (n,j) +beta*uxx (n+1,j)
    -beta*uxx (n,j+2) -beta*uxx (n+1,j+2))) *tau/2+(u(n+1,j+1)-u(n,j+1)) *2*h,
    (ux (n,j+1) +ux (n,j)) *h/2-(u(n,j+1) -u(n,j)),
    2*uxx (n,j+1) *h- (ux (n,j+2) -ux (n,j))] :
> JanetBasis(L, [n,j],[uxx,ux,u,F],2):
> collect(% [1,1]/(4*tau*h**3),[tau,h]);
\frac{\frac{1}{4}P(n+1,j+3)+\frac{1}{4}P(n,j+3)-\frac{1}{4}P(n+1,j+1)-\frac{1}{4}P(n,j+1)}{h}+\frac{1}{\mp@subsup{h}{}{3}}(\frac{1}{4}\betau(n+1,j
    +4)-\frac{1}{2}\betau(n+1,j+3)+\frac{1}{4}\betau(n,j+4)-\frac{1}{2}\betau(n,j+3)+\frac{1}{2}\betau(n+1,j+1)
    - \frac{1}{4}\betau(n+1,j)+\frac{1}{2}\betau(n,j+1)-\frac{1}{4}\betau(n,j))+\frac{u(n+1,j+2)-u(n,j+2)}{\tau}
```


Computer algebra software used

To perform algebraically the difference elimination of the grid functions which correspond to partial derivatives of u, from the obtained discrete system we use the Maple package LDA (Linear Difference Algebra).

LDA created by D.Robertz (RWTH, Aachen) is freely available (http://wwwb.math.rwth-aachen.de/Janet/). It implements the involutive algorithm (Gerdt,Blinkov'98) specialized to difference ideals generated by linear difference polynomials.

Note that to apply LDA we "hide" the nonlinearity (caused by the presence of u^{2} in the input difference equations) into the polynomial grid function $P_{j}^{n}:=\alpha\left(u_{j}^{n}\right)^{2} / 2$.

Difference scheme

In the conventional notations the obtained difference scheme reads

$$
\begin{aligned}
& \tilde{f}=0, \quad \text { where } \quad \tilde{f}:=\frac{u_{j}^{n+1}-u_{j}^{n}}{\tau}+\frac{\left(P_{j+1}^{n+1}-P_{j-1}^{n+1}\right)+\left(P_{j+1}^{n}-P_{j-1}^{n}\right)}{4 h} \\
& +\frac{\beta\left(u_{j+2}^{n+1}-2 u_{j+1}^{n+1}+2 u_{j-1}^{n+1}-u_{j-2}^{n+1}\right)+\beta\left(u_{j+2}^{n}-2 u_{j+1}^{n}+2 u_{j-1}^{n}-u_{j-2}^{n}\right)}{4 h^{3}}
\end{aligned}
$$

Properties of the derived scheme I

Using the library SymPy (http://www.sympy.org/en/) written in PYthon we computed the modified equation of the scheme

$$
\begin{aligned}
& u_{t}+\alpha u u_{1}+\beta u_{3}+h^{2}\left[\alpha\left(\frac{1}{6} u u_{3}+\frac{1}{2} u_{1} u_{2}\right)+\frac{\beta}{4} u_{5}\right]+ \\
& +\tau^{2}\left[\alpha^{3}\left(\frac{1}{12} u_{3}+\frac{3}{4} u^{2} u_{1} u_{2}+\frac{1}{2} u u_{1}^{3}\right)+\alpha^{2} \beta\left(\frac{1}{4} u^{2} u_{5}+\frac{7}{4} u u_{1} u_{4}+\right.\right. \\
& \left.+\frac{11}{4} u u_{2} u_{3}+\frac{9}{4} u_{1}^{2} u_{3}+\frac{11}{4} u_{1} u_{2}^{2}\right)+\alpha \beta^{2}\left(\frac{1}{4} u u_{7}+u_{1} u_{6}+\right. \\
& \left.\left.+\frac{9}{4} u_{2} u_{5}+\frac{7}{2} u_{3} u_{4}\right)+\frac{\beta^{3}}{12} u_{9}\right]+\mathcal{O}\left(\tau^{4}, \tau^{2} h^{2}, h^{4}\right)
\end{aligned}
$$

where

$$
u_{k}:=u_{\underbrace{}_{k \text { times }}}^{x_{x x} \cdots x}, \quad k \geq 1 .
$$

Properties of the derived scheme II

(1) The modified equation shows that the scheme has the 2-nd order in τ and in h.
(2) This also implies that the scheme is (strongly) consistent.
(3) The scheme is implicit, and hence it is unconditionally stable.
(9) Because of universally adopted condition for convergency of difference schemes (rigorously proved for linear Cauchy problem - the Lax(-Richtmyer) equivalence theorem):

$$
\text { convergence }=\text { consistency }+ \text { stability }
$$

the obtained scheme is convergent.

