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Introduction

One-Step Processes

o The representation of the state vectors (combinatorial approach).

e The representation of the occupation numbers (operator approach).
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Notations and conventions

@ The abstract indices notation is used in this work. Under this notation a
tensor as a whole object is denoted just as an index (e.g., z*),
components are denoted by underlined index (e.g., z%).

© We will adhere to the following agreements. Latin indices from the
middle of the alphabet (i, 7, k) will be applied to the space of the system
state vectors. Latin indices from the beginning of the alphabet (a) will be
related to the Wiener process space. Greek indices (a) will set a number
of different interactions in kinetic equations.
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Figure 1. One-step process
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General review of the methodology

Two Possibilities

o Computational approach — the solution of the master equation with help
of perturbation theory.

@ Modeling approach — the approximate models are obtained in the form
of Fokker—Planck and Langevin equations.
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Figure 2. The general structure of the methodology
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Figure 4. Operator modeling approach
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General review of the methodology ~ Interaction s

) Tk .
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"k

the Greek indices specify the number of interactions and Latin are the system
order. The coefficients +l<:a and ~k_ have meaning intensity (speed) of

interaction.
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General review of the methodology ~ Interaction s

The state transition is given by the operator:

e

Q 1o
T Fj —Ij .

One step interaction « in forward and reverse directions can be written as
i iy e
o 2

=t Tl
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General review of the methodology = Interaction schemes

We can also write not in the form of vector equations but in the form of sums:
. Tk )
o @ o
Ijisoj(si S Fjiﬁ/)](sia
k.
where 6; = (1,...,1).

Also the following notation will be used:

e .= 1=, .= F=4, = i’
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General review of the methodology =~ The master equation

Master equation

Op(p2, talp1,t
w lo1tt) _ ol (o ol ) -

— w(]@2, ta)p(p2, tal 1, t1)] dib

where w(p|1), t) is the probability of transition from the state 1) to the state
for unit time.
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General review of the methodology =~ The master equation

Master equation for subensemble

Ip( 907 /[ (elv, )p(, ) — w(tle, t)p(p, t)] dip .
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General review of the methodology =~ The master equation

Discrete master equation

8%23(1;) - Z [WnmPm () — Winpn (1)),

m

where the p,, is the probability of the system to be in a state n at time ¢, Wy,
is the probability of transition from the state m into the state n per unit time.
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General review of the methodology =~ The master equation

Transition probabilities

wg(solh/}l)t) = +896¢i,¢i+1 T _Sg6@i7¢i_1, a = ]_, S,

where 9; ; is Kronecker delta.
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General review of the methodology =~ The master equation

Master equation for the state vector

S

—8p(g;’t) =3 {Tsalet + 72, (e + i) +

g:l
- (@ — ' p(p’ — ' t) —

_ [+sg(soi) + ‘sg(spi)}p((pi’t)}‘
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The transition probabi

The transition probabilities for master equation
+g -t re _ +
14 = ] oy

n ”

s, =k, HAff = k. [1
oT el a

=il (SOE - FE)' ’

Kulyabov, D.S. (RUDN, JINR) MMCP 2017



The transition probabi
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Combinatorial approach Fokker—Planck equation

Fokker—Planck equation

2
WD 2 tenle 0]+ g [BoIplir )]

Multidimensional Fokker—Planck equation

k .
e [Pt ) +

y1 o
2 0prdpi

where ‘ A '
A= A(p") =125, — 54

BY .= BY(oF) = piapia [;{)sa — f;sa}.

.
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Combinatorial approach Langevin equation

Langevin equation

dp' = a* dt + b}, dW*,

where a’ := a’(¢F), bl = b (¢"), ¢! € R™ is the system state vector,
W® € R™ is the m-dimensional Wiener process.

The connection between the Fokker—Planck equation and Langevin equation

Ai—gl, B =iy,
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Operator approach ~ Occupation numbers representation

Occupation number representation

@ It is possible to consider systems with a variable number of particles
(non-stationary systems).

o System statistics (Fermi—Dirac or Bose—Einstein) is automatically
included in the commutation rules for the creation and annihilation
operators.

@ This is the second major formalism (along with the path integral) for the
quantum perturbation theory description.
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Dirac notation

Dirac notation

The scalar product

The tensor product

\
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Operator approach Dirac notation

Components

~
.
A
|~

o) =", (ilo) = ¢'6;

| A\

Linear operator

Aspit? = (plAl).

589 = (il Alj).

A,
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Operator approach ~ Creation and annihilation operators

State vector

Scalar product
(©l%)ex Z nph (0)p" ();

{pl$)in Z ()t (¥).

