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Qualification and Classification of EoS

Estimation of different models of EoS from observational
constraints
Applying Bayesian Analysis for the estimation
Finding suggestions for observation which could be most
selective for the models of EoS
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Neutron Star Structure

Credit: Dany Page
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Mass and Radius Constraints
Gravitational Binding Energy Constraint
Totaly

Observational Constraints
Mass and Radius Constraints
Radius and maximum mass constraints are given from PSR
J0437-4715 [1] and PSR J0348+0432 [2] correspondingly.
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Gravitational Binding Energy Constraint

A constraint on the gravitational binding energy is taken from
the neutron star B in the binary system J0737-3039 (B) [3].
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Observational Constraints

Three Statistically Independent Constraints
A radius constraint from the nearest millisecond pulsar
PSR J0437-4715 [1].
A maximum mass constraint from PSR J0348+0432 [2].
A constraint on the gravitational binding energy from the
neutron star B in the binary system PSR J0737-3039
(B) [3].
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Tolman–Oppenheimer–Volkoff equations

TOV equations

dm(r)

dr
= C1εr2

dmB(r)

dr
= C1nBmN

r2

(1− 2C2m/r)
dp(ε, r)

dr
= −C2

(ε+ p)(m + C1pr3)

r(r − 2C2m)

(1)

Constants

C1 = 1.11269 · 10−5 M�

km3
fm3

MeV
C2 = 1.4766

km
M�

(2)
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Mass–Radius plot
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EoS Models
Formulation of the Problem
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EoS Parametrization

Hybrid EoS

p (ε) = pI (ε) Θ (εc − ε) + pI (εc) Θ (ε− εc) Θ (εc − ε+ ∆ε) +
pII (ε) Θ (ε− εc −∆ε) ,

where pI (ε) is given by a pure hadronic EoS (here well known
model of APR), and pII (ε) represents the high density nuclear
matter [4] used here as quark matter given in the bag-like form.

Bag-Like Form of QM EoS

pII (ε) = c2
QMε− B,

where c2
QM is the squared speed of sound in quark matter and

B is the bag constant.
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EoS Parametrization

Hybrid EoS
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EoS Parametrization
Hybrid EoS Pareameters

400 ≤ εc
[
MeV/fm3] ≤ 1000 : εc(k) k = 1 . . .N1 = 10

0 ≤ γ =
∆ε

εc
≤ 1 : γ(l) l = 1 . . .N2 = 10

0.3 ≤ c2
QM ≤ 1 : c2

QM(m) m = 1 . . .N3 = 10

Vector of Parameters
For the BA, we have to sample the above defined parameter
space and to that end we introduce a vector of the parameter
values:

πi = −→π
(
εc(k), γ(l), c2

QM(m)
)
,

i = 1 . . .N (here N =
3∏

q=1
Nq) and i = N1 × N2 × k + N2 × l + m
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Qualification of EoS Set from Observation

Goal
To find the set πi corresponding to an EoS and thus a sequence
of configurations which contains the most probable one based
on the given constraints using BA (calculate of a posteriori
probabilities of πi ).

Unification of a priori probabilities

P (πi) = 1 for ∀i .
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Calculation of Probabilities

Probability of Corresponding to Radius Constraint for πi

P (EB |πi ) = Φ(Ri , µB, σB), here Ri is max radius given by πi .
µB = 15.5 km and σB = 1.5 km [1].
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Calculation of Probabilities

Probability of Corresponding to Mass Constraint for πi

P (EA |πi ) = Φ(Mi , µA, σA), here Mi is max mass given by πi .
µA = 2.01 M� and σA = 0.04 M� [2].
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Calculation of Probabilities

Probability of Corresponding to M −MB Constraint for πi

We need to estimate the probability for the closeness of a
theoretical point Mi = (Mi ,MBi) to the observed point
µK = (µG, µB). The required probability can be calculated using
the following formula

P (EK |πi ) = [Φ (ξG)− Φ (−ξG)] · [Φ (ξB)− Φ (−ξB)] ,

where Φ (x) = Φ (x ,0,1), ξG = σMG/dMG and ξB = σMB/dMB ,
with dMG and dMB being the absolute values of components of
the vector di = µ−Mi , where µB = (µG, µB)T is given in
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Calculation of Probabilities

Probability of M −MB for πi
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Calculation of Probabilities

Probability of All Constraints for πi

Taking to the account assumption that these measurements are
independent on each other we can calculate complete
conditional probability:

P (E |πi ) = P (EA |πi )× P (EB |πi )× P (EK |πi )

Calculation of a posteriori Probabilities of πi

Now, we can calculate probability of πi using Bayes’ theorem:

P (πi |E ) =
P (E |πi ) P (πi)

N−1∑
j=0

P
(
E
∣∣πj
)

P
(
πj
)
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M–R and Mg –MB plots
EoS plots

Conclusions

The most probable set of parameters resulting from the
Bayesian Analysis point out to a quite stiff EoS with a
smooth phase transition.
Less probable configurations have jump in phase
transition. Most of these EoS are pretty much stiff as well.
The 7 most probable EoS do not allow a "third family".
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Phase Diagram
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Fake measurements

Ulrich H. Gerlach. PhysRev (1968) 172 (1), p. 1325–1330.
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Appendix

In the end, there can be only one.
– Duncan MacLeod

Thanks for your attention!
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