Other schemes with $\mathcal{O}\left(\tau^{2}, h^{2}\right)$ approximation

Scheme I. The explicit scheme (Belashov,Vladimirov'05, Eq.1.80)
$u_{i}^{n+1}=u_{i}^{n-1}-\frac{\alpha \tau}{h} u_{i}^{n}\left(u_{i+1}^{n}-u_{i-1}^{n}\right)-\frac{\beta \tau}{h^{3}}\left(u_{i+2}^{n}-2 u_{i+1}^{n}+2 u_{i-1}^{n}-u_{i-2}^{n}\right)$
stable for $\tau \leq \frac{2 h^{3}}{3 \sqrt{3} \beta} \cong 0.384 \frac{h^{3}}{\beta}$. The modified equation
$u_{t}+\alpha u u_{1}+\beta u_{3}+h^{2}\left(\frac{\alpha}{6} u u_{3}+\frac{\beta}{4} u_{5}\right)-$
$-\tau^{2}\left[\alpha^{3}\left(\frac{1}{6} u^{3} u_{3}+\frac{3}{2} u^{2} u_{1} u_{2}+u u_{1}^{3}\right)+\alpha^{2} \beta\left(\frac{1}{2} u^{2} u_{5}+\frac{7}{2} u u_{1} u_{4}+\right.\right.$
$\left.+\frac{11}{2} u u_{2} u_{3}+\frac{9}{2} u_{1}^{2} u_{3}+\frac{11}{2} u_{1} u_{2}^{2}\right)+\alpha \beta^{2}\left(\frac{1}{2} u u_{7}+2 u_{1} u_{6}+\right.$
$\left.\left.+\frac{9}{2} u_{2} u_{5}+7 u_{3} u_{4}\right)+\frac{\beta^{3}}{6} u_{9}\right]+\mathcal{O}\left(\tau^{4}, h^{4}\right)$

Scheme II. The implicit scheme (Belashov, Vladimirov'05, Eq.1.96)

$$
\begin{aligned}
& \frac{u_{j}^{n+1}-u_{j}^{n}}{\tau}+\frac{\alpha}{4 h}\left[u_{j}^{n}\left(u_{j+1}^{n+1}-u_{j-1}^{n+1}\right)+u_{j}^{n+1}\left(u_{j+1}^{n}-u_{j-1}^{n}\right)\right]+ \\
& + \\
& +\frac{\beta}{4 h^{3}}\left(u_{j+2}^{n+1}-2 u_{j+1}^{n+1}+2 u_{j-1}^{n+1}-u_{j-2}^{n+1}+\right. \\
& \left.\quad+u_{j+2}^{n}-2 u_{j}^{n+1}+2 u_{j-1}^{n}-u_{j-2}^{n}\right)=0
\end{aligned}
$$

The modified equation

$$
\begin{aligned}
u_{t} & +\alpha u u_{1}+\beta u_{3}+h^{2}\left(\frac{\alpha}{6} u u_{3}+\frac{\beta}{4} u_{5}\right)+ \\
+ & \tau^{2}\left[\alpha^{3}\left(\frac{1}{12} u^{3} u_{3}+\frac{1}{4} u^{2} u_{1} u_{2}\right)+\alpha^{2} \beta\left(\frac{1}{4} u^{2} u_{5}+\frac{5}{4} u u_{1} u_{4}+\right.\right. \\
+\frac{9}{4} u u_{2} u_{3} & \left.+\frac{7}{4} u_{1}^{2} u_{3}+\frac{11}{4} u_{1} u_{2}^{2}\right)+\alpha \beta^{2}\left(\frac{1}{4} u u_{7}+u_{1} u_{6}+\right. \\
& \left.\left.+\frac{9}{4} u_{2} u_{5}+3 u_{3} u_{4}\right)+\frac{\beta^{3}}{12} u_{9}\right]+\mathcal{O}\left(\tau^{4}, \tau^{2} h^{2}, h^{4}\right)
\end{aligned}
$$

Computational experiment

Our numerical comparison of the above difference schemes was done with the Python package SciPy (http: \scipy.org). As a benchmark, we used the exact one-soliton solution

$$
u_{\text {exact }}(t, x)=\frac{2 k_{1}^{2}}{\cosh \left(k_{1}\left(x-4 k_{1}^{2} t\right)\right)^{2}}
$$

to the KdV with $\alpha=6, \beta=1$ and $k_{1}=0.4$. In so doing, we fixed $h=0.25, \tau=0.37 h^{3} \beta$ and considered the solution in interval $-50 \leq x \leq 50$ with periodic boundary conditions (cf. Belashov, Vladimirov'05, p.49). The numerical inaccuracy was estimated by the Frobenius norm.

Numerical discrepancy

The left-hand side of modified equation for $u_{\text {exact }}(0, x)$

Conclusions

- By applying algorithmic methods of difference algebra we generated implicit difference scheme for KdV with $\mathcal{O}\left(\tau^{2}, h^{2}\right)$ accuracy.
- The obtained scheme is consistent and stable.
- We compared, on the exact one-soliton solution, the numerical behavior of our scheme with two other schemes of the same accuracy known in the literature.
- Our scheme reveals numerical superiority.

References

國 V．P．Gerdt and Yu．A．Blinkov．Involutive Bases of Polynomial Ideals． Mathematics and Computers in Simulation，45，519－542， 1998. arXiv：math．AC／9912027

V．Yu．Belashov and S．V．Vladimirov．Solitary Waves in Dispersive Complex Media．Theory．Simulation．Applications．Springer－Verlag， Berlin， 2005.
冨 V．P．Gerdt，Yu．A．Blinkov and V．V．Mozzhilkin．Gröbner Bases and Generation of Difference Schemes for Partial Differential Equations． Symmetry，Integrability and Geometry：Methods and Applications， 2：26，2006．arXiv：math．RA／0605334

䡒 V．P．Gerdt，Yu．A．Blinkov and K．B．Marinov Computer algebra based discretization of nonlinear evolution equations．Programming and Computer Software， 43 （2），84－89， 2017.