A
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Operator approach ~ Creation and annihilation operators

Factorial moments

3k
nk(p) = (n(n = 1) (n —k +1)) = 572G (2,9) =1,

Generating function

.
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Creation and annihilation operators

Normalization

(nlm) e = 1T

1
Pn = — (1D}
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Creation and annihilation operators

Creation and annihilation operators

7 ln) = n +1),
aln)y =n|n—1)

with commutation rule:
[a, 7] = 1.
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Operator approach The Liouville operator

Liouville equation
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The Liouville operator

Liouville operator

L= Z [“Lka((m)Fm - (m)ﬂﬁ) (@)™ +
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Diagram repres

Figure 5. Forward interaction

[g0—<7——<lf———<— Fop

Figure 6. Backward interaction
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Diagram representation ~ Diagram representation. Operator approach

Tk
Ilp —»—--p--—>»— Fop
CLI +L 7TF
Figure 7. Forward interaction (operator approach)
~k
Iy -4 Fo
! ~k al’

Figure 8. Backward interaction (operator approach)
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Diagram representation ~ Diagram representation. Operator approach

mlal Tk 1
Figure 9. Forward interaction (operator approach), extended notation

—k
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Figure 10. Backward interaction (operator approach), extended notation
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Diagram representation ~ Diagram representation. Operator approach

We obtain a factor Tkm a’. However, this violates the equation:
(0| L = 0.

Redressing this, we have to subtract the number of entities that have entered
into interaction, multiplied by the intensity of the interaction. Then we get a
following term of the Liouville operator:

tertal — Thalal = Tk (7rF — 7TI)CLI.
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Diagram representation Diagram representation. Combinatorial approach

The general form of the master equation for the state vector (?, changing by
steps with length r*2, is:

W%ﬂ?t)zz{ W+ Op(e + 1) +

a=1

s — 1 Op(6" =112, 8) = [Fs, () + Tsa (@) |p(e' 1)}
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Diagram representation Diagram representation. Combinatorial approach

Figure 11. Forward interaction (combinatorial approach)
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Figure 12. Backward interaction (combinatorial approach)
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Verhulst model

dy 2

T —\o— Bp—

a — PP

where A denotes the breeding intensity factor, 5 — the extinction intensity

factor, v — the factor of population reduction rate.
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Verhulst model

The interaction scheme:

Figure 13. First forward
interaction
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Verhulst model Combinatorial approach
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Figure 18. Second forward

Figure 16. First forward Figure 17. First backward interaction (combinatorial
interaction (combinatorial interaction (combinatorial approach)

approach) approach)

Let’s define transition rates within the Verhults model as follows:

Ts1(p) = A, Tsip—1) = Ae—1), Tsip+1) = Ae+1),
Tsi(p) =0 = 1), Tsile—1)=q(@-D(p—-2), Tsi(p+1)=7(p+ e,
Ts5(p) = Bep. Tsa(p—1) = Bp —1). Tso(p+1) = Ble+1).

rt = 1, r2=_1
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Verhulst model Combinatorial approach

Then the form of the master equation is:

= —[Ap + By +vp(p — Dlp(p,t) +

+[Be+ 1) +7(p + Delp(p + 1,t) + Mo — Dp(p — 1,1).

For particular values of (:

Ipn(t) _ Op(e,t)
ot ot

= —[Mn+ Bn + yn(n — D)pa(t) +
p=n

+[B(n+1)+v(n+ 1)n]pps1(t) + AM(n — Dpp—1(t).
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Verhulst model The Liouville equation

9 Jot) = Llp(t)

The Liouville equation in the form of a single equation writes down the
master equations for different values of n.

Bpn -2 < ‘ > — (nlLlp) = > [WamPm — Winnpnl,

m

Generic Liouville operator:

b= Z [+k; < F“" = E)Iiﬂ> (ai)lig—i-fka ((m)lig — (m)FL‘“) (ai)Fm] ‘
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Verhulst model The Liouville equation

The Liouville operator is:

L=X\n?=ma+~(r—7%)a®+ Bl —n)a=
:)\<(aT)2—aT>a+7<aT—( 2)a2 B( )
:)\(aT—l) a+6(1—a) (1—aT) fa2.

(%] P
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Figure 21. Second forward
Figure 19. First forward Figure 20. First backward interaction (operator
interaction (operator interaction (operator approach)
approach)

approach)
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Verhulst model The Liouville equation

The master equation by Liouville operator:

Opn(t 1 1
pat( ) = (n|L|p) = o (n| — [/\afa + Ba'a +~ya'aaa| +

+ [ﬁa —|—’yaTaa] +xa'ata|p) =
= —[An+ Bn +n(n — 1] (n|p) +
+[Bn+1)+y(n+1)n](n+1lp)+A(n—1){n—1|p) =
= —[An+ Bn+n(n —1)]pa(t) +
+ [ﬁ(n + 1) + 7(” + 1)n]pn+1(t) + )‘(n - 1)pn—1(t)'

The result coincides with the formula, which was obtained by combinatorial
method.
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